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The statistical properties of two-mode coherently correlated states

of a laser beam and the possibility to use them in the construction

of secure quantum channels are described. The stability and

security of a corresponding quantum-cryptographic protocol are
analyzed.

1. Introduction

The physics of quantum communications which include

quantum cryptography [1�3] is one of the modern

and dynamical branches of quantum physics. The

task of quantum cryptography, in particular, consists

in the development of methods or protocols for the

construction of secure channels for the transmission of

data, in which the laws of quantum physics make it

impossible to intercept any information.

The need in such channels is caused by

the insufficient reliability of classical asymmetric

cryptography with the use of an open key. This method

is based on the mathematical complexity of an encoding

procedure and thus can instantaneously become useless

due to the unexpected break in mathematical methods or

the inevitable development of computational facilities, in

particular, due to the appearance of quantum computers.

Completely secure is classical symmetric cryptography

with the use of a closed (secret) key (in this case, it

is optimum to have a key with the same length as

that of an encoded message). But the main difficulty

of a cryptography of this type is the necessity to

transmit the secret key to both participants of the secure

informational exchange (by the tradition accepted in

cryptography, the participants of such an exchange are

called Alice and Bob, and a potential enemy who can

try to intercept them is called Eve).

Thus, there appears the necessity in communication

channels which would be sufficiently secured from the

interception in order that Alice and Bob can possess, as

a result, a common guaranteedly secret key which can be

used then for the encoding of any informational exchange

through the existent commonly available channels (in

particular, the Internet). That is, quantum cryptography

is engaged in just the development of methods for such

a secret key distribution. It is worth noting that the

quantum key distribution (QKD) is, in fact, the first

practical application of the laws of quantum physics

on the level of separate quanta, being, in this case,

on the crossing of quantum mechanics and information

theory. For two last decades, quantum cryptography has

passed a way from theoretical ideas to the first industrial

prototypes, but it requires to be developed up to now.

The first quantum-cryptographic protocol [6] was

proposed by C. Bennett and G. Brassard in 1984 (it

was then named as BB84). It foresees the usage of

four quantum states of individual particles with a half-

integer spin which can be aligned along or opposite to

one of the two orthogonal directions: j!i, j i,j"i,j#i.
The binary value 0 is assigned to states j"i and j!i,
and the value 1, respectively, to states j#i and j i. The
states of a two-level quantum system begin, thus, to be

considered as bits, and the system itself as a quantum

bit (a qubit), whose main difference from a classical

(Shannon) bit consists in that the value of a qubit arises

only under its measurement. Prior to the measurement,

it is a superposition of states which correspond to two

binary values.

Though the protocol was proposed for electrons,

it was realized, like the other protocols, on the base

of photons, whose states are different by polarization.

Below, we will describe this protocol for polarized

photons. Since a polarization is characterized by the

axis rather than a direction on this axis, we consider 4

states in the photon realization: one with the horizontal

polarization h (it is treated as bit 1), one with the

vertical polarization v (bit 0), and two with the diagonal

polarization +
�
4
(bit 1) and ��

4
(bit 0).

A state of photons is registered in one of the

Cartesian bases: vertical-horizontal (h=v) and diagonal
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(+= � �
4
) ones which are turned each relative to other

by angle �
4
.

For each particle which is sent by Alice to Bob,

she randomly chooses the value of a bit and the basis

and prepares a particle in the relevant state. Each time,

when Bob expects the arrival of a particle, he activates

his detectors and chooses randomly one of thw two

bases h=v or += � �
4
, in which the measurement will

be performed. He registers which basis has been used

and which bit value he has derived. After the exchange

of a sufficient number of particles, he openly informs

Alice (via a commonly used net), in which events he has

registered particles and which basis has been used. But

he communicates nothing about the values of bits he has

derived. Alice compares event by event, whether Bob's

basis was consistent with that, in which she prepared

a relevant particle. The events, in which the bases do

not coincide, or Bob has not registered a particle, are

rejected. As for the remaining events, Alice and Bob

can be sure that the corresponding values of bits are

identical. These bits form the so-called sieved key.

The security of such a protocol is based on

that an interceptor will disturb, in most cases, a

quantum system unknown for him/her, by performing

the measurement. Thus, either the sieved keys of Alice

and Bob are identical, no interception has occurred, and

the key is guaranteedly secret and can be used in the

cryptographic encoding of information, or, depending

on the degree of noncorrelatedness of the sieved keys

(which is characterized by the QBER parameter �

the quantum bit error rate), Alice and Bob can apply

the cryptographic procedures of correction of errors

to them and can enhance the security, or can reject

these keys and repeat the transfer procedure. The

communication on this protocol was reported at the

IEEE International Conference on Computers, Systems,

and Signal Processing in India and remained almost

unnoticed for the community of physicists.

In 7 years, in 1991, À. Ekert proposed a protocol

which is called, by analogy, E91 [7]. This protocol is

based on the use of pairs of fermions that are in a

singlet state (in honor of the Einstein-Podolsky-Rosen

experiment, such particles are called EPR-correlated).

The particles of a pair are separated, and one moves

to Alice, and the other to Bob. They measure the spin

of a next particle in one of the three directions, whose

azimuth angles are equal to 0, �
4
, and �

2
for Alice and

�
4
, �

2
, 3�

4
� for Bob. Each particle is considered as

a quantum bit which has the value 1, if the particle

spin is directed upward, and �1, if the spin is directed

downward. After the transfer of a sufficient number of

bits, Alice and Bob reject the recordings, in which one

of them or both did not register a particle. Then they

compare the orientation of the own analyzers in each

separate measurement and divide the derived values of

bits into two parts. The first part includes the events, in

which the orientations of analyzers were different, and

the second � those with the same orientation. By the

first group of events, they calculate values of the Bell

parameter which includes the correlation coefficients

of measurements performed in different, specifically

selected pairs of bases:

S = jE(a1; b1)�E(a1; b3) +E(a3; b1) +E(a3; b3)j: (1)

In this case, each coefficient is the difference of the

probabilities to register the identical and different values

of bits:

E(ai; bj) = P++(ai; bj) + P��(ai; bj)�
�P+�(ai; bj)� P�+(ai; bj): (2)

Here, P��(ai; bj) stands for the probability of that the

result �1 was derived by Alice in the basis ai and the

result �1 was derived by Bob in the basis bj .

For the considered singlet state of two fermions and

with regard for the collection of the used bases, the value

of this parameter should be equal to 2
p
2, which violates

the so-called Bell inequality [7] that requires for S � 2 to

be valid. Thus, by calculating this parameter, Alice and

Bob can verify its value and draw conclusion whether

the interference in a state of the system has happen

(i.e. the interception). If such a check has not reveal

the signs of the vioplation of a state, then the second

collection of bits that were derived in the same bases

can be considered completely anticorrelated. Thus, this

collection can be transformed into a cryptographic key,

whose security is based, thus, on the Bell inequality.

In order to experimentally realize his protocol, Ekert

proposed to use the scheme of the experiment proposed

in [8] for the verification of the Bell inequalities, in which

the pairs of polarized photons are used.

Further, the mentioned protocols were

supplemented, were slightly changed, but remain to

be the base for all experimental realizations of quantum

cryptography which were carried out on the basis of two-

level states of photons of a laser beam represented by

their polarization (sometimes, the encoding by frequency

or phase is also used). In this case, the development

of protocols was related to the aspiration to make

them to be more applicable and secure against the

increasingly perfect techniques of interception, without

the introduction of basic changes in circuits.
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In the general case, while studying the security

of protocols of quantum cryptography, one poses the

task to investigate all possible means of interception

[18] and their potential development. Traditionally,

the attacks with the interception of photons by using

the splitting of a beam and the method of cloning

of a state are considered and analyzed as the most

efficient. In spite of the fact that quantum physics

forbids the ideal copying of an arbitrary unknown state

(the theorem on impossibility of the cloning [17]), an

interceptor can determine the state of a laser pulse

which is a carrier of information in the quantum optical

channel, by absorbing this pulse, and then will try

to create a state, whose density matrix is as close to

the density matrix of the original state as possible.

We also mention the attacks by the so-called Trojan

horses, where an interceptor sends his/her photons to

the channel expecting their reflection in the setup and

the return backward. This type of attacks is efficient

against the realizations which are based on the phase or

polarization modulation and the use of mirrors, because

it allows one to determine the state of modulators.

However, the exhaustive evaluation of the security

of a protocol is rather complicated, because it

depends on its specific realization and the assumptions

as for a technique used by an interceptor. It is

commonly accepted in this case that all errors can

be used potentially by an interceptor in order to

derive information or are induced by its interference.

This requires the additional enhancement of the

security of a sieved key with the help of special

cryptographic algorithms, which shortens it and,

respectively, decreases the effective transmission rate.

The first practical demonstration of quantum

cryptography for protocol BB84 (more properly, for its

somewhat modified version B92 with the polarization

encoding of single photons) was realized in 1992 [10]

under laboratory conditions with the transmission of a

key at a distance of 30 cm. In 2000, the realization of

protocol B92 [12] was improved, and protocol E91 [11]

was implemented with the use of polarization-entangled

[13] pairs of photons. Further, there appeared the first

commersial schemes which had, nevertheless, essential

limitations.

At present, quantum cryptography demonstrates

rates of about one thousand bits of a key for one second

at distances of tens of kilometers with fiberoptic channels

or of several kilometers in open space under the condition

of direct visibility (the last variant is a candidate for

the truly far quantum cryptography upon the exchange

by a key, for example, with a satellite). In this case,

the experiments showed that the frequency of errors for

these quantum-cryptographic protocols and, as a result,

the limitation as for the maximum distances of the

transmission of a key are related to, first of all, the low

intensity of beams. This makes the manifestations of the

imperfection of one-photon detectors (which are inclined

to �dark�, i.e. idle counts in the absence of photons)

and optical transmission channels (which, in particular,

change a state of a polarization of photons and weaken

pulses) to be strong. In this case, in order to increase the

maximum distance or transmission rate, the increase in

the number of photons in pulses is a more efficient way

than the increase in the frequency of pulses. But at the

same time, the appearance of superfluous photons in a

pulse can be used by an interceptor who can measure

their state introducing no errors and, thus, remaining

imperceptible. That is, the average number of photons

in a pulse should be much less than 1 to minimize the

probability of the appearance of additional photons.

This contradiction can be removed by applying

powerful pulses for the construction of a channel. For

this purpose, a new quantum-cryptographic protocol

which is based on the use of peculiar, the so-called two-

mode coherently correlated (TMCC) states [15, 16] of

a laser beam was proposed. In the present work, we

present a profound analysis of the security of a TMCC-

protocol.

2. Properties of Beams

TMCC states are the completely correlated and, at the

same time, proper states of a product of the operators

of annihilation of both modes and can be represented as

an expansion in the Fock states of two modes:

j�i = 1p
I0 (2 j�j)

1X
n=0

�n

n!
jnni : (3)

Here, we used the notation jnni = jni
1

jni

2
, where

jni
1
and jni

2
correspond to states of 1 and 2 modes,

respectively, which are represented by their numbers of

photons.

The first important feature of such states consists in

the absence of terms with different numbers of photons

in the sum (3). This fact yields the strong correlation

between the observables related to each mode.

Since the Fock states can be written as

jni = a+
n

p
n!
j0i; (4)
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we can present TMCC-states (3) in the form

j�i = 1p
I0 (2 j�j)

I0(2�a
+

1
a+
2
) j0i : (5)

Considering TMCC-states, we cut a substate fjn; nig
which contains the states with identical nimbers of

photons from the entire Fock space of two-mode

states fjn;mig. The operators A = a1a2 and A+
=

a+
1
a+
2
, being the products of quantum operators that

correspond to each mode, completely describe the

algebra of the observables of a TMCC-state. The second

defining feature of the states under consideration is

that the TMCC-states are proper for a product of the

annihilation operators. But, at the same time, they are

not proper for each quantum operator separately.

By assuming that a TMCC-state is represented

by two laser beams which are propagating in space

independently each from other, we can study the

observables of such an emission.

As distinct from ordinary noncorrelated coherent

states, for which any quantity linear in the field has

a nonzero average value, the average value of any

analogous quantity for TMCC states is zero. Indeed,

in the process of averaging over the first mode, the

operator a1 transforms jn; ni, e.g., into jn� 1; ni which
is orthogonal to all available components of the state.

Thus, h�ij ai j�ii = 0. An analogous relation is true for

the other mode. Each mode of a TMCC-beam is not

coherent separately by itself. But they possess mutual

coherency which manifests itself, for example, in a

spatial correlation function that contains the average

values of products of quantum operators, some of these

values being nonzero.

Nonzero are also the average values of the

observables for each mode separately that are quadratic

in the field, namely the energy and the momentum.

This fact allows us to consider TMCC-modes to be

quadratically correlated.

Let us study any of two TMCC-beams separately.

The emission intensity registered by an observer is

proportional to the average value of the operator

N = a+a which is the operator of the number of

photons in the relevant mode. These observables are

quadratic in the field, and thus their average values

are not transformed to zero (it is worth noting that

this fact is not unique for TMCC-states, because the

ordinary noncorrelated states and processes such as the

propagation of heat demonstrate the same properties).

P

0
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0.1

0.12

5 10 15 20 25 30 35
n

Fig. 1. Probability distribution of the registration of various

numbers of photons for a TMCC-beam (circles) and the

corresponding distribution for the ordinary Poisson coherent beam

(crosses)

The probability to register some number n of photons

depends on the intensity of a beam:

Pn(�) =
1

I0(2j�j)
j�j2n
n!2

: (6)

The important property of this distribution is the

rapidly decreasing (proportionally to n!2) probability of

the registration as a function of the number of photons.

This circumstance makes the experimental identification

of TMCC-states to be convenient. The plot of the

probability distribution to register various numbers of

photons and the corresponding Poisson distribution for

an ordinary coherent beam (or the thermal emission) are

given in Fig. 1.

A type of the statistics of a beam can be characterized

by the Mandel parameter, which includes the average

and mean square values of the number of photons:

Q =
hN2i � hNi2
hNi � 1: (7)

At Q > 0, the statistics of a beam is super-Poisson. That

is, the uncertainty of the number of quanta is greater

than the standard one, and a beam is less ordered than

a thermal flow. At Q < 0, respectively, a beam has

sub-Poisson statistics, the uncertainty of the number of

quanta is less than the standard one, and a beam is more

ordered than a thermal flow.

The dependence of the Mandel parameter (7) on the

average number of photons is shown in Fig. 2. It is easy

to see that a TMCC-beam manifests a pronounced sub-

Poisson statistics even at low intensities.

3. Quantum Channel

Assume that we need to construct a secure quantum

channel between the two participants of the transmission
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Fig. 2. Mandel parameter vs the average number of photons for a

TMCC-beam

of some sequence of bits (Fig.3). As has

become traditional in the literature on quantum

communications, we name them Alice and Bob. Alice

has a laser which creates two beams in a TMCC-state.

The optical channel is organized in such a way that

Alice receives one of the modes, for example, the first

one. That is, 'A � '1, 'A(xA; t0) = 1. Bob receives

the other one, i.e. 'B � '2, 'B(xB ; t0) = 1 at every

moment of the measurement t0. Here, xA and xB are

the positions of Alice and Bob, respectively. In addition,

Alice does not receive the mode of Bob and vice versa:

'B(xA; t0) = 0, 'A(xB ; t0) = 0.

As was mentioned, TMCC-beams reveal the

correlation between the observables of both modes which

can be conveniently characterized by the coefficient of

relative correlation

�AB =
hNANBi � hNAihNBip

hN2

Ai � hNAi2
p
hN2

Bi � hNBi2
: (8)

As an important feature of TMCC-beams, we

indicate the fact that their coefficient of relative

correlation �AB equals 1. That is, the results of

individual measurements of each of the two modes not

only give the identical average values, but have the same

deviation from the average.

A laser beam is a semiclassical emission with well-

defined phase. But, due to the principle of uncertainty

for the number of photons and the phase, there exists

a rather great uncertainty of the number of photons.

Therefore, one must observe a noise similar to the

Schottky noise in electron tubes. In the TMCC-emission,

the characteristics of such a noise are well correlated

each with other for each mode. This fact allows the usage

of such an emission for the generation of a random code

Fig. 3. Quantum channel on the base of a TMCC-beam

which will be equally well received by two mutually

remote detectors.

3.1. Protocol

The following scheme can be used for a protocol on the

base of TMCC-states. Let a laser be tuned so that it

can create a constant average number of photons during

the whole time interval of transmission of a key, and

both the sides know this number. At some time moment,

Alice and Bob begin to measure. They determine the

numbers of photons per unit time by measuring the

integral intensity of the corresponding beam. If the

number of photons in some unit time interval is more

than the known average value (at the expense of the

Schottky noise), then the next bit of the generated code

is considered to be equal to 1. If the measured number

is less than the average value, the next bit is taken to

be equal to 0:

B =

� fn � [hNi]g ! 0;

fn > [hNi]g ! 1:
(9)

After the reception of a sufficient amount of bits (of

the code), Alice and Bob divide this sequence into two

halves by deriving two sequences of bits (semicodes).

Bob encodes one sequence with the other one by using

the logical operation XOR (excluding OR) and sends

the encoded semicode to Alice through some public

channel. Alice uses any of the own semicodes in order

to decode the semicode she received from Bob (by the

same operation XOR). She compares the result of the

decoding with her other semicode. If all the bits coincide,

this means that Alice and Bob have the same full code

that can be used as a cryptographic key for the encoding

of their further exchange by information. In other case,

they must repeat the procedures of generation and
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transmission of a key and must check the channel

for a possible interception, if this procedure will be

unsuccessful again.

4. Security of a Channel

The security of a channel is its stability against

the attempts to intercept. Let some interceptor (by

tradition, we call her Eve) try to receive a secret key

that is transmitted through a quantum channel to Alice

and Bob. Eve ca use various techniques of interception.

But, in any case, his interference in the channel changes

statistical properties of the state, which can be described

in terms of the density matrices.

The density matrix of a TMCC-source is as follows:

�s = j�i 
 h�j = 1

I0(2 j�j)
1X

n;m=0

��m�n

m!n!
jmmi 
 hnn:j(10)

It includes nondiagonal elements which correspond to

a correlation between the modes. The detector of Alice

reduce the source state in states of the mode of Alice,

�s �! �2 = 1 hkj �s jki1 ; (11)

and makes nondiagonal elements to be zero. Thus,the

density matrix of the mode which is measured by Bob

looks as

�B = h�siA = TrA�s =

=
1

I0(2 j�j)
1X
k=0

j�j2k
k!2
jki 
 hkj =

1X
k=0

Pk jki 
 hkj: (12)

When Eve makes decision to intercept, she begins to

measure one of the modes (e.g., the mode of Bob) with

the own detector. The density matrices which describe

the results of measurements for each of the detectors are

~�A = TrBE�s; ~�B = TrAE�s; ~�E = TrAB�s: (13)

If Eve intercepts the mode of Bob, its interference does

not change the density matrix of Alice, i.e. ~�A = �A.

We now determine the distance between the density

matrices with the help of the Hilbert-Schmidt norm as

D2
= jj�B � ~�B jj2 or the weak norm d = j�B � ~�B j.

Since both matrices are diagonal, we calculate the

distance by the weak norm as the maximum of the

difference modulus. These observables can be useful for

the discovery of the interception of information or for the

determination of the success of the interception. They

can be derived from the probability distributions

D2
=

1X
n=0

(P (orig)
n � P (BjE)

n )
2; (14)

Fig. 4. Intercepting attack on a TMCC-channel

d = max
n=0::1

(jP (orig)

n � P (BjE)

n j): (15)

4.1. Attack with the Splitting of a Beam

The most simple type of interception is the splitting of

a beam, when Eve splits and takes aside a part of the

beam moving, for example, to Bob and determines its

intensity by mounting a detector on her side (Fig. 4.).

In this case, the field amplitude of the second mode

is split in some ratio p : q. Thus, the mode is expanded

in the basis which is composed from the modes arriving

to Bob and Eve. In order to describe the properties of

this beam, we add a mode in the basis of Bob and Eve

which is orthogonal to '2:

'0 = �q'B + p'E : (16)

Without interception (and thus without a splitter), Eve

receives only the mode '0, in which a laser does not

emit. That is, '0 = 'E and '2 = 'B .

The next transformation of the operators corresponds

to the expansion

a2 = paB + qaE ; (17)

a0 = �qaB + paE : (18)

Hence, we get

'0a0 + '2a2 = 'BaB + 'EaE (19)
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Fig. 5. Distances between the density matrices for the pairs Alice-

Bob and Alice-Eve as functions of the source parameter � and the

interception degree p = cos 

and an analogous relation for the operators conjugate by

Hermite.

These transformations change the initial state (5)

into

j�i = 1p
I0 (2 j�j)

I0(�a
+

A(pa
+

B + qa+E) j0i : (20)

Respectively, the probability distributions for the

registration of the numbers of photons become

~PB
n =

j�j2n jpj2nIn (2 jqj j�j)
jqjnn!I0 (2 j�j) ; (21)

~PE
n =

j�j2n jqj2nIn (2 jpj j�j)
jpjnn!I0 (2 j�j) : (22)

Having known these distributions, we can determine

whether the interception with the splitting of the beam

was successful, by calculating the distances between the

density matrices for the pairs Alice-Bob and Alice-Eve.

The dependence of these distances on the beam intensity

and the interception degree is given in Fig. 5. It is easy to

see that, in the case of a weak interception, the results

of measurements of Bob do not practically vary, and

the interception is inefficient. If it becomes efficient,

Bob feels the loss in the transmission quality, and the

channel is broken. In addition, Bob can calculate the

distance between the density matrices of the derived

and expected states by the weak norm in order to verify

whether the beam was split or did not. The dependence

of the distance between the derived and expected density

matrices by the weak norm on the interception degree is

shown in Fig. 6.
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Fig. 6. Distance between the density matrices of the derived and

expected states by the weak norm vs the interception degree

4.2. Attacks with the Cloning of the State

Besides a simple interception based on the splitting of

the beam, Eve can try to measure the whole mode of

Bob which arrives from a laser source and then to clone

the state by emitting the same number of photons to

Bob by using the own source. However, the statistical

properties of a cloned state will not coincide with those

of the original state.

We consider that the use of a TMCC-source will give

the most efficient means for Eve. In order to clone a

state, she must guess which value of the state parameter

� corresponds to the exact number of photons measured

by Eve in the next pulse. In this case, the optimum

strategy of Eve will consist in the determination of the

necessary value of � from the numerical solution of the

equation of state for the given number of photons. Let

Eve have measured n photons in the mode of Bob and

try to create the same number of photons by tuning

her laser to get the calculated state parameter �(n).

In the case where Eve is constructing a cloned state,

the parameter �(n) includes an arbitrary phase factor

which, nevertheless, does not change the density matrix

of Bob.

One mode of a cloned state is rejected, and the

other mode which will be received and measured

by Bob is averaged over the states of the rejected

mode (analogously to (12). Since a cloned state, under

condition that Eve has registered n photons, will lead

to the density matrix ~�
(n)

B = �(�(n)) for Bob, the total
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density matrix which corresponds to the measurement

of Bob is the mixture

~�B =

1X
n=0

~�
(n)

B PE;n(�) (23)

of cloned states for different n with weights

PE;n(�) =
j�j2n

n!2I0(2 j�j) ;

which are equal to the probabilities of the registration

of n photons by Eve. Finally, the density matrix which

corresponds to the measurement of Bob has form of a

mixture of k-photon states

~�B =

1X
k=0

~Pk jki 
 hkj (24)

with the probabilities

~Pk =

1X
n=0

j�j2n
n!2I0(2 j�j)

j�(n)j2k
k!2I0(2 j�(n)j) : (25)

The change in the probability distribution of a

state can be easily determined by Bob by comparing

the Mandel parameter of the derived beam with the

expected value of this parameter. The success of the

cloning can be evaluated by calculating the distance

between the derived and expected density matrices. The

corresponding plots which demonstrate the dependence

of these parameters on the source intensity are presented

in Fig. 7.

It is easy to see that the attempts to clone a state

change the Mandel parameter. Moreover, the density

matrix of a cloned state is different from that of the

original state even under condition of the optimum

strategy of cloning. Thus, an intercepting attack with

the cloning of a state on the channel which is based on

a TMCC-beam can be registered and therefore is not

efficient.

5. Conclusions

Coherently correlated two-mode states of a laser

emission (TMCC-states), which are strongly correlated

eigenstates of a product of quantum operators of

annihilation of modes, manifest some specific peoperties.

The relevant beams are characterized by the sub-Poisson

statistics, which can help to experimentally identify

these states.

Each mode of a TMCC-state is not coherent

separately by itself, but the modes are mutually

M
D

d

0

0.05

0.1

0.15

0.2

0.25

D,d,M

2 4 6 8 10 12 14
<n>

Fig. 7. Mandel parameter of a cloned state (M) and the distances

between the density matrices of the cloned and expected states by

the Hilbert-Schmidt (D) and weak (d) norms vs the intensity of

the initial source

coherent, which causes a full correlation between the

independent observables of both modes. This correlation

manifests itself in that the measurements give non

only the average values of the numbers of photons in

both modes, but have the identical deviations from the

average values. That is, the Schottky noise of a laser

reveals itself identically in both modes. This allows one

to use a TMCC-source for the generation and to apply

TMCC-beams to the transmission of a secret key to the

two mutually remote observers.

As distinct from the realizations of one-photon

or several-photon schemes with a great number of

noninformational pulses, every pulse in a TMCC-channel

contains some information, which leads to a significant

enhancement of the effective rate of transmission of a

key.

The analysis of the channel seciruty shows that it

is resistant against the ordinary interception with the

splitting of a beam, as well as against the cloning of a

state.
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ÊÎÃÅÐÅÍÒÍÎ-ÊÎÐÅËÜÎÂÀÍI ÏÐÎÌÅÍI

ÒÀ �Õ ÇÀÑÒÎÑÓÂÀÍÍß Â ÊÂÀÍÒÎÂÈÕ ÊÎÌÓÍIÊÀÖIßÕ

Â. Ê. Óñåíêî, Ê. Â. Óñåíêî, Á.I. Ëåâ

Ð å ç þ ì å

Îïèñàíî ñòàòèñòè÷íi âëàñòèâîñòi äâîìîäîâèõ êîãåðåíòíî-

êîðåëüîâàíèõ ñòàíiâ ëàçåðíîãî ïðîìåíÿ òà ìîæëèâiñòü çàñòî-

ñóâàííÿ öèõ ñòàíiâ äëÿ ïîáóäîâè çàõèùåíèõ êâàíòîâèõ êà-

íàëiâ. Ïðîâåäåíî àíàëiç ñòàáiëüíîñòi òà çàõèùåíîñòi âiäïîâiä-

íîãî êâàíòîâî-êðèïòîãðàôi÷íîãî ïðîòîêîëó.
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