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The quantum periodic three-particle Toda lattice is considered.

For its Hamiltonian, the energy spectrum is calculated in terms of

the orthogonal basis in Cartesian coordinates. The eigenstates are

classified according to the irreducible representations of the C3v-

point group. The spectral statistical properties are analyzed and

shown to demonstrate a fairly good agreement with the theoretical

predictions for the integrable system.

1. Introduction

Recent achievements in the theory of classical

Hamilton systems induced the increased interest in the

investigation of the correlation between the dynamical

features of a classical Hamilton system and the spectral

properties of its quantum counterpart. It was shown

in [1] that the distribution P (s) of spacings s between

the nearest-neighbour energy levels of an integrable

classical Hamiltonian exhibits the Poisson behaviour:

P (s) = exp f�sg. While, for non-integrable systems

exhibiting the chaotic motion, the spectral properties

of its quantum counterpart are well described by the

random-matrix theory [2]. In particular, the nearest-

neighbour spacing distribution has the form proposed

by Wigner: P (s) = �s=2 exp
�
��s2=4

	
. However,

the above-mentioned correlations between the types

of classical motion (regular or chaotic) and spectral

statistics are not universal [3].

In the present work, the quantum mechanical

periodic three-particle Toda lattice is considered. As

known [4], this system is integrable in the classical

limit. Its Hamiltonian depends on two variables after

the separation of the center of mass. We aim at studying

the signatures of integrability in the quantum periodic

three-particle Toda lattice by analyzing the statistical

properties of its spectrum.

The quantum energy spectrum was calculated by

the direct diagonalization in the orthogonal basis in

Cartesian coordinates. The eigenstates were classified

according to the irreducible representations of the C3v-

point group. The nearest-neighbour spacing distribution

P (s) and the Dyson's �3(L)-rigidity were calculated

for each symmetry class of the three-particle Toda

Hamiltonian [5]. We did not use a truncated expansion

of the Hamiltonian in calculations of the spectrum, as it

was done in [6], though, the calculation with the exact

potential function took a large amount of computational

time and storage. Isola et al. [7] performed similar

calculations, but the full symmetry of the Hamiltonian

was not taken into account.

2. Classical Periodic Three-particle Toda

Lattice

The Toda lattice is the nonlinear dynamical system

of n particles of equal masses, interacting each with

its nearest neighbour by the exponential law [4]. The

classical Hamiltonian of the periodic (the first and last

particles are coupled) three-particle Toda lattice may
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be written as follows:

H =
1

2m

3X
i=1

p2xi + V0 [exp f�(x1 � x2)g+

+ exp f�(x2 � x3)g+ exp f�(x3 � x1)g] : (1)

Here, m is the mass of a particle, V0 is the amplitude,

and � is the parameter of interaction. We obtain the

new form of Hamiltonian (1) with a diagonal quadratic

part via the generating function

F2(x1; x2; x3; p1; p2; p3) =
x1 � x3p

2
p1+

+

r
2
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�
x1 + x3
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� x2
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x1 + x2 + x3p
3

p3: (2)

The new canonically conjugate coordinates (qi; pi) are

connected to the old ones (xi; pxi) in a following

manner:

pxi =
@F2

@xi
; qi =

@F2

@pi
; (i = 1; 2; 3): (3)

Particularly, from equalities (3) we get0
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The same transformation takes place for the canonically

conjugate momenta. Let �0, �0, and "0 be the unit of

length, time, and energy, respectively. We choose

�0 =
2p
3�
; �0 =

1

�

r
m

3V0
; "0 = 4V0 ; (5)

where �0 is the period of the two-dimensional oscillator,

"0 is the energy of dissociation of the Toda system (1)

truncated to the third order in q1; q2. The total

momentum P = p1+p2+p3 of system (1) is a conserved

quantity. Setting q1 ! y, q2 ! x, p1 ! py, p2 ! px,

we proceed to the following dimensionless form of the

classical Hamiltonian (1):

H =
1

2

�
p2x + p2y

�
+

1

4

 
exp

(
p
2x+

r
2

3
y

)
+

+ exp

(
�
p
2x+

r
2

3
y

)
+ exp

(
�2
r

2

3
y

)!
: (6)

Hamiltonian (6) describes the classical integrable system

with two degrees of freedom. The first few terms of the

Taylor expansion of Hamiltonian (6) are:

H � 3

4
=

1

2

�
p2x + p2y

�
+

1

2
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x2 + y2
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+

-7.5 -5 -2.5 0 2.5 5 7.5
q1

-4

-2

0

2

4

6

8

q2

Fig. 1. Contour plot of the potential of the Toda Hamiltonian (6)

(contours shown for E = 1, 10, 100, 1000)

+
1p
6

�
x2y � 1

3
y3
�
+

1

12

�
x2 + y2

�2
+ : : : (7)

Note that the right part of (7) gives the harmonic

oscillator in the second order approximation and it gives

the H�enon�Heiles term in the third-order approximation.

In 1974, M. H�enon [8] and H. Flaschka [9] found

the third integral of motion for the three-particle Toda

system. In the case of Hamiltonian (6), it has the form:

F =
4

3
px
�
p2x � 3p2y

�
+
�
px �

p
3py

�
�

� exp

(
p
2x+

r
2

3
y

)
+
�
px +

p
3py

�
�

� exp

(
�
p
2x+

r
2

3
y

)
� 2px exp

(
�2
r

2

3
y

)
: (8)

The contour lines of the Toda potential are shown

in Fig. 1. The potential has the symmetry of the

C3v-point group which is the symmetry group of an

equilateral triangle. The Poincar�e cross sections for the

three-particle Toda Hamiltonian show that, for any

energy E, classical orbits stay on an invariant torus

which characterizes the system as being integrable [10].

The cross sections calculated for different energies via

the third integral of motion (8) are shown in Fig. 2.
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Fig. 2. Cross sections for Hamiltonian (6), calculated via the third integral of motion (8) for energies E = 1 (left) and E = 1000 (right)

3. Quantum Energy Spectrum Calculation

In the quantum mechanical consideration, the momenta

px; py are replaced by the operators p̂x; p̂y via the known

formulae px ! p̂x = �i@=@x, py ! p̂y = �i@=@y,
and the quantum Hamiltonian of the three-particle Toda

lattice reads

Ĥ = �1

2
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: (9)

The units of energy and length in formula (9) are

the same as in the classical case, but the additional

parameter arises in the quantum case due to the

appearance of the Planck's constant. The energy

spectrum dependence of this additional parameter was

discussed in [6, 7]. In the present work, numerical

calculations were performed for Hamiltonian (9).

In order to find the energy spectrum of Ĥ, the

eigenvalue problem

Ĥ(x; y) (x; y) = E (x; y) (10)

should be solved. We calculated the energy spectrum by

diagonalizing the Hamiltonian matrix


n01; n

0
2

��Ĥ��n1; n2�
in terms of the orthogonal basis

��n1; n2� in Cartesian

coordinates. We did not use truncated expansions of

Hamiltonian (9), as it was done in [6].

It is important to take the full symmetry of

Hamiltonian (9) into account for two reasons. First,

the Hamiltonian matrix


n01; n

0
2

��Ĥ��n1; n2� can be

divided into submatrices corresponding to the different

irreducible representations of the symmetry group

of Hamiltonian (9) [11]. This allows calculating

the eigenvalues for each symmetry type separately.

Secondly, it is necessary to distinguish the energy levels

belonging to different symmetry types in the analysis of

spectral statistical properties [12].

The full symmetry of Hamiltonian (9) is

the C3v-point group [11]. It has three irreducible

representations: A1, A2, and E. The eigenvalues

corresponding to A1 and A2 symmetries are non-

degenerate, while those of E symmetry are doubly

degenerate.

We chose the basis functions in Cartesian coordinates

as

 n1n2(x; y) =

=
1�p

2
�Æn1n2+1 �un1n2(x; y)� un2n1(x; y)

�
; (11)

where

un1n2(x; y) =


x; y
��n1; n2� =

=
1�p

2
�n1+n2 1p

n1!n2!

n1X
k1=0

n2X
k2=0

(�1)n2�k2Ck1
n1
Ck2
n2
�

�in1+n2�k1�k2
p

(k1 + k2)!
p

(n1 + n2 � k1 � k2)!�

��n1+n2�k1�k2(x)�k1+k2(y); (12)
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�n(t) =
1p
2nn!

4

r
!

�
exp

n
�!
2
t2
o
Hn(t

p
!); (13)

and Hn(t) is the n-th degree Chebyshev�Hermite

polynomial; the sign +(�) in (11) is for n1 � n2 (n1 <

n2); and ! is the fitting parameter. The eigenstates

of Hamiltonian (9) are classified according to the

irreducible representations of the C3v-point group as

shown in the Table below. Note that the quantity L

is the angular momentum.

The non-zero matrix elements may be calculated

using the orthogonality relation for the functions �n(x)

together with the recursion relation for Chebyshev�

Hermite polynomials as

n01; n

0
2

��Ĥ��n1; n2� =
=

1�p
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�Æn
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�
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1
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n
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k0

1

n0

1

C
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2
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�iN�K+N 0�K0
p

(N �K)!(N 0 �K 0)!K!K 0!�

�f(N �K;N 0 �K 0;K;K 0); (14)

(N = n1+n2;K = k1+k2; N
0 = n01+n

0
2;K

0 = k01+k
0
2) ;

where the positive sign in the first (second) parenthesis

is taken for n1 � n2; (n
0
1 � n02) and the negative sign

is taken otherwise. The function f in expression (14) is

defined as

f(m1;m
0
1;m2;m

0
2) = !(m1+m2+1)Æm

1
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1
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2
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1
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q
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1
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�
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2

�r 2
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�
+ Æm0

1
m

1
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2
m

2

�
�2
r

2

3!

�)
; (15)

where Æ is the Kronecker symbol,

anm(y) =
p
2m�n

r
n!

m!

yn�mey
2=4

(n�m)!
�

�M
�
�m;n�m+1;�y

2

2

�
; n � m; (16)

and M(�; �; z) is a confluent hypergeometric

function [13].

In practical calculations, the elements of the

Hamiltonian matrix were ordered by the value of N =

n1 + n2; N = 0; 1; : : : ; Nmax. We calculated the matrix

elements by choosing Nmax = 250 (for A1- and A2-

symmetry types) and Nmax = 175 (for E-symmetry

type).

The diagonalization of Hamiltonian (9) was

performed via the corresponding procedure of the

Mathematica 5.0 package. We obtained 5334 energy

levels of A1-type, 5208 of A2-type and 5192 of E-type.

The accuracy of the results was examined by changing

the size of the basis and by varying the fitting parameter

! in (13). We found that ! = 2:26 is optimal and gives

about 17% of lowest levels of each type reliable with

the accuracy Æ < 0:1 smin (smin is the minimum spacing

between nearest-neighbour levels).

The numerical calculations were performed on a

Celeron PC and took a large amount of computational

time and storage. For example, the diagonalization of

the 5192� 5192 matrix of E-type took 1781.22 sec.

For each type of energy spectrum in terms of the

�unfolded� spectrum fxig, the nearest-neighbour spacing
distribution P (s) and the Dyson's �3(L)-rigidity were

calculated [2]. The histogram P (s) and the �3(L)-

rigidity for A1- and E-symmetry types along with the

theoretical curves are shown in Figs. 4, 5.

Classification of the eigenstates according to the

irreducible representations of the C3v-point group

Symmetry L = n1 � n2

A1 L = 0 or

�
L = 0 (mod 3);
L < 0

A2

�
L = 0 (mod 3);
L > 0

E E1 :

�
L 6= 0 (mod 3);
L < 0

E2 :

�
L 6= 0 (mod 3);
L > 0
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Fig. 3. Staircase function N(E) and function Nav(E) calculated

for energy levels of the A1 type (levels from 400 to 900)

4. Spectrum Unfolding and the �3(L)-rigidity

The spectral statistical analysis is applied to spectral

fluctuations, i.e. spectrum deviations from its smooth

(locally uniform) behaviour [2, 5]. The distribution

function (the staircase function) N(E) for a discrete

spectrum can be written as

N(E) = Nav(E) +N
uct(E); (17)

where Nav(E) is the average part and Nfluct(E) is the

fluctuation part of N(E). Since the smooth behavior is

not universal, it is removed by the spectrum �unfolding�

procedure via the mapping [14]

xn +
1

2
� Nav(En): (18)

We calculated Nav(E) in terms of a few lower-

order spectral moments by using a truncated Gram�

Charlier expansion [15] for the distribution F (x) of

the normalized quantity x = (E � mE)=� (mE is the

expectation, � is the standard deviation of the spectrum

fEig):
Nav(x) = d � F (x); (19)

where d is the total number of levels,

F (x) � 1

2

�
1 + Erf

�
x
Æp

2
��
� exp

�
�x2=2

	
p
2�

�

�
�

a(x

2 � 1) + 
ex(x
2 � 3)

�
; x =

E �mE

�
; (20)


a is the skewness, 
e is the kurtosis excess, Erf(t)

is the error function [15]. Fig. 3 illustrates Nav(E)

calculated for the energy levels of A1-type. In terms of

the unfolded spectrum fxig, the spacings between the

nearest-neighbour levels are calculated as si � xi+1�xi.

The Dyson's �3(L)-statistics measures the spectral

rigidity (i.e. the least-squares deviation of the staircase

function N(E) from the best fitting line) and is

defined [2] on the interval [�; �+ L] by

�3(�;L) � min
A;B

1

L

Z �+L

�

[N(x) � (Ax+B)]
2
dx: (21)

We use the following formula for numerical

calculations [2]:

�3(�;L) =
n2

16
� 1

L2

"
nX
i=1

~xi

#2
+

3n

2L2

"
nX
i=1

~x2i

#
�

� 3

L4

"
nX
i=1

~x2i

#2
+

1

L

"
nX
i=1

(n� 2i+ 1)~xi

#
: (22)

Here, ~xi = xi � (�+ L=2) are the shifted unfolded

eigenvalues, and n is the number of levels in the interval

[�; �+ L].

The �3(L)-rigidity is calculated then as

�3(L) =
1

N�

X
i

�3(�i;L); (23)

where �i are chosen in such a way that the interval

[a; b] containing the unfolded eigenvalues f~xig is split

into non-overlapping intervals of length L; (L � b � a);

and N� is the total number of intervals.

The Dyson's �3(L)-rigidity for integrable systems

with the Poisson quantum spectrum is close to

�3(L)�L=15, while it is�3(L)�(1=�2) lnL�0:00695 for

systems with a quantum spectrum well described by the

random-matrix theory, namely by statistical properties

of the Gaussian orthogonal ensemble (GOE) [14].

5. Results and Conclusions

In the present work, the quantum periodic three-particle

Toda lattice was considered. It was found that the

energy spectrum of this system maintains the universal

properties of a generic integrable system. Namely,

the spacing distribution P (s) of nearest-neighbour

levels for each symmetry type is close to the Poisson

distribution P (s) = exp f�sg and the �3(L)-rigidity

is close to the �3(L)�L=15 for 0�L�Lmax. The value

Lmax is explained in [16] as the point, at which the

�3(L)-statistics saturates (i.e. flattens out at a finite L).

We did not calculate the value of Lmax in the present

work, though it can be estimated from Figs. 4 and 5 to

be Lmax�6 for the A1 type and Lmax�8 for the E type.
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Fig. 4. Nearest-neighbour spacing distribution P (s) and the spectral rigidity �3(L) for the levels of A1-type. The total number of levels

is 501 (from level 400 to 900). The number of bins in the histogram is 32. The solid line is the Poisson distribution P (s) = exp f�sg in

the left graph and �3(L) = L=15 in the right graph. The dashed line is the Wigner distribution P (s) = �s=2 exp
�
��s2=4

	
in the left

graph and �3(L) = (1=�2) lnL� 0:00695 in the right graph

Fig. 5. Nearest-neighbour spacing distribution P (s) and the spectral rigidity �3(L) for levels of the E-symmetry type. The total number

of levels is 501 (from level 500 to 1000). The number of bins in the histogram is 32. The theoretical lines are the same as in Fig. 4

These estimated values for Lmax can be explained by

the fact that the energy levels included for the spectral

statistical analysis are taken from a relatively low part

of the Toda spectrum and, thus, may still demonstrate

some harmonic behaviour.
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ÎÁ×ÈÑËÅÍÍß ÅÍÅÐÃÅÒÈ×ÍÎÃÎ ÑÏÅÊÒÐÀ

ÊÂÀÍÒÎÂÎÃÎ ÏÅÐIÎÄÈ×ÍÎÃÎ

ÒÐÈ×ÀÑÒÈÍÊÎÂÎÃÎ

ËÀÍÖÞÆÊÀ ÒÎÄÈ

Ì.Î. ×åêàíîâ, Ä.Ì. Ïàê, �.Â. Øåâ÷åíêî

Ð å ç þ ì å

Ðîçãëÿíóòî êâàíòîâèé ïåðiîäè÷íèé òðè÷àñòèíêîâèé ëàíöþ-

æîê Òîäè. Äëÿ éîãî ãàìiëüòîíiàíà ðîçðàõîâàíî åíåðãåòè÷íèé

ñïåêòð â îðòîãîíàëüíîìó áàçèñi äâîâèìiðíîãî îñöèëÿòîðà â

äåêàðòîâié ñèñòåìi êîîðäèíàò. Âëàñíi çíà÷åííÿ êëàñèôiêîâàíi

çãiäíî ç íåçâiäíèìè çîáðàæåííÿìè òî÷êîâî¨ C3v-ãðóïè. Ïðî-

àíàëiçîâàíî ñïåêòðàëüíi còàòèñòè÷íi âëàñòèâîñòi òà äîâåäåíî,

ùî âîíè äîñòàòíüî äîáðå óçãîäæóþòüñÿ ç òåîðåòè÷íèìè ïåðåä-

áà÷åííÿìè äëÿ ñèñòåì, ùî iíòåãðóþòüñÿ.
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