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A stimulated magnetostriction of an easy-plane singlet one-

sublattice magnet in a magnetic field directed along its axis of

hard magnetization has been considered. It has been shown that

the magnetostriction in such a magnetic system is governed by

a quantum phase transition belonging to displacement magnetic

phase transitions induced by an external field. The amplitude

of the stimulated magnetostriction has been demonstrated

proportional to the field strength.

1. Introduction

A transition to a magnetically ordered state in van

Vleck magnets can occur in the form of a displacement

magnetic phase transition [1�3] classified by the modern

terminology as a typical quantum phase transition

(see, e.g., work [4]). The order parameter describing

such phase transitions is the spin polarization of

the ground ion singlet state. This state is not

polarized in the paramagnetic phase, while the magnetic

polarization of the initial singlet state becomes non-

zero in the magnetically ordered state, arising self-

consistently at the phase transition point. Contrary

to the order�disorder phase transitions, which involve

the reconstruction of the ion state spectrum at the

phase transition point and where the exchange field

spontaneously abolishes the degeneration of ion levels

in the ordered phase, the quantum magnetic phase

transition of the displacement type is not accompanied

by such a rearrangement of ion levels, so that the ground

state remains non-degenerate.

This quantum phase transition has a purely magnetic

origin and, in principle, does not demand that ion

displacements should be taken into consideration; its

mechanism is defined by a competition of various spin

interactions different by their nature. However, this

phase transition, as well as any other that results in

the emergence of the magnetic order, should invoke

the reaction of the lattice, which is known to manifest

itself as the magnetostriction phenomenon. Taking into

account that the magnetization has a critical character

at the displacement magnetic phase transition, one may

also expect such a behavior of the magnetostriction

which arises as soon as a certain finite magnetization

begins to appear in the crystal.

In so doing, one should distinguish [5] between

the striction related to the establishment of the

magnetic order (the spontaneous magnetostriction) and

the striction stimulated by an external magnetic field

(the stimulated magnetostriction). At the displacement

magnetic phase transitions, however, pertinent to

the spontaneous magnetostriction is only the part

of the striction of a magnetic singlet (i.e., in

essence, non-magnetized) state that is brought about

by the contribution of the basic singlet population,

which varies in accordance with the temperature

growth or reduction, to the linear thermal expansion

of the magnet. At the same time, the striction

related to the establishment of the magnetic order

under the action of the magnetic field has to be

attributed to the stimulated magnetostriction studied

below.

In addition to the indicated difference, quantitative

distinctions are also to be expected. First, at

temperatures T � TC, where TC is the Curie

temperature, when the magnetization is almost

saturated, ordinary ferromagnets demonstrate only the

stimulated striction depending on the direction of the

magnetization vector they acquire after the magnetic

field having been introduced. The striction of the

exchange nature must reveal itself at quantum magnetic

phase transitions of the displacement type, so that a

phenomenological approach which considers the vector
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of magnetization to be constant is unacceptable here,

even at T ! 0.

The displacement magnetic phase transition is

governed by the action of a single-ion anisotropy.

Therefore, while considering the corresponding

magnetostriction, interionic magnetoelastic interactions

should be taken into account together with

magnetoelastic ones of the single-ion nature [6]. It was

shown in work [7] that the latter can result in the

emergence of a rather high stimulated magnetostriction

in the paramagnetic phase which depends quadratically

on the magnetic field strength [7]. Such a behavior

seems the most reasonable because the influence of the

exchange interaction is absent or very weak when the

paramagnetic phase is magnetized. In the range of the

displacement magnetic phase transition, the ordering is

brought about by a competition between the single-ion

anisotropy and the exchange interaction. Therefore, the

appearance of a finite magnetization has to affect the

character of the field dependence of magnetostriction,

which is connected with both single-ion and ion-ion

interactions.

In this work, we attempted to determine the

behavior of the stimulated magnetostriction in a simplest

ferromagnetic crystal provided the displacement

magnetic phase transition. The total energy of the

system is presented as the sum

E = Eexch +Ean +Eh +Em�e +Eel; (1)

where Eexch is the exchange energy, Ean the energy of

magnetic anisotropy, Eh the Zeeman energy of spins,

Eel the elastic energy, and Em�e the magnetoelastic

energy. We assume that magnetoelastic interactions

are much weaker than exchange ones, do not affect

the magnetic ordering, and, hence, cannot induce a

structural transition. The assumptions made allow

the calculations to be carried out in the elementary

case confining the account by only the terms in

the magnetoelastic and elastic energies which are,

respectively, linear and quadratic by deformation. In

addition, under those conditions, one can consider the

problem of the type of the magnetic ordering at first

and then use the derived solutions for finding the field

dependences of the striction.

2. The Ground State of an Easy-Plane Singlet

Ferromagnet with S = 1 in a Longitudinal

Magnetic Field

While analyzing the type of the magnetic ordering, let

us confine ourselves to the consideration of bilinear

isotropic exchange interactions, a single-ion anisotropy,

and the Zeeman term. The corresponding Hamiltonian

of a ferromagnet looks like

H = �J
2

X
n;�

SnSn+� +D
X
n

(SZ
n
)2 � h

X
n

S
n

(2)

in the crystallographic coordinate system. Here, J > 0

is the exchange interaction between the nearest spins

located at the n and n+ � sites; D > 0 is the constant

of a single-ion magnetic anisotropy of the �easy�-plane

(EP) type; the vector of the magnetic field strength h

is determined in terms of energy units, h = �BgH, and

directed along the axis of �hard� magnetization Z; �B is

the Bohr magneton; and g is the g-factor.

Since the first three terms in Eq. (1) are admitted

dominating, the energy Egr of the ground state of a

ferromagnet will be determined, considering it equal to

the energy of the ground state with Hamiltonian (2). In

this case, the expression for the energy per one spin looks

like

Egr = �1

2
Jzs2 +DQ� hs; (3)

where z is the number of the nearest neighbors, s the

vector of the average spin of ions, and Q the quantum-

mechanical average of the squared Z -projections of the

spin operators; these projections are usually referred

to as the components of the quadrupole spin moment

[8�10].

Let us define a proper coordinate system, where

the average ion spin is directed along the axis of

quantization. The coordinate axes are selected in a way

so that the angle between the � axis of spin quantization

and the Z axis be equal to � and the � axis lie in the

plane Z�. In this system, as was shown in work [11], the

wave function of the ground state of every ion can be

presented by the linear combination

	gr = cos�j1i+ sin�j�1i; (4)

where the angle of �mixing� � (see below) is determined

by the condition that the energy of the ground state

should be minimal.

According to the form of function (4), we find that

the components of projections of both the average spin

vector and the spin quadrupole moment, which are

distinct from zero in the proper coordinate system, are

s = cos 2�; Q�� = 1; Q�� =
1

2
(1 + sin 2�);
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Q�� =
1

2
(1� sin 2�): (5)

Making use of them allows energy (3) to be displayed in

the form

Egr = �1

2
Jz cos2 2�+

+D

�
cos2 � +

sin2 �

2
(1 + sin 2�)

�
� h cos � cos 2�; (6)

where the magnetic field strength h is presented by its

longitudinal component only (h k Z).
In order to calculate the striction values, it is

necessary to find the field dependences of the average

spin and the variations of its orientation in the field

and to calculate the field dependences of the components

of the quadrupole spin moment of ions. As was shown

in works [1, 3], to obtain a solution of the problem

concerning the determination of a spin configuration in a

magnetic field, expression (6) has to be minimized over

its variables � the geometric angle � and the �mixing�

angle of states �. In so doing, the following equations

are obtained:

Jz sin 4�+D sin2 � cos 2�+ 2h cos � sin 2� = 0; (7)

�D sin 2�(1� sin 2�) + 2h sin � cos 2� = 0: (8)

It is known [1] that, provided the external magnetic

field is absent, the system of equations (7) and (8)

possesses two solutions: a zero-magnetization one with

s = 0, which is realized at D > 2Jz; and a nonzero-

magnetization solution with

s0 =
p

1� (D=2Jz)2; (9)

at D < 2Jz.

In order that a quantum phase transition from a

singlet state to a magnetically ordered one be observed in

a magnetic field h 6= 0, a singlet with s = 0 has to be the

ground state of the system. Therefore, in what follows,

we assume that the inequality D > 2Jz evident in this

case is satisfied. Provided such a relationship between

the model parameters and the absence of the magnetic

field, the magnetic order cannot be established at any

temperature [2], which defines, in fact, a condition for

the ground state of a magnet to be in the singlet state;

it is an attribute of the van Vleck magnet. The solution

with s = 0 satisfies Eq. (7), including the case of a

certain finite range of the magnetic field.

Making use of this equation at s 6= 0, we obtained the

expression for the orientation of the average spin with

respect to the crystallographic axis

cos � =
hk cos 2�

D(1� sin 2�)
: (10)

Equations (7) and (10) testify to that the state with

the spin directed along the hard axis (� = 0) can be

realized in high fields, where h � D. In this case, the

projection of the average spin onto the direction of the

external field is utmost and equals s = 1. For lower

fields, h < D, the average spin is canted with respect to

the hard magnetization axis.

Using expression (10), let us expand the energy of

the ground state in a power series of the ground state

polarization s, assuming the latter small. Confining the

expansion to the fourth degree, the energy Egr reads

Egr =
1

2

�
�Jz + 1

2
(D � h2

D
)

�
s2 +

1

16

�
D � h2

D

�
s4:

(11)

Minimizing this expression over the parameter s, both a

singlet state and a magnetized one can be obtained. It is

easy to show that the transition from the former to the

latter occurs at the magnetic field

h = hOP =
p
D(D � 2Jz): (12)

Thus, in the full agreement with the Landau theory

of phase transitions, the quantum transition of the

second kind induced by the external field from the non-

magnetic singlet state to the ferromagnetic one with the

magnetization directed at a certain angle with respect

to the crystallographic axis takes place at the point

h = hOP. The modulus of the average spin vector also

depends on the field and, in the regarded approximation

of the self-consistent field, has the standard form

s =
2
p
hOP

D

p
h� hOP: (13)

Taking into account Eqs. (10) and (13), we get the

following expressions for the dependences of the average

spin projections onto the crystallographic axis (the axis

Z) and onto the plane on the field h within the range

hOP < h < D:

sZ = 2
h2OP
D3

(h� hOP); (14)
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sX = 2

p
hOP

D

�
1� h3OP

2D4
(h� hOP)

�p
h� hOP; (15)

where the axis X lies in the easy plane and coincides

with the intersection of this plane by the plane Z�. In

the same manner, one can also find the field dependences

of the components of the quadrupole spin moment.

We note that the energy of the ground state (10) does

not contain terms that are linear in s or h. In such a case,

the field counteracts the single-ion anisotropy, and, as is

seen from Eq. (15), a polarization caused by the field

and the exchange interaction appears spontaneously in

the easy plane, with the derivative @sX/@h ! 1 at

h ! hOP. The finite value of @sZ/@h at h = hOP
indicates that, after the spontaneous emergence of the

average spin, its cant (rotation) with respect to the hard

axis decreases as h grows.

3. Stimulated Magnetostriction of a van Vleck

Ferromagnet in a Longitudinal Magnetic

Field

For the sake of definiteness, when considering the

magnetoelastic and elastic energies, we assume that the

ferromagnet has a hexagonal structure.

In the case of Em�e (see Eq. (1)), we confine

ourselves to the spin-spin magnetoelastic interactions,

which involve only the second powers of the average

spin projections [12]. We also take into account

the contribution of the single-particle magnetoelastic

energy which is described by the terms containing the

average values of components of the tensor of the spin

quadrupole moment [5]. Therefore, the expressions for

the magnetoelastic and elastic components of the energy

in Eq. (1) look like

Em�e = B
(1)
11 (QXXUXX +QY Y UY Y )+

+B
(1)
33 Q

ZZUZZ +B
(1)
12 (QXXUY Y +QY Y UXX)+

+4B
(1)
44 (QY ZUY Z +QXZUXZ) + 4B

(1)
66 Q

XY UXY+

+B
(2)
11 (s2XUXX + s2Y UY Y )+

+B
(2)
33 s

2
ZUZZ +B

(2)
12 (s2XUY Y + s2Y UXX)+

+4B
(2)
44 (sY sZUY Z + sXsZUXZ) + 4B

(2)
66 sXsY UXY ;

(16)

Eel =
1

2
C11(U

2
XX + U2

Y Y ) +
1

2
C33U

2
ZZ+

+C12UXXUY Y + C13(UXX + UY Y )UZZ+

+2C44(U
2
XZ + U2

Y Z) + 2C66U
2
XY ; (17)

where B
(1)
11 , : : : , B

(1)
66 , B

(2)
11 , : : : , B

(2)
66 are the parameters

of magnetoelastic interactions [superscripts (1) and (2)

indicate the single-ion and the interionic origin of

corresponding magnetoelastic interactions, respectively];

UXX , : : : are the components of the strain tensor; and

C11, : : : are the elastic moduli. Note that single-ion

magnetoelastic interactions in Eq. (17) are written down

in the crystallographic coordinate system. That is why,

contrary to Eq. (5), the components of the quadrupole

moment are defined as Qjk = 1
2 hsjsk + sksji, where

the indices j and k designate the crystallographic axes:

j; k = X;Y; Z.

The deformation amplitudes which correspond to

the spin configurations calculated above are determined

by minimizing the sum of energies (16) and (17) over

the components of the strain tensor. As a result, the

deformations turn out proportional to the average values

of sj and Qjk

UXX � UY Y =
�1

C11 � C12
�

�
h
(B

(1)
11 �B

(1)
12 )(QXX �QY Y )+

+(B
(1)
11 �B

(1)
12 )(s2X � s2Y )

i
; (18)

UXX + UY Y =
�1

C11 + C12 � 2C2
13=C33

�

�
h
(B

(1)
11 +B

(1)
12 )(QXX +QY Y )� 2B

(2)
33 Q

ZZC13=C33+

+(B
(2)
11 +B

(2)
12 )(s2X + s2Y )� 2B

(2)
33 s

2
ZC13=C33

i
; (19)

UZZ =
C13

C33(C11 + C12 � 2C2
13=C33)

�
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�
h
(B

(1)
11 +B

(1)
12 )(QXX +QY Y )+

+(B
(2)
11 +B

(2)
12 )(s2X + s2Y )�

�2(B
(1)
33 Q

ZZ +B
(2)
33 s

2
Z)C13=C33

i
�

� [B
(1)
33 Q

ZZ +B
(2)
33 s

2
Z ]

C33
; (20)

UXY =
�1

C66

h
B
(1)
66 Q

XY +B
(2)
66 sXsY

i
; (21)

UXZ =
�1

C44

h
B
(1)
44 Q

XZ +B
(2)
44 sXsZ

i
; (22)

UXY =
�1

C44

h
B
(1)
44 Q

Y Z +B
(2)
44 sY sZ

i
: (23)

Expression (18) determines the anisotropic striction in

the easy plane, expression (19) describes the expansion

or squeezing (depending on the signs of magnetoelastic

constants) in this plane, and expression (20) the

stretching or squeezing along the hard axis. The last

three expressions (21)�(23) determine shear strains.

Let us write down the corresponding expressions

for the case of spontaneous deformation in the singlet

phase by substituting s = 0, QZZ = 0, and QXX =

QY Y = 1 into Eqs. (18)�(23). Different from zero will be

only those deformations which are connected with the

isotropic expansion or squeezing of the easy plane and

the stretching or squeezing along the hard axis:

U
(0)
XX + U

(0)
Y Y = �2

B
(1)
11 +B

(1)
12

C11 + C12 � 2C2
13=C33

; (24)

U
(0)
ZZ = 2

C13(B
(1)
11 +B

(1)
12 )

C33(C11 + C12 � 2C2
13=C33)

: (25)

Here, superscript 0 denotes the spontaneous

magnetostriction. One can see that spontaneous

deformations in the singlet phase satisfy the relations

U
(0)
XX = U

(0)
Y Y = �U (0)

ZZC33=2C13. Expressions (24) and

(25) are valid also in the range of magnetic fields

h < hOP, where the singlet phase exists.

Now, let us write down the expressions for crystal

deformations after the phase transition induced by an

external longitudinal field h > hOP, provided (h �
hOP)=hOP � 1. We now substitute the dependences

of the average spin projections and the components of

the quadrupole spin moment tensor Qjk on the field

into Eqs. (18)�(23) and get the required strain tensor

components as

UXX � UY Y =

=
(B

(1)
11 �B

(1)
12 )� 4(B

(2)
11 �B

(2)
12 )

C11 � C12

hOP

D2
(h� hOP); (26)

UXX + UY Y =

= U
(0)
XX + U

(0)
Y Y +

hOP
D2

h� hOP

C11 + C12 � 2C2
13=C33

�

�
h
B
(1)
11 +B

(1)
12 � 4(B

(2)
11 +B

(2)
12 ) + 2B

(1)
33 C13=C33

i
; (27)

UZZ = U
(0)
ZZ +

hOP

D2

h� hOP

C11 + C12 � 2C2
13=C33

C13

C33
�

�
h
4(B

(2)
11 +B

(2)
12 )�B

(1)
11 �B

(1)
12 � 2B

(1)
33 C13=C33

i
�

�B
(1)
33

C33

hOP

D2
(h� hOP); (28)

UXZ = �h
3=2
OP(h� hOP)

1=2B
(1)
44

D2C44
: (29)

From Eq. (26), it follows that the shear strain turns out

to be proportional to the field strength. The values of

striction (27) and (28), which describe the expansion

or squeezing in the easy plane and the stretching or

squeezing of the crystal along its hard axis, are also linear

in the field. The emergence of the interlayer shear strain

(29) is connected with the noncollinearity of the average

spin and the field, and its field dependence has a critical

index equal to 1/2.

We note that, in the case of a classical easy-plane

ferromagnet with the saturated magnetic moment in the

field directed along the hard axis, the magnetostriction,

provided magnetoelastic interactions of type (16), would

have a square-law field dependence. But if the value of

the ratio hOP/D is small, one may neglect the terms

related to the spin rotation in expressions (27) and (28).
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4. Conclusion

Thus, the analysis of the dependences of the stimulated

magnetostriction of a singlet magnet on the field showed

that, in the case of low fields, when the singlet phase is

stable, the deformations do not depend on the applied

field and remain equal to their initial values. After

the quantum phase transition, a stimulated striction,

whose value turns out mainly to be proportional to

the first power of the applied magnetic field strength,

emerges in the magnetically ordered state. Contrary to

classical ferromagnets, where the stimulated striction at

temperatures T � TC is connected to the rotation of

magnetization only, in the case of a van Vleck magnet

where the induced quantum phase transition of the

displacement type takes place, the character of the field

dependence of the striction is determined, primarily, by

the polarization of ionic states.

The linear dependence of the stimulated

magnetostriction on the field evidences for the constant

derivative of the striction with respect to the field. This

property of the striction manifests itself only in fields

above the field of the phase transition. In this case,

experimental observations of a linear magnetostriction in

magnets with a low value of the critical field determined

by the condition hOP=D � 1 do not require the

introduction of high magnetic fields.
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Translated from Russian by O.I. Voitenko

ÄÎ ÒÅÎÐI� ÌÀÃÍIÒÎÑÒÐÈÊÖI� ÏÐÈ ÊÂÀÍÒÎÂÈÕ

ÔÀÇÎÂÈÕ ÏÅÐÅÕÎÄÀÕ Ó ÂÀÍ-ÔËÅÊIÂÑÜÊÈÕ

ÔÅÐÎÌÀÃÍÅÒÈÊÀÕ

Â.Ì. Êàëèòà, I.Ì. Iâàíîâà, Â.Ì. Ëîêò¹â

Ð å ç þ ì å

Ðîçãëÿíóòî âèìóøåíó ìàãíiòîñòðèêöiþ ëåãêîïëîùèííîãî ñèí-

ãëåòíîãî îäíîïiäãðàòêîâîãî ìàãíåòèêà â ìàãíiòíîìó ïîëi,

îði¹íòîâàíîìó âçäîâæ âàæêî¨ îñi. Ïîêàçàíî, ùî ïîâåäiíêà ìàã-

íiòîñòðèêöi¨ òàêî¨ ìàãíiòíî¨ ñèñòåìè ïîâ'ÿçàíà ç êâàíòîâèì ôà-

çîâèì ïåðåõîäîì, ÿêèé íàëåæèòü äî ìàãíiòíèõ ôàçîâèõ ïåðå-

õîäiâ òèïó çìiùåííÿ, iíäóêîâàíèì çîâíiøíiì ïîëåì. Ïîêàçàíî,

ùî âåëè÷èíè âèìóøåíî¨ ìàãíiòîñòðèêöi¨ ïðÿìî ïðîïîðöiéíi âå-

ëè÷èíi íàïðóæåíîñòi öüîãî ïîëÿ.
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