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In the framework of the electron-deformation model, the criterion
of the appearance and the absence of an n � n+ junction in the
elastic region of the doped crystal matrix GaAs(100)+Ar(Si) has
been established. It has been shown that the more the population
of the conduction band (0 � �n � 0:5), the sharper the n � n+

junction. In this case, the plane corresponding to the junction
edge shifts towards the edge of the elastic region.

Introduction

In [1], the experimental research of the influence of
the mechanical stresses induced by ionic implantation
and grinding of one of the surfaces of gallium
arsenide crystals on the redistribution of point
defects in a near-surface layer was carried out.
The relative change of the lattice parameter, when
going towards the depth of the doped crystal
matrix, was also calculated in the framework of
a mechanical-deformation model. However, the non-
uniform deformation, induced by implanted impurities,
results in a local change of the electron spectrum,
which leads to the spatial redistribution of electrons
and the emergence of the electrostatic potential
[2, 3].

The purpose of the present work is to study, in
the framework of the method of self-consistent electron-
deformation relation, the conditions for the n � n+

junction in the doped crystal matrix GaAs(100)+Ar(Si)
to appear.

Model

The implantation of impurities into the crystal matrix
induces there a non-uniform deformation U(r) =
Sp Û(r) which results in a local change of the band
spectrum. As a consequence, the spatial redistribution
of electrons �n(r) takes place, which gives birth to
the electrostatic potential �(r). To find the electron

density �n(r) and the electrostatic potential �(r) in
the direction of implantation (along the x -axis), it is
necessary to solve self-consistently the following system
of equations [3]:

1) the stationary Schr�odinger equation�
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where � = ~
2=(2m�), �0 is the bottom energy of the

conduction band in an undistorted crystal matrix, and
S is a constant of the deformation potential of the
conduction band;

2) the equation of mechanical equilibriumD
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c+i�(ci�) is the Fermi operator of creation (annihilation)
of the electron with a spin � in the localized Wannier
state at the i-th lattice point, W is the energy that
defines the middle position of the electron energy band;
�0ij are the transfer integrals in the conduction band
of the undistorted lattice, KA is an elastic constant,

0 is the volume of the unit cell, ĤC is the energy
of the Coulomb interaction between electrons, �mech

is the mechanical strain created by the implanted
impurities, and V is the volume of the doped crystal
matrix;
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3) the equation which determines the concentration
of electrons

n (r) =
X
n

	�n (r)	n (r)

exp
�
�
�
~�n � �

��
+ 1

; (3)

where ~�n = �n � �0;
4) the Poisson equation used to determine the

electrostatic potential �(r):

r
2� (r) = �e�n (r)/(""0); (4)

5) the equation for the determination of the chemical
potential in the doped crystal:


0/V

Z
V

n (r)dr = �n; 0 � �n � 2; (5)

where �n = n0
0 is the given average number of electrons
at a lattice point.

We consider the doped crystal matrix with a
significant average concentration of electrons n0 �

1018�1019 cm�3. This case can be realized by doping the
crystal matrix of GaAs by Si or Ar impurities [1]. Then,
the redistribution of conduction electrons caused by the
deformation of the doped crystal matrix can lead to
the practically full compensation of a deformation shift
of the conduction band by the electrostatic interaction
energy (je�j � jSU j) [2]. The wave function in the form
of a plane wave is a good solution of the Schr�odinger
equation (1) in this case.

A change �n(r) = n(r) � n0 of the conduction
electron concentration in the vicinity of a defect is
determined, in the linear approximation, by the relation
[3]

�n = RS (e�� SUmech) ; (6)

where RS is the function that depends on the electron
population in the conduction band, the elastic constants,
the effective mass of current carriers, and the constant
of the deformation potential of the conduction band.

The deformation caused by the presence of an
implanted impurity with nonzero volume is defined as [4]

Umech (x) = k�iN (x)/N0; (7)

where kvi = Vi=V0, Vi and N(x) are the volume and
concentration, respectively, of the doping impurity, and
V0 and N0 are those of the crystal matrix.

The distribution of the doping impurityN(x) created
by gradient diffusion,

N (x) = Nr exp (�� (x� x0)/D) ; x � x0; (8)

where Nr is the impurity concentration in the plane x =
x0 which corresponds to the edge of the elastic region,
and � is the surface shift rate upon the implantation
by impurities, is adopted as the initial one. In view of
(6)�(8), the Poisson equation is of the form

r
2� (x)� g2S� (x) = �g

2
SkviS"r exp (�� (x� x0)/D)/e;

(9)

g2S = e2RS

Æ
""0

with the boundary conditions

�(x) jx!1 = 0;

� (x0) = �0 = kviS"r= (e � (1 + �= (DgS))) ; (10)

where "r = Nr=N0 is the deformation parameter at
the edge of the elastic region. The second boundary
condition, �(x0), is chosen as that which ensures the
condition of electrical neutrality of the crystal matrix
with implanted impuritiesZ
V0

�n (x) dV = 0: (11)

in the region x 2 [x0;+1). The corresponding solution
of Eq. (9) is

�(x) = (�0 + kviS"r=(e((�=Dgs)
2
� 1)))�

� exp(�gs(x� x0))� kviS"r�

� exp(��(x� x0)=D)=(e((�=Dgs)
2
� 1)): (12)

Expression (12) for the potential of the electrostatic
field, created by the redistribution of the electron
density, contains two summands. The first one
corresponds to the component induced by the electron-
deformation interaction. The second one describes the
component of the electrostatic field potential which is
due to a spatial redistribution of electrons resulting
from the action of two opposite effects, namely,
the conventional gradient diffusion and mechanical-
deformation one. The analysis of formula (12) shows
that in the region far from the edge of the elastic one
(x � x0), the potential �(x) goes to zero and, in the
close proximity to the edge (x! x0)

� (x)! kviS"r/(e (1 + �/Dgs)): (13)
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Fig. 1. Coordinate dependences of the electrostatic potential �(x)

for various populations of the conduction band �n: (1 ) 0.5, (2 ) 0.1,

(3 ) 0.01, (4 ) 0.001

Fig. 2. Coordinate dependences of the electron concentration

variation �n(x) for various �n. The notations are the same as in

Fig. 1. The dashed line corresponds to the edge of the n � n+

junction

Results of Calculations

The results of numerical calculations of the coordinate
dependence of the electrostatic potential �(x � x0)
induced by the spatial redistribution of electrons owing
to a local change of the conduction band width, which
is, in turn, due to the non-uniform deformation of the
crystal matrix GaAs(100), doped by Ar(Si) impurity,
with the electron-deformation interaction being taken
into account, are depicted in Fig. 1. One can see from
the figure that, as the population of the conduction band

Fig. 3. Coordinate dependences of the electron component of the

deformation for various �n. The notations are the same as in Fig. 1

grows within the interval 0 � �n � 0:5, the electrostatic
potential in the immediate neighborhood of the edge
of the elastic region (x � x0 + 0) increases, while the
character of this dependence changes to the opposite
one at the distances x � xc(�n). Here, xc(�n) denotes the
position of the plane where the concentration change
�n = 0 (see Fig. 2), i.e. xc(�n) is the edge of the n� n+

junction.

Such a variation of the potential, as �n grows within
the interval 0 � �n � 0:5, is connected to the fact
that the conduction band width in the vicinity of the
edge of the elastic region (x � x0 + 0) decreases in
comparison with that in the region x � xc(�n) due
to the opposite character of the electron-deformation
component Uel�def = �S�n (x) =KA of the deformation
in those regions (Fig. 3).

The coordinate dependence of the electrostatic
potential �(x) for various values of the diffusion
coefficient D is shown in Fig. 4. As is seen from the
figure, the dependence �(x) decreases monotonously as
the distance from the edge of the elastic region (x = x0)
increases (curves 2 and 3 ). The growth of the diffusion
coefficient D is accompanied by the increase of the
electrostatic potential. In particular, the growth of D by
an order of magnitude (curves 3 and 2 ) results in the
growth of �(x) near the edge of the elastic region (x �
x0) by a factor of two. It is connected to the fact that,
as the diffusion coefficient D increases, the distribution
of the implanted impurity N(x) in the crystal matrix
becomes smoother. At �=Dgs � 1, the electrostatic
potential of the field (curve 1 ) practically does not
change along the direction of implantation, because
the deformation of the crystal lattice with implanted
impurities becomes homogeneous, which results in the
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Fig. 4. Dependences �(x) for various values of the diffusion

coefficient D: (1 ) 10�12, (2 ) 10�15, (3 ) 10�16 cm�2=s

identical energy shift of the bottom of the conduction
band in the region x � x0. In this case, the appearance
of the barrier structure, while doping the crystal matrix
by an impurity, becomes impossible.

The analysis of the coordinate dependence of the
electron concentration variation �n(x) shows (Fig. 2)
that there is a deficiency of electrons in the interval
x0 < x � xc and an excess of them in the region
x > xc. Thus, the doping of the crystal matrix of GaAs
by Si or Ar impurities results in the formation of a
double electrical layer in the elastically deformed region
xc � d�(�n) < x < xc � d+(�n), where d�(�n) and d+(�n)
are the effective widths of regions with the electron
deficiency and excess, respectively. As the population
of the conduction band increases within the interval
0 � �n � 0:5, the profile of the barrier structure (n�n+)
becomes sharper.

As is seen from Fig. 3, the electron component of
the deformation Uel�def = �S�n (x) =KA additionally
stretches the crystal matrix in the elastically deformed
region (x0 < x � xc), and compresses it in the region x >
xc, counteracting the mechanical stretching deformation
caused by the implanted impurities.

Thus, the total non-uniform deformation Umech +
Uel�def, driven by both the purely mechanical and
electron-deformation stresses, will affect the diffusion
of the impurity. Taking those effects into account, the
stationary equation of diffusion will be written down as

D
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@x2
�

@

@x

�
D
N0
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N
@

@x
(Umech + Uel�def)

�
�

Fig. 5. Coordinate dependences of the doping impurity

concentration for �n = 0:5 (1 ) and 0.001 (2 )

��(Nr �N) + �
@N

@x
= 0: (14)

The second summand corresponds to a qualitatively
new phenomenon, the �flow of the deformation
retraction�, resulted, in our case, not only from
the mechanical component [5], but also the electron
component of the deformation. The Heaviside function
�(Nr � N) indicates the non-zero value of the latter
component in the region of elastic deformations (N <

Nr).
Taking into account the boundary conditions

@N=@xjx!1 = N(1) = 0 and N(x0) = Nr, the solution
of Eq. (14) is
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where a = N0

Nb

"r, Nb = N0
kT (1�2�1)�

W0(1��1)r1
, W0 is the height

of the diffusion barrier, r1 is the characteristic radius
of the diffusion channel, � is the constant entering the
expression for the model potential V (r) � exp(�r=�) [5].
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The coordinate distributions of the impurities for two
values of the population of the electron energy band
are shown in Fig. 5. It is noticeable that the larger
the electron population of the conduction band, the
more localized the profile of the impurity distribution
in the vicinity of the edge of the elastic region. It is
connected to the fact that, as the population �n in the
conduction band grows, the contribution of the electron-
deformation flow, which is opposite to the gradient one,
to the diffusion process increases [3].

Thus, on the basis of the obtained results, it is
possible to make the following conclusions:

i) Provided that �=(Dgs) � 1, where � is the shift
rate of the crystal surface, when the crystal is being
doped with impurities, D is the diffusion coefficient, and
g2s = e2Rs=(""0), an n � n+ junction appears in the
elastic region of the doped crystal matrix GaAs+Ar(Si).
In the case �=(Dgs) � 1, such a junction is absent.

ii) As the population of the conduction band grows
within the interval 0 � �n � 0:5, the electrostatic
potential increases in the region from the edge x = xc(�n)
of the n � n+ junction to the edge of the elastic region
x = x0, and falls down beyond it.

iii) The electron-deformation interaction additionally
stretches the crystal matrix near the edge of the elastic
region and compresses it beyond the plane x = xc which
corresponds to the edge of the n� n+ junction.

The availability of the n � n+ junction in the
doped crystal matrix GaAs+Ar(Si) should reveal

itself upon the measurements of current-voltage
characteristics.
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ÐÎËÜ ÅËÅÊÒÐÎÍ-ÄÅÔÎÐÌÀÖIÉÍÎ�
ÂÇÀ�ÌÎÄI� Â ÓÒÂÎÐÅÍÍI n� n+-ÏÅÐÅÕÎÄÓ
Â IÌÏËÀÍÒÎÂÀÍIÉ ÊÐÈÑÒÀËI×ÍIÉ ÌÀÒÐÈÖI

Ð.Ì. Ïåëåùàê, Î.Â. Êóçèê, Â.Ï. Òóïè÷àê, Ä.Ä. Øóïòàð

Ð å ç þ ì å

Â ðàìêàõ åëåêòðîí-äåôîðìàöiéíî¨ ìîäåëi âñòàíîâëåíèé êðè-
òåðié âèíèêíåííÿ n � n+-ïåðåõîäó òà éîãî âiäñóòíîñòi
â ïðóæíié îáëàñòi iìïëàíòîâàíî¨ êðèñòàëi÷íî¨ ìàòðèöi
GaAs(100)+Ar(Si). Ïîêàçàíî, ùî ç ðîñòîì ñòóïåíÿ çàïîâíåí-
íÿ çîíè ïðîâiäíîñòi (0 � �n � 0; 5) n � n+-ïåðåõiä ñòà¹ áiëüø
ðiçêèì. Ïðè öüîìó ïëîùèíà, ùî âiäïîâiäà¹ ìåæi ïåðåõîäó, ç
ðîñòîì �n çìiùó¹òüñÿ äî ìåæi ïðóæíîñòi.
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