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A 3D model for coupled drift and ion-acoustic waves in the

inhomogeneous magnetized plasma is considered. Symmetries of

the model in the presence of the magnetic shear as well as in the

shearless case are found. Some of the most symmetric solutions,

exact and perturbative, are presented. In particular, solutions

describing the zonal flow generation by initially monochromatic

waves are obtained.

Introduction

Low frequency drift and ion-acoustic waves play an

important role in the transport processes in magnetized

plasmas [1]. The main problem in their treatment is

the presence of nonlinear effects even at relative small

amplitudes. In this situation, the symmetry analysis can

help us to find exact or perturbative solutions (see, e.g.

[2]).

Only in the particular case of pure ion-acoustic

waves (the well-known Korteweg � de Vries equation

in one dimension) dispersion and nonlinear steepening

can balance to form coherent structures called solitons.

In the two-dimensional case of pure drift waves

(Hasegawa�Mima model), anisotropic dispersion fails to

balance degenerate vortex non-linear terms [2, 3].

In the present work, a more general spatially three-

dimensional model [4] is considered for the coupled

drift and ion-acoustic waves. Symmetry analysis for

this model is performed, and the magnetic shear

influence on symmetry properties is studied. The form

of the most symmetric localized and spatially periodic

waves is determined. For the waves of small but

finite amplitude, the perturbation theory based on

the multiple-time-scale formalism is built. Some exact

and perturbative solutions describing higher harmonics

generation, frequency shifts, and zonal flow generation

by initially monochromatic waves are presented.

1. Model

Let us consider an inhomogeneous plasma slab with the

background plasma density

no � exp(x=Ln)

in the constant external magnetic field

B =Bo(ez + ey(x=Lsh))

with shear length Lsh. The condition of quasi-neutrality

relates the ion density to the electron density, ni � ne.

Electrons, unlike ions, are magnetized, smoothing an

electrostatic potential � along the magnetic field lines,

ne = no exp(e�=Te);

where e and Te mean the electron charge and electron

plasma component temperature, respectively.

In this case, the well-known 3D generalization

(described in detail in [4]) of the Hasegawa�Mimamodel

equations holds:

d	=dt+ dv=dz = @�=@y; dv=dt+ d�=dz = 0;

	 = ���tr�; (1)

where v is the ion velocity along the main magnetic field

direction 0z. 	 � 	z is the only non-zero component

of the generalized vorticity determined by the potential

� according to the last equation of system (1). The

operators in (1) are

d=dt = @=@t+ J [�; : : :];

J [F;G] � @F=@x@G=@y � @F=@y@G=@x;

d=dz = @=@z + Sx@=@y; S = Lsh=Ln;

�tr� � @2�=@x2 + @2�=@y2:

Transverse ion velocity components are determined

by the potential �,

vx = �@�=@y; vy = @�=@x;

while the temporal evolution of the longitudinal ion

velocity component vz � v is governed by system (1).
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System (1) is written in dimensionless variables

"!Bt; x=rB; y=rB; "z=rB; e�=Te"; where the ion cyclotron
frequency !ci = eBo=Mc and ion sound speed cs =
(Te=M)1=2 determine the characteristic dispersion length

rB = cs=!ci. The small parameter " is equal to the ratio

rB=Ln.

As a consequence of system (1), the quantities h�i
and hvi averaged over the coordinates x, y (transverse

to the main external magnetic field) are the conjugated

solutions of the linear ion-acoustic wave equation in t

and the longitudinal variable z:

@h�i=@t+ @hvi=@z = 0;

@hvi=@t+ @h�i=@z = 0; h	i = h�i; (2)

where the averaging procedure means the integration

over the spatial period 2L,

h�i � (1=4L2) s �(t; x; y; z)dxdy;

for the solutions periodic in x; y, and L ! 1 for the

localized solutions.

2. Symmetries

First, to express the symmetries in a more simple form,

let us perform the simplifying transformation

� = �(t; x; y + t; z)� x; v = v(t; x; y + t; z) (3)

which removes the term @�/@y from the first equation

of system (1). On the other hand, the boundary

conditions become more complicated. For example, the

homogeneous boundary condition for the RHS functions

�(t; x; y + t; z) and v(t; x; y + t; z) takes the form

� = x; v = 0 as jrj ! 1; r = (x2+y2+z2)1=2:(4)

Periodical boundary conditions also are shifted by x.

In the shearless case, S = 0, we obtain a Lie group of

symmetry by the standard procedure. The infinitesimal

operators of this group are

X1 = @=@t; X2 = @=@x; X3 = @=@y;

X4 = @=@z; X5 = �y@=@x+ x@=@y;

X6 = t@=@t+ z@=@z ��@=@��	@=@	� v@=@v;

X = F (t; z)(@=@�+ @=@	)+G(t; z)@=@v; (5)

where F and G are the conjugated solutions of the linear

wave equation in variables t and z:

@F=@t+ @G=@z = 0; @G=@t+ @F=@z = 0: (6)

Model (1) also admits the reflection symmetries

a) fx;�;	; vg ! f � x;��;�	;�vg;

b) ft; y; vg ! f � t;�y;�vg;

c) fz; vg ! f � z;�v:g: (7)

In the presence of magnetic shear, S 6= 0,
the symmetry group is reduced, and the remaining

infinitesimal operators are

X1; X3; X4; and X: (8)

A lesser number of the reflection symmetries is admitted:

a) fx; z;�;	g ! f � x;�z;��;�	g;

b) ft; y; zg ! f � t;�y;�zg: (9)

The physical reason for this symmetry reduction is

the explicit and anisotropic dependence of the external

magnetic field on the x-coordinate, i.e. along the

background plasma density gradient.

Let us consider now the symmetry transformation

generated by the operator X in (5), (8). This gauge

transformation of the potential � and ion velocity v

allows us to add to any solution of (1), arbitrary

conjugate solutions F (t; z), G(t; z) of the pure ion

acoustic linear wave equation in t; z variables:

�0 = �+F (t; z); 	0 = 	+F (t; z); v0 = v+G(t; z)(10)

where F (t; z) and G(t; z) are conjugated by condition

(6). This symmetry is not affected by the simplifying

transformation (3), so it is valid for both initial and

simplified systems. In other words, the solution of (1)

is determined up to the addition of an arbitrary pure

ion-acoustic wave. This fact allows us to impose the

following conditions on any solution of (1):

h�i = h	i = 0; hvi = 0: (11)

Here, the brackets mean the averaging over the variables

x; y transverse to the main external magnetic field.

When conditions (11) are imposed, only X1 to X6

symmetries remain in the shearless case (5) and only X1,

X3, X4 if the magnetic shear is present (8). Reflection

symmetries are not affected by conditions (11).

The physical reason for symmetry (10) is the neglect

of the ion-acoustic potential non-linearity in model

(1), since the corresponding nonlinear term produces

only next-order (i.e., "2) effects. On the other hand,

the presence of a linear pure ion-acoustic wave as a

symmetry transformation of model (1) is not trivial.
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3. Solutions

It is clear from (10) that an arbitrary linear pure ion-

acoustic wave is an exact solution of the non-linear

system (1) as a consequence of the gauge symmetry.

This result does not depend on the presence of magnetic

shear. Only time t and the longitudinal variable z are

involved in this solution. That is, the non-linear terms

describing the transverse (to the main external magnetic

field) dynamics exactly vanish in this case.

Let us review now the most symmetric solutions of

model (1) involving both longitudinal and transverse

variables, in the shearless case (S = 0). Without loss

of generality, we impose condition (11) on the solutions

considered. Among symmetries (5), only X1 to X4 are

compatible with the homogeneous boundary condition

(4) or a periodic one. Combining these symmetries with

the reflection ones (7), we see that the most symmetric

solutions must have the form (u being an arbitrary

constant)

� = f(x; y + ut; z); v = g(x; y + ut; z); (12)

where, according to (7), the functions f and g must have

the following properties:

f(�x; y + ut; z) = �f(x; y + ut; z);

f(x;�(y + ut); z) = f(x; y + ut; z);

f(x; y + ut;�z) = f(x; y + ut; z);

g(�x; y + ut; z) = �g(x; y + ut; z);

g(x;�(y + ut); z) = �g(x; y + ut; z);

g(x; y + ut;�z) = �g(x; y + ut; z): (13)

It should be noted that the constant velocity u is an

essential parameter, since the similarity transformation

generated by the infinitesimal operator X6 of the

symmetry group (5) is not compatible with the boundary

condition (4).

a) First, let us consider pure drift waves, @=@z = 0,
v = 0.

In this particular case, the symmetry conditions (12),

(13) are simplified [2]:

� = f(x; y + ut); f(�x; y + ut) = �f(x; y + ut);

f(x;�(y + ut)) = f(x; y + ut): (14)

There exist two exact solutions of this kind periodic in

the variables x and y, namely the periodic zonal flow of

plasma

� = sin(k1x) (15)

and a monochromatic standing wave

� = sin(k1x) cos(!1t+ k2y): (16)

The amplitudes of these solutions are arbitrary, since

the nonlinear term J [�;	] exactly vanishes. So the

frequency !1 in the second solution is determined by

the expression of the linear wave theory:

!1 = k2=(1 + k21 + k22):

Upon the combination of the exact solutions (15) and

(16), the nonlinear term J [�, 	] is not zero. To study

the non-linear interaction of the zonal flow (15) with the

standing wave (16), let us choose the initial condition

�(0; x; y) = �(1 + � cos(k2y)) sin(k1x);

where the constant � � 1 is the weight parameter of

the standing wave relative to the zonal flow. Supposing

that wave amplitude � is small but finite, we obtain the

perturbative solution

� = ��1 + �2�2 + : : : : (17)

In this way, we obtain

�1 = (1 + � cos(!1t+ k2y + Æ!t)) sin(k1x); (18)

where the frequency shift is equal to Æ! =
(�2=12)k32(3k

2
1 + k22).

In the second order, we obtain

�2 = �k2
2
(1 + k2

1
+ k2

2
)(cos(!2t+ k2y)�

� cos(!1t+ k2y)) sin(2k1x)=(6k1); (19)

where !2 = k2=(1 + 4k2
1
+ k2

2
).

As a result of the interaction, higher harmonics are

generated, beginning from the second order �2 of the

amplitude. The frequency shift Æ! of the main harmonic

appears as the third-order effect (� �3). Pulsations

of the zonal flow also appear in the third order, the

correspondent complicated expressions are omitted here.

b) 3D nonlinear drift-ion acoustic standing wave,

whose potential � and ion velocity v have the form (12)

and obey the symmetry conditions (13). The additional

non-linear term J [�; v] appears in this case. To describe

the dynamics of the periodic waves, we must build up

the perturbative solution

� = ��1 + �2�2 + : : : ; v = �v1 + �2v2 + : : : (20)
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for the initial conditions

�(0; x; y; z) = sin(k1x)(!1 cos(�)+

+!2 sin(�)) cos(k2y) cos(k3z);

v(0; x; y; z) = k3 sin(k1x)(cos(�)+

+ sin(�)) sin(k2y) sin(k3z);

where the parameter � determines the relative weight

of the components with the frequencies (in linear

approximation) !1 and !2:

!1;2 = (k2�

�(k22 + 4(1 + k21 + k22)k
2

3)
1=2)=(2(1 + k21 + k22)):

In the first order, we obtain

�1 = sin(k1x)(!1 cos(�) cos(!1t+ k2y)+

+!2 sin(�) cos(!2t+ k2y)) cos(k3z);

v1 = k3 sin(k1x)(cos(�) sin(!1t+ k2y)+

+ sin(�) sin(!2t+ k2y)) sin(k3z): (21)

In the second order of the amplitude, higher harmonics

are generated:

�2 = (k1k2=16) sin(2k1x) cos(2k3z)�

�(2(!1 + !2 + (!1 � !2) cos(2�) sin
2(!3t=2)�

�((!1 + !2)!
2

3(cos((!1 � !2)t)�

� cos(!3t)) sin(2�))=((!1 � !2)
2 � !2

3
));

v2 = �(k1k2=16)(1 + 4k21)
1=2 sin(2k1x) sin(2k3z)�

�((!1 + !2 + (!1 � !2) cos(2�)) sin(!3t)+

+(!1 + !2)!3 sin(2�)((!1 � !2)(sin((!1 � !2)t)�

�!3 sin(!3t))=((!1 � !2)
2 � !2

3)): (22)

Here, !3 = 2k3=(1 + 4k2
1
)1=2. It is interesting that,

for any combination of waves determined by the

weight factor �, the second-order (�2) contribution

does not depend on the drift direction coordinate

y. Thus, in the second order, a pure zonal flow

is generated, and the correspondent ion velocity

components are

vx = �@�2=@y = 0;

vy = @�2=@x = (k2
1
k2=8) cos(2k1x) cos(2k3z)�

�(2(!1 + !2 + (!1 � !2) cos(2�) sin
2(!3t=2): (23)

In this way, the result obtained in [5] for the

particular case � = 0 is generalized to the

temporal evolution of an arbitrary combination of

the waves with frequencies (in linear approximation)

!1 and !2. This solution describes the zonal

flow generation by the combination of the initially

monochromatic coupled drift and ion-acoustic waves.

The generation is self-consistent as compared to the

zonal flow generation by a drift-wave pump considered

in [6].

In the third order (�3), the shifts Æ!11 and Æ!12 of

the main frequency !1 appear in �1 and v1, respectively

(the � = 0 expressions are presented for the sake of

simplicity):

(Æ!11=!1) = (�2=16)k21k
2

2(k
2

2 � 3k21)=(1 + k21 + k22);

(Æ!12=!1) = �(�2=16)k21k
2

2 : (24)

Conclusions

A continuous symmetry group is found for a 3D

generalization of the Hasegawa�Mima model (1) in the

shearless case (5) and in the presence of the magnetic

shear (8). The reflection symmetries (6), (9) are taken

into account as well.

A pure ion-acoustic linear wave is the exact

solution of these model equations. Moreover, it can be

added to any other solution by the gauge symmetry

transformation (10). On the other hand, this gauge

transformation allows us to impose conditions (11) on

the transverse averaged potential and longitudinal ion

velocity.

Pure drift waves are present in the model as the

invariant (@/@z = 0) solutions, and the model equations

are reduced to the usual 2D Hasegawa�Mima equation

in this case. The symmetry conditions (14) determine

the form of the most symmetric solutions. Among

the exact solutions of this kind, the zonal flow (15)

and the standing wave (16) are present. The non-

linear term exactly vanishes on these solutions, but

the interaction of the zonal flow with the standing

wave is non-trivial, the corresponding approximate

solution was found by the perturbation theory based

on the multiple-time-scale formalism (17)�(19). The

higher harmonics generation, frequency shifts and zonal

flow pulsations are the main non-linear effects in this

case.
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Finally, the coupled periodic drift and ion-acoustic

waves are considered. The symmetry conditions (12)

and (13) which determine the form of solutions were

obtained, and then perturbation theory was applied

(20). As usual, higher harmonics are generated, but

the second-order terms of the amplitude do not

depend on the drift direction coordinate y. So it

is shown that the main non-linear effect in this

case is the zonal flow generation by an arbitrary

combination of two basic monochromatic standing waves

(23). Moreover, frequency shifts are determined (24)

which represent one of the third-order effects in the

amplitude.
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ÄÐÅÉÔÎÂI ÒÀ IÎÍÍÎ-ÀÊÓÑÒÈ×ÍI ÕÂÈËI

Ó ÌÀÃÍÅÒÈÇÎÂÀÍIÉ ÏËÀÇÌI, ÑÈÌÅÒÐI�

ÒÀ IÍÂÀÐIÀÍÒÍI ÐÎÇÂ'ßÇÊÈ

Â.Á. Òàðàíîâ

Ð å ç þ ì å

Ðîçãëÿíóòî òðèâèìiðíó ìîäåëü çâ'ÿçàíèõ äðåéôîâèõ òà iîííî-

àêóñòè÷íèõ õâèëü ó ìàãíåòèçîâàíié íåîäíîðiäíié ïëàçìi. Çíàé-

äåíî ïåðåòâîðåííÿ ñèìåòði¨ öi¹¨ ìîäåëi ÿê ó ïðèñóòíîñòi ìàãíiò-

íîãî øèðó, òàê i áåç íüîãî. Íàâåäåíî äåÿêi íàéáiëüø ñèìåòðè÷íi

ðîçâ'ÿçêè, òî÷íi òà îäåðæàíi ç äîïîìîãîþ òåîði¨ çáóðåíü. Çîêðå-

ìà, îòðèìàíî ðîçâ'ÿçêè, ùî âèçíà÷àþòü ãåíåðàöiþ çîíàëüíèõ

ïîòîêiâ ïî÷àòêîâî ìîíîõðîìàòè÷íîþ õâèëåþ.
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