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The expressions for the refraction angle of electromagnetic waves

in absorptive media based on the classical vector Maxwell

equations for a continuum have been obtained. It has been found

that the propagation direction of the electromagnetic field energy

coincides with a normal to the plane of equal phases only in

the case of TM-polarization of the incident wave, and under the

incidence being near to a perpendicular one. In this case, the

refraction angle can be determined using only the real part of

the refraction index. For all other polarizations of an incident

wave, the complicated dependence of the electromagnetic field

propagation direction on the polarization of an incident wave in

the absorptive medium has been demonstrated. In the case of

the mixed polarization of an incident wave, a deviation of the

propagation plane of the electromagnetic field energy from the

incidence plane has been established.

Introduction

An absorption of electromagnetic waves by the
environment is traditionally taken into account in
classical electrodynamics by the replacement of the real
refraction index with the complex one en = n+ i� in the
formulas for dielectric media. But such a replacement
in the relation to the sines of angles of the incident
and refracted waves (Snell's law) results in the complex
angle of refraction that has no simple physical meaning.
For the real part of Snell's law, it can be put in
the standard form by the formal introduction of the
refraction index depending on the incidence angle of
light falling on the absorptive medium. Therewith, the
planes of stationary phase do not coincide with the
planes of stationary amplitude, forming an angle equal
to the real part of the refraction angle with them.
As far as the amplitude changes along the surface

of stationary phase in this case, waves cease to be
homogeneous.

The formal replacement of the parameter en in
Fresnel's formulas for transparent media also results
in complexity while solving the inverse problem of
optics, namely in the case of the determination of the
parameters n, � from absorption/reflection spectra. It
was under close inspection in works [1], but the incorrect
interpretation of complex quantities which appeared at
the description of absorptive media led to the results
devoid of physical meaning. In particular, in works [1] in
the case of the derivation of expressions for the refraction
angle and coefficients of admission/reflection, the
electric field in the absorptive medium was considered
to be real in the case of the use of the complex refraction
index and the complex electric induction. Consequently,
the displacement in phases of the electric field strength of
incident and refracted waves was not taken into account
[2]. In addition, a consistent analysis of the problem
on the basis of the Maxwell equations and boundary
conditions to them in [2] results in dependences on
the absorption mechanism (band-to-band, exciton, etc.),
that seems queer.

Most authors determine the refraction angle as an
angle between the normal to an interface and the
direction of the normal to the plane of equal phases and
obtain Snell's law from the condition of invariability of
wave vector projections on the interface plane during
the transition from one medium into another [2�
4]. Meanwhile, for many physical phenomena and for
recording devices, the plane of equal phases is not
substantial. Instead of it, direction of the electric field
vector, which always is perpendicular to the direction
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of the time-averaged Poynting's vector (hereinafter
referred to as Poynting's vector) is important. Such
problems do not appear in the case of transparent
isotropic media, where the directions of a normal to the
plane of equal phases and Poynting's vector coincide,
but, in absorptive media, the direction of Poynting's
vector and the direction of a normal to the plane of equal
phases are not the same. The similar situation has the
place in crystal optics for transparent, but anisotropic
media [4�6]. So, in a uniaxial crystal, two refracted
waves appear, and a biaxial one is characterized by
conical refraction. For their description, the notions of
ray surface (surface which is described by the vectors
of ray (group) velocity that coincide with the direction
of non-averaged Poynting's vector) and the surface of
normals (surface which is described by the vectors of
phase velocity) are used. But, for absorptive media, the
problem of introducing the group velocity vgr = @!=@k
[7] appears, so far as, in this case, the wave vector (k)
is a complex quantity, while the group velocity must
be a real one. In this case, introducing the group speed
as vgr = @!=@Re(k) or vgr = j@!=@kj, one gets non-
physical results (vgr becomes more than the velocity of
light in vacuum). Moreover, in the case of absorptive
media, a usage of Fresnel's formulas at the determination
of the transmission and reflection coefficients results in
a violation of the energy conservation law, while using
their determination with the help of Poynting's vectors
immediately ensures the implementation of this law. For
this reason, we consider that it is necessary to define
the angle of refraction in accordance with the direction
of time-averaged Poynting's vector (in relation to the
normal to the interface), so far as it determines the
direction of energy propagation of an electromagnetic
wave, and its value determines the wave intensity. In
this case, Snell's law cannot be longer determined from
the condition of invariability of projections of the wave
vectors on the interface plane at the transition from one
medium to another.

1. Basic Relations

Let us consider a magnetic absorptive medium with
isotropic properties. In this case, the system of Maxwell's
equations for electromagnetic waves in the medium in
absence of free charges and currents is [5]

[5�E] = �1

c

@H

@t
; 5 �H = 0; (1)

[5�H] =
4�

c
j+

1

c

@D

@t
; 5 �D = 4��; (2)

where E and H are the interatomic-distance-averaged
strengths of the electric and magnetic fields, D is the
electric induction, � and j are the induced charge and
current. In the case of a linear response of the medium to
an external excitation, we have D = �E, j = �E, where
� is the dielectric permeability and � is the medium
conductivity.

Let us seek asolution of the system of equations
(1), (2) in the form of plane transverse waves (for the
magnetic field, it will be in a similar manner):

ER;t =
X
k;�

C
(�)

k
ei(kR�!t) + c:c:; (3)

where R is the space coordinate vector, and the vector

C
(�)
k

determines the polarization of the k-th wave

(C
(�)
k

� k = 0, � = 1; 2). The notation c:c: denotes the
complex conjugation, since the field is a real quantity.
Furthermore, we drop c:c: and the factor that defines
the time dependence e�i!t for the sake of convenience.
The summation in (3) is over two polarizations (�) and
all k. The substitution of (3) in system (1), (2) results
in the dispersion equation

k2 =
!2

c2

�
�+ i

4�

!
�

�
� ~�: (4)

In this case, the absorption is determined by the
imaginary part of the dielectric permeability e� with
dimensionality (!=c)2.

Let us choose polarization vectors being relevant to s-
and p-polarizations, which we will denote conditionally

by C
(1)

k
� Ak and C

(2)

k
� Bk, in the form

Ak =
f�ky; kx; 0gq

k2x + k2y

; Bk =
f�kzky;�kzkx; k2x + k2yg

jkj
q
k2x + k2y

;

(5)

where the complex components of the wave vector
k = fkx; ky; kzg are introduced. Separating the real and
imaginary parts in the wave vector, k = k0 + ik00 and
replacing the sum in (3) with integrals over both vector
spaces k0 and k00, we get the vector of electric field
strength in accordance with the general solution of (2)
in the form

ER =

Z
dk0

Z
dk00Æ(Re((k0 + ik00)2 � ~�))�

�Æ(Im((k0+ ik00)2 � ~�)))Ek0;k00;R; (6)
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where condition (4) is taken into account with the use
of delta functions.

Furthermore, we consider a system with a
heterogeneous change of dielectric permeability along
the z axis (it determines the direction of a normal to the
interface). For convenience, we present the wave and
coordinate vectors as k = f�; kzg and R = fr; zg, where
� and r are two-dimensional vectors in the XOY plane.
In this case, � must be real according to the condition
of field finiteness. Consequently, according to (6), the
Fourier transformation of the electric field strength over
the two-dimensional coordinate r (ER =

R
d�E�;ze

i�r)
takes the form

E�;z =
�
�(+)
�
A� + �(+)

�
B�

�
eikz(�)z+

+
�
�(�)
�
A� + �(�)

�
B(�)
�

�
e�ikz(�)z: (7)

Here, kz(�) =
pe�� �2 is a complex wave vector which

is determined by the delta function in (6):

kz(�) =

sp
(~�0 � �2)2 + ~�002 + ~�0 � �2

2
+

+i

sp
(~�0 � �2)2 + ~�002 � ~�0 + �2

2
; (8)

where the real ~�0 and imaginary ~�00 parts of ~� are

introduced. The coefficients �
(+)
� , �

(+)
� in (7) determine

the waves which spread from the interface z = 0

(the direction of the z axis is defined as the transition
direction from the first medium to the second one),

and �
(�)
� , �

(�)
� correspond to the spreading in the

opposite direction (vector B
(�)
� is determined by (5)

under the replacement of kz by �kz). In addition, in
accordance with the selected vectors (5), the coefficients
� correspond to TE-waves (s-polarization), and �
correspond to ÒÌ-waves (p-polarization).

In the case of a transparent medium, the integration
over � in (7) is usually limited in order to take into
account the total reflection from the plane interface
(requirement of the imaginary part absence in (8)).
However, as it will be shown below, the consideration
of solutions with completely imaginary wave vectors in
the transparent medium gives the zero z-component of
Poynting's vector. It actually means the absence of the
penetration of energy into the medium and consequently
takes into account the condition of total reflection. In

this case, it is no sense to limit the integration over �.
Using (1) and (7) for the magnetic field, we get

H�;z =
p
�

��
�(+)
�
B� � �(+)

�
A�

�
eikz(�)z+

+

�
�(�)
�
B(�)
�

� �(�)
�
A�

�
e�ikz(�)z

�
: (9)

Here, the polarization vectors (5) are given by the
expressions

A� =
[ez � �]

�
; B(�)

�
=
��kz(�) + ez�2

�
p
~�

: (10)

Using (1) and (2), after the integration over the
superthin transition layer Æ near the interface, we get
the boundary conditions at the interface of two media.
In the case where electric and magnetic fields are time-
dependent as e�i!t, the last equations in (1) and (2)
become unnecessary (they follows from the first ones).
Consequently,

[n�ER]
����
Rs+Æ�n

Rs�Æ�n

= 0; [n�HR]

����
Rs+Æ�n

Rs�Æ�n

= 0; (11)

where Æ ! 0, Rs is the coordinate vector describing the
interface, and n is the unit vector of a normal to the
surface.

Poynting's vector, which defines the value
and direction of the electromagnetic wave energy
propagation (and, consequently, the refraction angle),
takes the form [5]

S =
c

8�
[ER;t �HR;t]t =

c

4�
Re[E�

R �HR]; (12)

where (:::)t means the averaging over the time.

2. Plane Interface

Furthermore, we consider the plane interface between
two media (denoting them by 1 and 2) which is described
by the equation z = 0 (n = @z=@R = ez; ez is a unit
vector of the coordinate axis OZ). We suppose that, in
medium 1, a plane wave with polarizations �, � and with
the projection of the wave vector on the interface plane
�i comes from infinity to the interface. Then

�(1;+)
�

= �Æ(� � �i); �(1;+)
�

= �Æ(�� �i): (13)

For medium 2, the radiation condition requires

�(2;�)
�

= �(2;�)
�

= 0: (14)
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Consequently, for the determination of the
electromagnetic field in such a system, it is necessary

to define �
(1;�)
� , �

(1;�)
� and �

(2;+)
� , �

(2;+)
� . Substituting

the coefficients in expressions (7), (9) and boundary
conditions (11), we obtain

�(1;�)
�i

=

p
~�1 � �2i �

p
~�2 � �2ip

~�1 � �2i +
p

~�2 � �2i
�;

�(2;+)
�i

=
2
p
~�1 � �2ip

~�1 � �2i +
p

~�2 � �2i
�;

�(1;�)
�i

=
(~�2=~�1)

p
~�1 � �2i �

p
~�2 � �2i

(~�2=~�1)
p

~�1 � �2i +
p

~�2 � �2i
�;

�(2;+)
�i

=
2
p
~�2=~�1

p
~�1 � �2i

(~�2=~�1)
p

~�1 � �2i +
p

~�2 � �2i
�: (15)

Coefficients (15) are of the Fresnel's formulas type for a
transparent medium. For convenience, when wrighting
coefficients (15), the multiplier Æ(�� �i) was ommited.
This multiplier is a mathematical formulation of Snell's
law: the equality of projections of wave vectors on the
plane interface of the different media. Consequently, as
was foreseen, in the case of a plane interface and a plane
incident wave, we obtain two plane waves (reflected
and refracted ones). In the case of an absorptive
medium, coefficients (15) become complex that means
the appearance of a phase shift of the reflected and
refracted waves in relation to the incident one.

In accordance with (7), (9), and (15), the direction of
a normal to the planes of equal phases for the refracted
wave does not depend on the polarization of the incident
wave and is determined by the real part of the vector
�i + ez

pe�2 � �2i , while its imaginary part determines
the direction of the planes of equal amplitudes, which, as
one can see, always coincides with ez. However, coming
from definition (12) and using (7), (9), and coefficients
(15), Poynting's vector in another medium at z = 0 is

S =
c2

4�!
Re

"
j�(2;+)

�i
j2
�
�i + ez

q
~�2 � �2i

�
+

+
~�2

j~�2j
j�(2;+)

�i
j2
�
�i + ez

q
~��2 � �2i

�
�

�2i
p
~�2

j~�2j
�(2;+)�

�i
�(2;+)
�i

[ez � �i]Im

q
~�2 � �2i

#
; (16)

Fig. 1. Scheme which presents a deviation of the refraction plane

of an absorptive medium as a function of the polarization angle of

the incident wave ��. Here, i is the incident wave, r is the reflected

wave, and d is the refracted one

It is evident that the direction of Poynting's vector
depends on polarization. In the case of mixed
polarization, refraction takes place also in the direction
perpendicular to the incident plane (the plane which is
defined by the wave vector of an incident wave and
by the normal to the interface), as shown in Fig. 1.
Moreover, Sz = 0 in the case of a transparent medium
at �i such that

pe�2 � �2i is completely imaginary, which
corresponds to the total internal reflection.

Let us define the angle of refraction in relation to the
normal to the interface in the following way:

cos�d = (S � n)=jSj: (17)

Denoting the angle of incidence �i, we obtain �i =pe�1 sin�i (in this case, the dielectric permeability of the
first medium must be real because of the condition of
the problem: a plane wave comes from infinity). For the
cases of non-mixed polarizations TE and TM, separating
the real part in (16) and taking (17) into account, we
obtain the ratio of the sines of the angle of refraction
and the angle of incidence in the form of classical Snell's
law:

sin�d

sin�i
=

n1

~n2(�i)
(TE-polarization); (18)
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a b

Fig. 2. Dependence of the angle of refraction �d on the angle of incidence �i for the air-gold interface at the wave-lengths � = 413:2

(a) and 659:3 nm (b) [in (b), the angle for TM polarization is multiplied by 10]

sin�d

sin�i
=

n22 � �2
2

n22 + �2
2

n1en2(�i) (TM-polarization): (19)

Here, we introduced formally the refraction index for
an absorptive medium en2(�) (similarly to [2, 3]) which
depends on the angle of incidence of the incident wave:

en2(�) � 1p
2

�
n22 � �2

2 + n21 sin
2 �+

+

q
(n22 � �2

2 � n21 sin
2 �)2 + 4n22�

2
2

�1=2

: (20)

When writing Eqs. (18) � (20), we introduced the
refraction indices of the first and second media: n1 �

p
�1

and n2 + i�2 � p
�2, where n1, n2, and �2 are real

quantites (n2; �2 > 0).
In the case of almost normal incidence where � � 0

n2(�) � n2, and the ratio of the sines of the incident and
refracted waves is simplified:

sin�d

sin�i
� n1

n2
(TE-polarization); (21)

sin�d

sin�i
� n22 � �2

2

n22 + �2
2

n1

n2
(TM-polarization): (22)

In spite of the fact that the difference between TM
and TE disappears in the case of normal incidence
(Poynting's vectors (16) become identical), Eqs. (21)

and (22) are different. However, in the case of normal
incidence, the ratio of sines (21) and (22) loses its
meaning and these equations just show the rate, with
which the refraction angle tends to zero when the
incidence angle tends to zero for different polarizations.

3. Numerical Results and Discussion

The dependences of �d on the angle of incidence for
the air-gold interface are calculated for TE and TM
polarizations of the incident wave, using formulas (18)
and (19) for wave lengths � = 413:2 and 659:3nm. (Data
for Au are taken from [8]). The calculations are presented
in Fig. 2, where the slim lines that correspond to the
simplified formulas (21), (22) are added for comparison.
They demonstrate deviation from (18), (19) being not
more 15% in the case of the use of approximate formulas.
In addition, in Fig. 2, the dependence �d(�i) for the
polarization of 45Æ is depicted. It is calculated using
expressions (17) and (16) and demonstrates the case of
a mixed polarization of the electric field strength of an
incident wave in relation to the incidence plane. The
data for Au which are used while calculating the angle
dependences shown in Fig. 2 are chosen to demonstrate
two cases: when the real part of dielectric permeability
is considerable (a), and when it is near 0 (b). In
accordance with (19), one can observe the almost normal
propagation of a wave (Fig. 2,b) in the case of completely
imaginary dielectric permeability and TM polarization.

For a deeper understanding of the influence of
absorption on the refraction angle, we presented the
dependences �d(�i) for three polarizations at a fixed
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value of the real part of the refraction coefficient n2 =

1:3 and for different values of the imaginary part �2

in Fig. 3. Fig. 3 demonstrates a strong dependence of
the refraction angle on absorption in the medium. From
Figs. 3 and 2, one can see that, unlike the cases of
TE and TM polarizations where the refraction angle
is a single-valued function of the angle of incidence,
the refraction angle can have the same value for the
mixed polarization at the different angles of incidence.
In addition, using the dependence �d(�i), it is possible
to define the dependence of the Brewster angle on the
absorption and the polarization of an incident wave.

According to (16), Poynting's vector component,
which is perpendicular to the incidence plane, can arise.
In Fig. 4, the deviation angle of the refraction plane
�d (cos �d = (S � �i)=(j [n� S] jj�ij)) vs the orientation
of the incidence plane is depicted as a function of the
polarization angle of the vector of electric field strength
with reference to the incidence plane (a), and as a
function of the angle of incidence (b). The dependence
�d(�i) (Fig. 4,b) loses its meaning in the case of normal
incidence, so far as the projection of the wave vector on
the interface �i and [ez � �i] is absent in this case. So,
it is possible only to define a rate with which �d tends
to zero at �i �! 0.

Conclusions

Within the framework of the performed theoretical
research, on the base of classical electrodynamics of
continuous media and with an arbitrary polarization of
the incident wave, the formulas for the ratios of the
sines of the refraction angle and the angle of incidence
of waves at the interface between the absorptive and
transparent media have been obtained. A complicated
dependence of the refraction angle on the incidence angle
is established as well as the deviation of the refraction
plane from the incidence plane. The expressions were
obtained in the following approximations:
� the incident wave is planar;
� the interface is absolutely planar;
� the dielectric permeability varies stepwise on the
interface;
� the dielectric permeability is homogeneous and
isotropic;
� the spatial dispersion is absent (the dipole
approximation).

a

b

c

Fig. 3. Dependence of the refraction angle �d on the angle of

incidence �i at n2 = 1:3 and different values of the absorption

coefficient �2 for TE (a), TM (b), and mixed (c) polarizations
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a

b

Fig. 4. Dependences of the deviation angle of the refraction plane

�d on the polarization angle �� at the angle of incidence of 10Æ (a)

and on the angle of incidence at fixed polarization of 45Æ (b) when

n2 = 1:3 and �2 has various values

Such approximations are fully justified in the case
where the mean-square deviation of the interface from
the plane is far less than 4 nm (for 4 nm, the
experimental and theoretical values of a change of
the absorpsion coefficient are less than 10% [9]) and
where the characteristic length of variations in dielectric
permeability is far less than the wavelength (this takes
place for sharp transitions). In the case where the
distance to the radiation source is far more than the
size of the irradiated area, it is possible to consider the
incident wave to be plane. The dipole approximation
widely used in theoretical physics is fully justified
for wavelengths corresponding to the solar spectrum
(approximately 200 � 1000 nm), as far as they are
much more than the sizes of the interaction region which

are determined by the absorption mechanisms such as
fundamental, exciton, and phonon ones.

The mentioned approximations are widely used,
so the reliability of the obtained theoretical results
is grounded. However, practical observations of the
dependence of the refraction angle on the polarization
of an incident wave and the phenomenon of a refraction
plane turn in relation to the plane of incidence are
complex tasks. Indeed, the deviation angle is small in
the case of weak absorption, while it is necessary to use
very thin films in the case of strong absorption. The
similar situation exists in the presence of the spatial
dependence of the refraction index, when the effect of
the polarization plane twisting arises (see, for example,
[10] and references therein). This effect is experimentally
observed in long waveguides.

The deviation of the refraction plane from the
plane of incidence can be explained by the appearance
of longitudinal and transverse surface electromagnetic
waves at the expense of the complex interaction of TM
and TE waves with the environment. According to (16),
a tangent component of Poynting's vector (in relation
to the interface) in an absorptive medium changes its
direction in relation to Poynting's vector of the incident
TM wave that corresponds to the excitation of surface
waves [11]. In this case, the real part of dielectric
permeability can be zero (n = �). This situation is
intermediate between the occurrences of volume and
surface waves in the absorptive medium under the
incidence of the TM wave on the interface. Moreover,
the appearance of surface waves was considered in the
literature (see, for example, [11, 12]) under the condition
of weak absorption (|Ree�j � Ime� ), that is conditioned
by the convenience of experimental observation, when
the appearance of surface waves is possible only under
resonance conditions and only the tangent component of
Poynting's vector exists, while the normal one is absent.
We have considered the case of an arbitrary relation
between |Ree�j and Ime�, where, in addition to the tangent
component of Poynting's vector, its normal component
is present. Their coexistence can be explained by the
simultaneous existence of volume and surface waves and
by the non-resonance excitation of surface waves.

Moreover, in the case of strong absorption where n�
�, the field fades away on distances comparable with the
wavelength, and it is already difficult to tell about the
presence of waves in the medium. But for many practical
applications, a part of the electromagnetic wave energy
that has penetrated into the medium is substantial. It
is determined by the z-component of Poynting's vector.
It is shown that, in the case of an absorptive medium,
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the approximate formula for Snell's law with totally real
refraction indices can be used only for TE polarization.
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ÎÑÎÁËÈÂÎÑÒI ÇÀËÎÌËÅÍÍß ÅËÅÊÒÐÎÌÀÃÍIÒÍÈÕ

ÕÂÈËÜ ÍÀ ÏÎÂÅÐÕÍI ÏÎÃËÈÍÀËÜÍÎÃÎ

ÑÅÐÅÄÎÂÈÙÀ

Ì.Ë. Äìèòðóê, Î.Â. Êîðîâií

Ð å ç þ ì å

Îòðèìàíî âèðàçè äëÿ êóòà çàëîìëåííÿ åëåêòðîìàãíiòíèõ

õâèëü â ïîãëèíàëüíîìó ñåðåäîâèùi ç êëàñè÷íèõ âåêòîðíèõ ðiâ-

íÿíü Ìàêñâåëëà äëÿ åëåêòðîäèíàìiêè ñóöiëüíîãî ñåðåäîâèùà.

Âñòàíîâëåíî, ùî íàïðÿìîê ïîøèðåííÿ åíåðãi¨ åëåêòðîìàãíiò-

íîãî ïîëÿ çáiãà¹òüñÿ ç íàïðÿìêîì íîðìàëi äî ïëîùèíè ðiâ-

íèõ ôàç ëèøå ó âèïàäêó ÒÅ-ïîëÿðèçàöi¨ ïàäàþ÷î¨ õâèëi òà

ïðè ìàéæå íîðìàëüíîìó ïàäiííi; òîäi êóò çàëîìëåííÿ ìîæíà

âèçíà÷àòè ç âèêîðèñòàííÿì ëèøå äiéñíî¨ ÷àñòèíè ïîêàçíèêà çà-

ëîìëåííÿ. Ó âñiõ iíøèõ âèïàäêàõ ïîëÿðèçàöi¨ ïàäàþ÷î¨ õâèëi

âèÿâëåíî ñêëàäíó çàëåæíiñòü íàïðÿìêó ïîøèðåííÿ åëåêòðî-

ìàãíiòíîãî ïîëÿ â ïîãëèíàëüíîìó ñåðåäîâèùi âiä ïîëÿðèçàöi¨

ïàäàþ÷î¨ õâèëi; äëÿ çìiøàíî¨ ïîëÿðèçàöi¨ ïàäàþ÷î¨ õâèëi âè-

ÿâëåíî âiäõèëåííÿ ïëîùèíè ïîøèðåííÿ åíåðãi¨ åëåêòðîìàãíiò-

íîãî ïîëÿ âiä ïëîùèíè ïàäiííÿ.
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