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A method to describe the observables in the nucleon charge-

exchange reactions on nuclei at intermediate energies with the

explicit inclusion of the pion and rho-meson exchange and an

excitation of the intermediate � (1232) isobar is proposed. The

A(p,n)B reaction may be imagined as A(p,n)A+� reaction with

the pion four-momentum equal to (m� ; 0). This allows one to

use the findings of the pion production/absorption theory in a

combination with a standard distorted wave formalism for the

description of the reaction observables. The corrections on the

nuclear medium and short-range correlations are included. The

calculations are compared with the experimental cross section of

the 7Li(p, n)7Be reaction at Tp = 200 MeV and a satisfactory

agreement is obtained.

Introduction

In the meson picture, it is well established by now
that the long- and intermediate-range nucleon-nucleon
(NN) forces are dominated by one-pion exchange.
In addition to the one-pion exchange, there is a
nearly model-independent understanding of the force
as due to 2� exchange with � excitation down to a
distance of about 1 fm [1]. However, the calculations
of cross sections and other observables for nucleon
charge-exchange reactions on nuclei at intermediate
energies which explicitly use non-nucleon degrees of
freedom, are very limited. One of such works is due
to Krewald et al. [2]. In this comprehensive work, the
authors use the Julich�Stony�Brook interaction for the
calculation of magnetic excitations in various nuclei, the
Gamow�Teller strength in charge-exchange reactions,
medium effects on the bare two-nucleon potential, etc.
The experimental NN scattering phase shifts and the
deuteron properties are described reasonably well within
a nonrelativistic model of NN interaction below the pion
production threshold with virtual � isobars taken into
account explicitly in the coupled channel formalism in
[3]. The (n, p) reaction is used to study the possibility
of formation of deeply bound pionic atom states in
208Pb in the energy range of 400�1000 MeV [4]. These
authors treat the n!p transition to be caused by the

one-pion plus one-rho meson exchange and the p-wave
part of interaction is dominated by the �-pole term.
Jain and Santra [5] and Jain [6] study the spin-isospin
responses in nuclei and the formation of � isobar in the
(3He,t) reaction at the 3He energy of 2 GeV and higher.
For this purpose, they treat the elementary process
pp!n �++ in the framework of a one-boson exchange
model. The triton spectra calculated in this approach
including the direct and exchange diagrams agree well
with experiment. In order to eliminate the seeming
contradiction between a small value of the Landau�
Migdal parameter for the delta-nucleon coupling, g0�,
following from the recent (p, n) spin experiments and
a large value of g0� required by the missing pion
condensation and its precritical phenomenon, Toki and
Tanihata [7] insist on the relativistic description of
nuclei and reactions. Moreover, the relativistic approach
gives the ratio of the spin longitudinal to transverse
response functions less than 1, as required by the (p,
n) experiments.

However, more numerous are the calculations of
the cross sections and polarization observables for
the nucleon charge-exchange reactions at intermediate
energies, which use a certain type of the effective
interactions as a transition potential. The most popular
are the t-matrix [8] and various kinds of G-matrix (Paris,
Bonn, M3Y, etc.) interactions. The status of the problem
as of 1987 is described in [9]. The things have not
changed much since that time.

There is another class of calculations [10�13].
These all in one way or another use a relativistic
approach both to the continuum wave functions and
the transition operator. The authors of works [10�
12] start from the NN Lorentz invariant amplitude
developed in [14] to obtain the macroscopic potentials
for distorted wave functions in the relativistic impulse
approximation (RIA) [10, 12] or relativistic distorted-
wave Born approximation (RDWBA) [11]. In [11, 12],
the continuum wave functions are obtained from the
Dirac equation, and Clark et al. [10] used the coupled
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Fig. 1. Schematic representation of the contributions to the

A(p,n)B reaction amplitude. Broken and wavy lines denote the

meson propagation, shaded rectangles are the � (1232) isobars,

and ovals denote the bound system

Lane�Dirac equations. Anderson et al. [13] used a
phenomenological optical model potential for distorted
waves within the distorted-wave impulse approximation
(DWIA) and took the energy and density dependent G-
matrix interaction of Nakayama and Love (see [9]) for
the effective interaction. Coefficients of the sum in the
on-shell NN t-matrix [14] are functions of energy and
momentum transfer. In terms of the meson exchange
model of NN interaction, the different coefficients
can be identified as those corresponding to scalar,
vector, tensor, pseudo-scalar, and axial-vector �meson�
exchanges. The authors of work [11] generalize the scalar
and vector amplitudes to include isospin.

Among a variety of works devoted to multi-step
direct reactions, we note the recent work [15] analyzing
the two-step process in the (p, p) and (p, n) reactions at
intermediate energies.

In the present work, our goal is to study the
possibility of the description of the (p, n) reaction
observables at intermediate energies with explicit
inclusion of the meson and � degrees of freedom.

1. Philosophy and Ingredients of the Approach

The nucleon charge exchange reaction A(p, n)B can
be imagined as a reaction A(p, n)(�
A) with pion

four-momentum K� = (m�; 0). Then, for a description
of the (p, n) reaction observables, one may use the
findings of the pion production / absorption theory in a
combination with the a well-known RDWBA formalism.
In such an approach, the charge exchange process is
viewed as follows. An incident proton interacting with an
active target nucleon emits (absorbs) the off-shell meson
which rescatters then on the target ( incident) nucleon
and is absorbed by another target nucleon. Here, it is
assumed that the probability for a rescattered pion to
land on the same nucleon is small [1].

With these assumptions, the reaction amplitude can
be exhibited to the first order as a sum of diagrams
depicted in Fig. 1. Here, diagrams (a)-(d) correspond
to the s-wave rescattering and (e)-(h) are related to
the p-wave rescattering. It is assumed that, at energies
lower than 1 GeV, the p-wave interaction is dominated
by the �(1232) isobar excitation and the other nucleon
resonances do not contribute. The intermediate meson
can be emitted from the projectile [diagrams (a), (f) and
(h)] and from a target nucleon [diagrams (b), (e) and
(g)]. Diagram (c) describes the process when one of the
target nucleons having emitted a pion converts into the
ejectile and the incident nucleon becomes bound in the
residual nucleus. Diagrams (d), (g) and (h) account for
the possibility when an active target nucleon is a proton.
Lastly, in the p-wave amplitudes, we do not consider
the so-called �pre-emission� diagrams ( when the second
pion is emitted at the first isobar vertex). It has been
found in reactions of the pion production (p, p0�) [16]
and (p, �) [17] that such diagrams only contribute a
few percents relatively to the contribution of the �post-
emission� process at incident energies of about 200 MeV.

Thus, for the evaluation of amplitudes, we need the
propagators for intermediate pions, rho-mesons and �-
isobars, coupling constants at the �NN, �NN, �N�, and
�N� vertices, wave functions of incident and outgoing
nucleons, wave functions of nucleons bound in the target
and residual nucleus, and the wave function of a pion
captured in one of the nucleon states of the residual
nucleus. Now let us concentrate on these elements of
the amplitude.

The full meson propagator is known to have the form

D(q0; q) =
D0(q0; q)

1�D(q0; q)�0(q0; q)
; (1)

where the free propagator, D0, is given by

D0(q0; q) = (q02 � q2 �m2 + i")�1 (2)

with (q0; q) the meson four-momentum (in our case, it is
the momentum transfer) and its mass, m. Hereafter, we
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use the relativistic conventions adopted by Bjorken and
Drell [18]. In Eq. (1), �0 is the self-energy of a pion. For
a real pion, �0 is related to the optical potential through
�0 =2!Vopt. The virtual pion propagating through the
nuclear medium produces the particle-hole and �-hole
excitations and these modifications are accounted for by
including the self-energy in the pion propagator. In the
calculation of the pion self-energy, we use expressions
given in [16], where the nuclear density distribution is
approximated by a Fermi gas. In addition we account for
the 50% relativistic reduction in the Lindhard function
for the pion self-energy as suggested in [7]. For the �-
meson propagator, we employ (2). The � propagator is
commonly given by

D�(!�; q�) =

[!� � T� �M� � V�(!�; q�) + i��(s
0)=2]

�1
; (3)

where V�(!�; q�) represents the nuclear potential for �
with energy !� and momentum q�, T� and M� are the
kinetic energy and mass of the isobar. The isobar width
depends on energy and is given by

��(s
0) =

2

3

1

4�
f2�N�

2M�p
s0 +M�

k3�N
m2

�

; (4)

where
p
s0 is the c. m. energy of the �N system and k�N

is the c. m. momentum.
Similarly to the pion propagator modifications due

to the nuclear medium, changes in the � isobar width
are also expected. These may arise from two competing
mechanisms. First, the Pauli effects in intermediate
transitions inhibit the process � ! �N as some of the
nucleon states can be occupied. Such effects tend to
decrease the isobar width in the medium relative to the
free width �0 = 116 MeV. The other contribution to the
width arises from nuclear interactions which are called
�spreading� transitions in terms of the �-hole model.
The imaginary part of the �spreading potential� tends
to increase the isobar width. So, there must be a large
cancellation between the two effects. Furthermore, it is
worth to note that, at the proton energies of about 200
MeV, the cross section of the (p, �) reaction is rather
insensitive to the choice of ��(s

0) (see e.g., [17]). For
the coupling constants, we use the commonly adopted
values [1]

f2�NN=4� = 0:08; f2�N�=4� = 0:37; f2�NN=4� = 4:86;

and f�N�=f�NN = f�N�=f�NN =
p
72=25:

Since the exchanged mesons in rescattering amplitudes
are far off-shell, the off-shell continuation of the vertex

functions must be taken into account. It is done by
means of monopole form factors [1]

fi(q
2) = fi

�2
i �m2

i

�2
i � q02 + q2

; (5)

where i denotes the intermediate meson (� or �) and
fi are the correspondent on-shell values of coupling
constants. The cut-off parameters are taken to be ��

= 1200 MeV and �� = 1500 MeV.
To obtain the relativistic distorted wave functions for

incident and outgoing nucleons, we follow the method
of [19]. These authors obtained a Schr�odinger-type
equation by eliminating the small component of the
Dirac spinor and a proper transformation. The large
component of a nucleon wave function with the incident
energy T = E �M then obeys the equationh
p2=2E + Ue�(r) + VC(r) + Us:o~�~L

i
	(r) =

= (E2 �M2)=2E	(r); (6)

where the Schr�odinger equivalent potentials Ue� and
Us:o are the central and spin-orbit ones, respectively:

Ue�(r) = UV +
�
Us(2M + Us)� (UV + VC)

2
�
=2E;

Us:o(r) =
1

2ErD(r)

dD(r)

dr
;

D(r) =M + Us(r) +E � Uv(r)� VC(r): (7)

Here, Us, Uv, and VC are the scalar, vector, and Coulomb
potentials, respectively, and M is the nucleon mass. A
small Darwin term is neglected. The bound-state wave
functions (BSWF) of nucleons in the target and residual
nucleus, needed for the calculation of the transition
density, are obtained with the Woods�Saxon potential
with a known binding energy. In order to obtain the
BSWF for a trapped pion, we solve the Klein�Gordon
equation numerically in the r-space with the pion-
nucleus optical potential of the Ericson�Ericson type
[1]. The optical potential parameters also are taken from
[1].

We have two more ingredients for the evaluation
of the �N T -matrix, namely, the s-wave and p-wave
parts of the �-nucleon interaction. The popular choice
of the s-wave part of interaction is a phenomenological
Lagrangian [20]

ÆH
(s)
�N = 4�

�
�1

m�

�	��	+
�2

m2
�

�	�(�� @l�)	

�
; (8)
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where 	, � are the nucleon and pion fields, respectively,
� is the Pauli isospin matrix, and �1, �2 are related to the
isoscalar and isovector scattering lengths, respectively.
The pion off-shellness is taken into account in [21] and
the coupling strengths are

�1(q) = �1

2
m�

�
asr + a�

m2
�

m2
� +

3
4q

02 �m2
� � q2

�
;

�2(q) = �2
m2

�

m2
� +

3
4
q02 �m2

� � q2
; (9)

with a� = 0; 22m�1
� , m� = 4; 2m� and asr = �0; 23m�1

�

to include short-range correlation effects, m� = 5; 5m�,
and �2 = 0; 046.

The p-wave interaction comes from the �-and �-
meson exchanges with intermediate � -isobar formation
and is to be treated carefully. In the non-relativistic
limit, the transition potential, Vp, corresponding to these
exchanges is taken as

Vp(q
0; q) =

=
�
V�(q

0; q)S+q�q + V�(q
0; q)(S+ � q)(� � q)

�
T+�;(10)

or, in alternative form, as

Vp(q
0; q) =

�
Vc(q

0; q)S+� + Vnc(q
0; q)S12(q)

�
T+�; (11)

where Vc and Vnc correspond to the central and non-
central parts of the interaction, S12(q) = 3S+q�q �
S+� is the tensor operator, S and T are the
transition spin and isospin operators, connecting spin-
isospin 3/2- and 1/2-states and defined by means ofD
3=2��

���S+
� (T

+)
�

���1=2�NE = h3=2��j1�1=2�N i. If one

treats the short-range part of the interaction too naively,
the attractive parts of the one-pion exchange potential
turn out to be so strong that a phase transition (pion
condensate) can result, at least in the nuclear matter at
a sufficiently high density [1]. Since this phase transition
has not been observed, it is necessary to include
the strong short-range repulsion which arises from
the exchange of heavier mesons and other many-body
effects. The major effect of short-range correlations is to
suppress the relative wave function of two interacting
nucleons at small distances r = jr1 � r2j. This can
be made in different ways. The one is to use the
parametrization of the correlation function (see, e.g.,
[2]) 
(r) = 1 � j0(mcr); where j0(z) is the spherical
Bessel function and mc is the mass !-meson which is
mainly responsible for the short-range repulsion. Then
the meson exchange part of the effective interaction
(V�(q

0; q) + V�(q
0; q)) is replaced by

V�(q
0; q) + V�(q

0; q)�
�
V c
� (q

0; q) + V c
� (q

0; q)
�
; (12)

V c
�;�(q

0; q) =
2�

m2
c

Z
dk

(2�)3
Æ(jq � kj �mc)V�;�(q

0; q):

Another way [1, 4, 7] to handle the short-
range correlations is to introduce the Landau�Migdal
parameter, g0. Separating the interaction into spin-
longitudinal, V 0

l (q), and spin-transverse, V
0

t (q), parts, we
have

V 0

l (q)qiqj + V 0

t (q)(Æi;j � qiqj); (13)

with

V 0

l =
q2

q02 � q2 �m2
�

F 2
� (q) + g0;

V 0

t =
q2

q02 � q2 �m2
�

F 2
� (q)C� + g0;

where F� , F� are the pion and �-meson form factors
[see eq. (5)] and C� is the ratio of the � and � coupling
constants squared.

Finally, the differential cross section of the (p,n)
reaction may be expessed as [18]

d�

d!
=

pn

pps

X
jTfij2; (14)

where pn(pp) is the momentum of the neutron (proton),
s is the invariant energy squared in the incident channel,
and the transition amplitude in the DWBA is given by

Tfi =

 
�(�)n ;

*
'A+�; 'n

�����
X
i

(Vs(i)+

+Vp(i)

�����'A; 'p
+
; �(+)p

!
; (15)

where Vs(Vp) is the s-wave (p-wave) part of the effective
interaction, 'i are the spin-isospin functions of the
correspondent particles, and �(+)(�(�)) is the distorted
wave function in the incident (outgoing) channel. The
sum in Vs + Vp runs over the nucleons in the target
nucleus.

2. Application to the 7Li(p,n)7Be Reaction at

TP=200 MeV and Discussion

The approach outlined above is applied to the (p,n)
reaction on 7Li at 200 MeV. This choice is motivated
by the simplicity of the shell-model structure of the
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Fig. 2. Differential cross section for the
7
Li(p,n)

7
Be(g.s.+0.43

MeV) reaction at 200 MeV. Solid points are experimental data

from [22, 23]; a � solid curve and triangles denote the results

of calculations with set 7 and set 1 of the OM parameters,

respectively, taken from [24]. Dashed and dotted curves correspond

to the contribution of either �- or �-meson exchange; b � solid

curves are the results of calculations for proton energies indicated.

Dashed and dotted curves correspond to the contribution of the

central (�=0) or tensor (�=2) part of the effective interaction

Fig. 3. Same as in Fig. 2, but: a � dotted and dashed curves

correspond to the excitation of the ground state and first excited

state (0.43 MeV) of
7
Be, respectively. Solid curve is their sum; b

� decomposition of the calculated cross section (solid curve) into

components corresponding to different sets of the relative total

angular momenta JR, JT , JP : 011 (dotted), 211 (dashed), and

221 (dot-dashed)

target and residual nuclei, which allows us to eliminate,
to some extent, the nuclear structure effects and to
concentrate on the reaction mechanism.

The present calculations are shown in Figs. 2,3 (solid
curves) in comparison to the experimental data (solid
dots). The experimental data are taken from [22] (Ep =
60 � 200 MeV) and [23] (Ep = 200 � 400 MeV). The
optical model (OM) parameters are due to [24], where
they are obtained from the fit to the elastic scattering of
protons by 4He and 16O nuclei at 200 MeV. In Fig. 2,a,
we show the results of calculations with two sets of OM
parameters from [24], namely, set 7 (�deep� potential,
solid curve) and set 1 (�shallow� potential, triangles). It
can be seen that these two curves begin to differ at angles
of about 40Æ. Because of the small reaction Q-value, we
used the same OM potential for both the incoming and
outgoing channels.

The striking constancy of the angular distribution
of this reaction as a function of incident energy was
the subject of discussion in [22, 23]. Indeed, the cross
sections of this reaction measured in the energy region
of 60�400 MeV almost exactly lie on a common curve.

The authors of [22, 23] suggest that this reaction
has a steadily decreasing contribution from the V�
isospin part of interaction in this energy region which
combines with the increasing V�� contribution to make
the 7Li(p,n)7Be(g.s.+0.43 MeV) cross section constant.
But it is not the case for energies below 150 MeV.
In the meson exchange treatment, this cross section
constancy finds a natural explanation, namely, the
approximate constancy of the pion energy transfer,
the driving term in the meson propagators. For the
bombarding proton kinetic energies of 100�300 MeV,
this value is about 120 MeV for the projectile-emission
diagrams (the difference between the c.m. energies of
incident and outgoing nucleons) and a few MeV for
the target-emission diagrams (the difference between
binding energies of the particle-hole pair at the NN
vertex). For the rescattered pion, the energy transfer
varies from about 30 MeV to m�/2 depending on
the diagram. Our calculations for the three energies
are shown in Fig. 2,b (solid lines). A slight difference
between them is assumed to come from an energy
dependence of the distorted wave functions. In Fig.2,a,
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we show the separate contribution of the pion exchange
(dashed curve) and the rho exchange (dotted curve)
to the reaction cross section. The dominance of the
� -exchange is similar to that in the pion production
reactions. The relative strength of the tensor part, �
=2, (dotted curve) of the interaction with respect to
the central part, � =0, (dashed curve) at the energy
considered is seen in Fig.2,b. Again, the situation is the
same as for for (p; �) reaction. It should be noted that,
in our calculations, we used separately both methods to
include the short-range repulsion, Eq.(12) withmc = 782
MeV and Eq.(13) with g0 = 0:6, and obtained practically
the same result for the cross section in both cases.

Some of the nuclear structure effects on the
cross section are depicted in Fig.3. In Fig.3,a
we show a theoretical decomposition of the cross
section for unresolved two states of 7Be (the
ground and 0.43-MeV first excited states) into
separate contributions with equal weights. The
result is consistent with the DWIA calculations
[22] with the effective interaction as parametrized
in [8].

In terms of the total angular momentum transferred
to the projectile, target, and relative motion, JP , JT , and
JR, the cross section can be expressed as an incoherent
sum of contributions corresponding to the possible sets
of these quantum numbers. The momenta are defined
as: jJa � Jbj � Jp � Ja + Jb ; jJA � JB j � JT �
JA + JB ; jJP � JT j � JR � JP + JT , where Ja(Jb)
and JA(JB) are the spins of the projectile (ejectile)
and the target (residual nucleus), respectively. In our
case, they take the values JP = 0; 1; JT = 0,1,2,3;
JR = 0,1,2,3,4 for the ground state of 7Be and JP = 0,1;
JT = 0,1,2; JR = 0,1,2,3 for the 0.43-MeV state.
Selection rules allow for the following sets of JR, JT ,
JP : 000, 011, 211, 221, 231, and 431. It is seen from
Fig.3,b that the most significant is the contribution
with JRJT JP = 011. The contribution with 000 is
equal to zero identically and the contributions with
231 and 431 are negligibly small. It is worth to note
that the cross section calculated with the harmonic
oscillator wave functions for the BSWF in the transition
matrix does not differ from that with the Woods�Saxon
BSWF.

In conclusion, the approach proposed here allows
one to describe satisfactorily the (p,n) cross sections
at intermediate energies and does not depend on
the particular choice of target nucleus or interaction.
The dependence of the continuum wave functions on
the OM parameters remains. We believe that this
approach can be used to describe the cross sections

and spin observables of the nucleon elastic and inelastic
reactions.
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ÐÅÀÊÖI� ÇÀÐßÄÎÂÎÃÎ ÎÁÌIÍÓ

ÍÓÊËÎÍIÂ ÏÐÈ ÏÐÎÌIÆÍÈÕ ÅÍÅÐÃIßÕ

Ó ÇÎÁÐÀÆÅÍÍI ÎÄÍÎÌÅÇÎÍÍÎÃÎ ÎÁÌIÍÓ

Ê.Ï. Óñòèìåíêîâ, I.Ä. Ôåäîðåöü, I.I. Çàëþáîâñüêèé,

Í.Ñ. Ëóöàé

Ð å ç þ ì å

Çàïðîïîíîâàíî ìåòîä îïèñàííÿ ñïîñòåðåæóâàíèõ âåëè÷èí ó

ðåàêöiÿõ çàðÿäîâîãî îáìiíó íóêëîíiâ íà ÿäðàõ ïðè ïðîìiæ-

íèõ åíåðãiÿõ, ÿêèé â ÿâíîìó âèãëÿäi ìiñòèòü îáìií ïiîíîì

i �-ìåçîíîì, à òàêîæ çáóäæåííÿ ïðîìiæíî¨ �(1232)-içîáàðè.

Ðåàêöiþ A(p,n)B ìîæíà óÿâèòè ÿê ðåàêöiþ A(p,n)A+� ç

÷îòèðè-iìïóëüñîì, ÿêèé äîðiâíþ¹ (m� ; 0). Öå äîçâîëÿ¹ âè-

êîðèñòàòè ðîçðîáêè òåîði¨ íàðîäæåííÿ/ïîãëèíàííÿ ïiîíiâ ó

êîìáiíàöi¨ çi ñòàíäàðòíèì ôîðìàëiçìîì çáóðåíèõ õâèëü äëÿ

îïèñó ñïîñòåðåæóâàíèõ âåëè÷èí ðåàêöi¨. Âêëþ÷åíî ïîïðàâ-

êè íà ÿäåðíå ñåðåäîâèùå i êîðîòêîäiéíi êîðåëÿöi¨. Îá÷èñëåí-

íÿ ïîðiâíÿíî ç åêñïåðèìåíòàëüíèì çíà÷åííÿì ïåðåðiçó ðåàêöi¨
7
Li(p,n)

7
Be ïðè Tp = 200MeÂ, äîñÿãíóòî çàäîâiëüíå óçãîäæåí-

íÿ.
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