INVESTIGATION OF CORRELATIONS OF NUCLEONS OF EVEN-EVEN NUCLEI IN THE FRAMEWORK OF THE ADIABATIC THREE-PARTICLE MODEL OF NUCLEI

R.M. Plekan, V.Yu. Pojda, I.V. Khimich

Uzhgorod National University, Chair of Nuclear Physics (9a, Kapitulna Str., Uzhgorod 88000, Ukraine; e-mail: nphys@univ.uzhgorod.ua)

Summary

Stationary states of even-even atomic nuclei, whose mean self-consistent field is simulated by the Woods—Saxon potential, are described in the framework of the adiabatic three-particle model of nuclei. The description is carried out in the terms of collective variables, namely, the hyperradius R, hyperangle α , and conventional spherical angles $(\theta_i,\,\varphi_i),\,i=1,2$. The efficiency of the adiabatic approach is illustrated by the example of the numerical calculation of the energy spectra of low-lying excited states of even-even atomic nuclei 40 Ca, 64 Zn, 74 Se, and 200 Hg which possess two valent nucleons in the external shell.