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The method of analysis of the Lindhard—Scharff—Schiott (LSS)
equations which was proposed earlier by the authors for the
distribution of total ion paths is applied to the spatial distribution
of implanted ions. The integral equations for eight first cumulants
are obtained, and their solutions are calculated for one-component
targets for ion energies from 100 eV to 1 GeV. The general
features of the energy dependences of distribution parameters
are found, and it is shown that a fitting of the distribution to
experimental results can give essential correlated errors in the
obtained parameters. The method allows one to take into account
all the distribution moments in the determination of the form of
atom-atom interaction.

Introduction

The most important macroscopic characteristics of
ion implantation are the spatial distributions of
implanted ions and energy losses caused by various
interaction mechanisms of ions with a target. This
has stimulated the development of different methods
for their measurements and calculations. Their short
description, advantages, and drawbacks are illustrated
in [1]. The so-called cumulant algorithm was also
proposed to analyze the distribution of total ion
ranges. This algorithm has the following advantages: 1)
contributions of a nuclear scattering and an electronic
stopping to cumulants are shown explicitly; 2) it
allows one to determine the atom-atom interaction
more precisely by using higher cumulants of the ion
distribution; 3) a very fast and exact algorithm can
be created for the calculations of cumulants of the
distribution of total ion ranges in infinite one-component,
targets for ion energies from 100 eV up to 1 GeV; 4) an
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exact formal expression for the total range distribution
function can be found.

The recent ab-initio calculations [2] have shown that
the ion-fullerene interaction has the nuclear scattering
and electronic stopping that are essentially different
from those predicted by the LSS-theory [3]. On the
other hand, it is well known [4] that errors of Monte
Carlo calculations can attain 100% and even more
for only the second moments of the distribution
of implanted ions. These errors are caused by an
inaccuracy in the description of the nuclear and
electron interactions. Being assumed to be additive and
independent quantities, they are chosen to fulfil the
condition of equality of the calculated and experimental
ranges of ions. However, the high-order calculated
moments can be rather different from the experimental
ones. Apparently, the error can be reduced if the
experimental data for high-order moments are taken
into account to describe the atom-atom interaction
more precisely. On the other hand, it can also be
achieved by more accurate calculations of the atom-atom
interaction in solids, where a theoretical basis would be
wider than the Thomas—Fermi atom model. The second
manifestation of this physical problem is the influence
of a solid surface on the distribution. As an isotropic,
homogeneous, and infinite solid is assumed in theory,
the atom-atom interaction is constant inside it.

Moreover, the LSS-theory has other problems which
are connected with its basic assumptions which are not
physical. There is no regular and reliable method for
the reconstruction of a distribution function by using
higher-order moments as it is a pure mathematical
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problem [5]. Only simplified approximations are used
which have two, three, and four parameters [1,3,6-8]
in opposite to the real distribution which has the
infinite number of parameters. This creates the problem
of interpretation of experimental data, because they
are usually found by fitting theoretical curves with
unknown parameters to experimental ones. However, if
a theoretical curve is wrong, the corresponding results of
the fitting are wrong too. There are also some numerical
and computational difficulties resulted from the fact that
the equations for spatial moments are very cumbersome,
and the corresponding numerical algorithms usually lose
stability for the energy of ions higher than about 10
MeV. These reasons are a hindrance for the accurate and
full comparison of experimental data on the distributions
of implanted ions with theoretical predictions.

The purpose of this paper is: 1) to apply the cumulant
algorithm to solving the LSS-equations for parameters of
the spatial distribution of ions; 2) to test its numerical
accuracy and to compare it with other methods; 3) to
test a possibility of the usage of higher moments of
the distribution to determine details of the nuclear and
electronic interactions.

1. Cumulants and the Spatial Distribution of
Ions

Let II(r,0, E)dV be the probability of that an ion
starting with energy E from the origin of coordinates
along the z-axis will stop in an infinitesimal volume
dV with the coordinates x = rcos#, y = rsinfsin ¢,
z = rsinf cos ¢.

On the one hand, we can describe and analyze it by
using moments of the distribution (z!y™2") = Tjn =
T}nm of the order N =1+ m + n which are expressed as

oco m 2T
Timn :///r”"””“l’[(r,ﬂ,E) cost x
00 0
X6 sin™ " 9 sin™ ¢ cos™ pdrdfde, (1)

and then we can obtain usual equations for these or
similar moments [3, 6].

On the other hand, we can wuse the second
characteristic function of a general spatial distribution
of ions II(z,y, z, E) which is a natural logarithm of its
Fourier transformation [9] expressed as

N s UmW"
®(u,v,w,E) = Z it W’ﬂmn(E): (2)
[,m,n=1 I
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where u,v,w are coordinates of the inverse space,
Kimn(E) are cumulants of the distribution with the same
order as above. They are connected with the moments
T;jr [5,9]. If we take into account the symmetry of
II(r,0, E) and denote kimn = Xk, where k = m + n,
then we obtain

1 2
¢ = B [U2X20 + (112 + w2)x02 — E(U4X4O+

F6u2 (0 + w?)xon + (07 + w?) X00) |+

. 1
+iu [XlO - g(u2X30 +3(v?* + w2)X12)] .. (3)

The following relations are valid [1,5,9] for cumulants
and usual distribution parameters:

ARy = \/x20, AY = \/Xxo02;
Sk = X30/Xg[/)2, Bi2 = X12/(\/X20X02);

Ex)| = X40/X30

Ry = X10;

Ex| = Xo4/Xb25
B2z = x22/(X20X02)- (4)

Here, R, is the projective range of ions, AR,,, AY are the
longitudinal and lateral stragglings, Sk is the skewness,
[B12 is the characteristic of a correlation between the
projective range and lateral straggling, Ex), Ex, are
the longitudinal and lateral excesses, (B2 is the same
as B2 for the stragglings. Further, we assume that any
distribution parameter has the same order, as the higher
cumulant is relevant to it in Eq.(4). It should be noted
also that x20 > 0 and xo2 > 0 because they are the
dispersions of a distribution [9]; and the excesses are
connected with kurtosises calculated by TRIM [4,11] as
Ex=K -3.

Now a general distribution function can be found
by the inverse Fourier transformation of Eq.(3) for
ions implanted from a point source at the origin of
coordinates. After some simple transformations, we
obtain

[o.olNe el o}

1
- [ ]
) 7r3 X20X020 0 0 ’

1
+E(s4ExH + (#* 4+ ¢*)?Exy + 65*(t* + ¢*) Baz) - - ] X

82 +t2 +q2
—

Io.(7
P(r) 2

COs

« yt zq
cos cos
Vv X02 v/ X02
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s°Sk + 3(t> + ¢*)Br2) + . .. | dsdtdg, (5)

5 0

and, after the transition to spherical coordinates in the
r-space and to polar coordinates in the inverse space and
some evaluations,

1 oo oo
II 0,F)= —————
p(r, ’ ) 2772\/X20X02//ux
0 0

2, .2
+ 1
X exp i 2u +4'(4EX||+U Ex| +
— 0 s
6 2 92 _ X10 T COS _ 5 2Sk
+65°u” fa2) cos [7“0 s 3!(5 +
+3u?Br12) +...| Jo (rsin0u> dsdu, (6)
VvV X02

where Jy(z) is the Bessel function of the first kind.
After the integration of Eq.(5) over all z and some
manipulations, we obtain the distribution function in the
case of a linear source placed on the z-axis:

I (z,y, E //x
( )= \/X20X02
2421
X exp i ;_ + 4'( 4EXH + t*Ex, +
yt X10 — %
+65%t2 Ba3) — cos —
) Vv X02 vV X20

—i (SZSk + 3t2612) +

. | dsat. (7)

Analogously, after the integration of Eq.(7) over all y,
we obtain the distribution function for ions supplied by
an unconfined flat source placed on the Oyz surface,

IIy(z, E) /e - —|— —s4Ex X

( m/xT P " ]

X COS M5—133Sk+... ds, (8)
V/X20 3!

which coincides with the total range distribution
obtained in [1]. In order to find a distribution in the
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case of a flat source restricted by a closed contour C, it
is necessary to substitute y = y —y' and 2 = 2 — 2’ into
Eq.(5) and then to integrate over y’ and 2’ in the area
inside the contour.

It is necessary to note that Eqs. (5)—(8) define
distributions in a formal way. In order to evaluate
the obtained expressions, one should find the sums of
series for the real and imagine parts in Eq.(3) or under
an exponent and a cosine in Eqs.(3)—(8) [1,5]. The
polynomial approximations of the series are possible only
up to the square terms in u, v, w [5], and they give the
Gauss distribution

y2+z2

x10—=)>
1 _Kxio—=2)7 St (9)

e 2x20
X20

H222(1',y,2,E) =

for the quadratic approximation, or the Dirac 6-
distribution Il111 (7, E) = d(z — x10)0(y) 6(z) for the
linear one.

Although Egs.(5)—(8) are formal, they together
with Egs. (3), (4) display the influence of higher-order
cumulants on a distribution function. For example, two
positive x3p and x12 always decrease the coefficient in
the square brackets of the imaginary part in Eq.(3). It is
equivalent to a decrease of x19. Therefore, a distribution
with these parameters will have a maximum shifted to
the left in respect to the Gaussian. If x39 < 0 and x12 <
0, the maximum will be shifted to the right. All positive
X405 X04, X22 increase the real part of Eq. (3), which is
equivalent to a decrease of X209, X02. This means that
a distribution with these parameters will be narrower
than the Gaussian. Analogously, if x40, X04, X22 < 0,
then a distribution will be wider than the Gaussian.
For the different cumulant signs, their influence on a
distribution is not obvious. The influence of the omitted
fifth-order cumulants can be analyzed analogously. It
is opposite to the influence of the third-order ones and
decreases it. Further, the influence of the sixth-order
cumulants is opposite to the influence of the fourth ones
and also decreases it, and so on. Below, we show that the
influence of higher moments on lower ones can change
them significantly.

2. LSS Equations for Cumulants

The relations between moments and cumulants are well
known [5,9]. Therefore, it is possible to find the LSS
equations for cumulants x;; using those for moments
Timn [3] or parameters p? [6]. The obtained equations
for all cumulants of some order N will be interlinked. To
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avoid this, let us introduce the so-called ersatzcumulants
n;; [1,10] as the linear combinations of cumulants:

M1 = X10, 7oz = X20 + 2X02, 722 = X20 — X025

M3 = x30 +2x12, 7M33 = X30 — 3X12,

8
Mo4a = X40 + 5Xo4 + 4Xx22,

3

4
24 = X10 ~ 3Xo4 + X225 M4 = Xa0 + Xoa — 6x22,
where the second index j shows the order of

ersatzcumulants and corresponding cumulants and
moments, the first index ¢ < j has the same parity
as j and defines the order of a Legendre polynomial
on the left-hand sides of the corresponding equations.
The ersatzcumulants are just some substitutions
and, therefore, they do not have a simple physical
interpretation in opposite to the usual parameters in Eq.
(4).

Then the LSS equations for each ersatzcumulant n;;
can be written down and three first and simplest of them
are

EA’OM(E) = ].,

fale) = - / €Y I 2R () = mo))d,
1

57722 ;0/0 €,7) 8_ [m1(2ma(e)Pr(v)—

—m1 P (v))]dr, (10)

with the left-hand sides defined as

N 9 ,

Ln;j(e) = - o(e,7) 5 i Pi(v)] dr+Se(€)1;;(€),(11)
0

where £ is the dimensionless ion energy [3,6], t = 7
is the dimensionless lost energy, v = 4u/(1 + p)?, p =
A1 /Ay, A is the atomic weight, indices 1 and 2 denote

ion and target atoms, respectively, n;; = n;(e — y7),
Py(x),i=0,1,2,... are Legendre polynomials,

_ p+1 1z 1/2

= t)=— (1 -1 —t
v=wlet) = ot = e )

is the cosine of a scattering angle, S, () is the electronic
stopping, and

g

ole,7) = /dU(E,T’)

T
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is the so-called summarized cross section of nuclear
collisions of an ion with initial energy e, where it loses
the energy from some ¢ = 7 up to the maximum value
= e [1].

We do not reproduce here the rest of equations as
they are very cumbersome, but we underline that they
always have the form

tmax = YTmax

€

. 1 0
Lnij(e) = S /O‘(E,T)EFM (v, Nk, Nmn(€)) dr,

0

(12)

where Fj; are some polynomial functions of the
scattering angle and lower-order ersatzcumulants with
[,n < j, which are similar to the functions on the right-
hand sides of Eq.(10).

From Egs. (10), (12), we can see that all cumulants
starting from the second-order one appear only due
to the influence of high-order moments of nuclear
scattering. At low energies ¢ < 1, the integrals on the
right-hand sides are large only when integrands are large.
This may happen only for a large scattering angle. Since
it is true for light ions, their distributions significantly
deviate from a Gaussian at low energies. At high energies
€ > 1, the integrals are large only when their upper
limits are large. Therefore, the distributions significantly
deviate from a Gaussian both for light and heavy ions
at high energies.

Equations (10)—(12) differ from the known LSS
equations [3, 6] at the following points: 1) all right-
hand sides are expressed explicitly through the nuclear
scattering; 2) the differential cross section of the nuclear
scattering do(e,t) is absent on both sides of equations,
which is the advantage as it is essentially nonintegrable
at the point ¢ = 0; 3) terms that are formed only by
n;;(¢) and increase very fast with the ion energy are
also absent on the both sides of the equations; 4) the
equations for the 7g;, where j = 2,4,6, ..., become the
integral equations for functions n;.

The first gives an advantage for the analysis of
the experimental data on ion distributions, because the
influences of the nuclear and electronic interactions on
all the parameters are outlined explicitly [1]. From the
physical point of view, it is the most important feature
of the cumulant algorithm, because it gives a possibility
to use the higher moments of the ion spatial distribution
for a more precise definition of the ion-atom interaction.
Last three differences allow developing a more stable and
faster numerical method of solving Eqs. (10)—(12) than
that known at the moment [1].
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3. Results and Discussions

In this paper, we present the results of numerical
calculations. The parameters of the spatial ion
distribution for the implantation of NiT into Fe which
were calculated according to Egs. (10)—(12) by the
numerical algorithm which we call PSAL (Projected
Semiinvariant Algorithm) [1] and by package TRIM [11]
are shown in Table 1. The energy is measured in keV,
the projected range R,, the stragglings AR, and AY,

YMC

the lateral range and | X11\/{C| are measured in nm,

and the rest of parameters are dimensionless.

For calculations, we have used a potential function
and a screening radius according to Biersack—Ziegler
and an electronic stopping according to the database
SCOEFDATA [4, 11]. Electronic straggling for the
chosen ion and target atom can be omitted [3,4]. The

sample sizes for the TRIM calculations were equal to
n = 50000 ions. It is worth noting that the time for
calculations of the presented data is about 10 CPU-hours
for the TRIM and about 20 CPU-seconds for the PSAL
on a processor with the frequency equal to 800 MHz.
Parameters with index MC (Monte Carlo simulations
by TRIM) have been calculated in several stages. First,
the coordinates of a final point for every ion z;, v;,
z;, © = 1,...,n, have been found by TRIM. Then
the spatial moments have been calculated, and finally
the cumulants have been found using the well-known
formulas [5,9]. It appeared that all calculated MC-
parameters are not equal to zero. However, some of
them must vanish according to the axial symmetry
of the distribution. There are several reasons for this
contradiction: 1) the finite sample size; 2) the numerical
rounding of the results in TRIM (Digits=4); 3) the
imperfection of a random number generator. To

Parameters of spatial distribution of Nit ions implanted into Fe. For the each ion energy, the first row is the results
of PSAL; the second and the third rows are the results obtained by TRIM

E Rp ARp AY Sk ﬂ12 EXH 622 EXL
RMC  ARMC AYMC  ggMC MO ExMC Mc Ex)IC

[y ™M el [SkYC] 1831 1831 L
1 1.184 0.710 0.584 0.7292 0.3160 0.6010 0.2627 1.071
1.281 0.646 0.630 0.5347 0.1822 0.0513 0.0896 0.3634

0.0 0.02 0.02 0.01 0.02 0.03
10 4.839 2.690 2.213 0.5958 0.2899 0.2779 0.1720 0.8644
5.015 2.539 2.258 0.5522 0.2250 0.1646 0.0932 0.5046

0.0 0.07 0.01 0.01 0.01 0.01
20 7.932 4.248 3.495 0.5356 0.2786 0.1486 0.1320 0.7882
8.212 4.073 3.547 0.4914 0.2381 0.0072 0.0804 0.5065

0.01 0.34 0.01 0.00 0.02 0.05
50 16.34 8.169 6.756 0.4247 0.2510 —0.0435 0.0641 0.6455
16.65 7.930 6.846 0.4023 0.2158 -0.1305 0.0183 0.5257

0.01 0.42 0.02 0.00 0.01 0.01
100 29.88 13.88 11.63 0.3023 0.2155 —0.1987 -0.0003 0.5010
30.15 13.56 11.84 0.2982 0.1987 -0.2337 -0.0129 0.4081

0.03 0.79 0.01 0.01 0.01 0.06
200 57.11 24.04 20.67 0.1336 0.1617 —0.3248 -0.0704 0.3262
57.32 23.69 20.88 0.1338 0.1452 —0.3436 —0.0826 0.2838

0.02 0.87 0.01 0.00 0.00 0.01
500 142.1 49.82 45.14 -0.1647 0.0625 —0.3050 —0.1402 0.0883
141.4 49.07 45.41 —0.1570 0.0486 —0.3493 -0.1334 0.0308

0.07 1.81 0.00 0.00 0.00 0.02
103 285.0 82.66 79.76 —0.4579 —0.323 0.0181 —0.1478 -0.0512
282.7 81.94 79.69 -0.4310 -0.0326 —0.0650 -0.1335 —0.0688

0.23 5.92 0.01 0.01 0.01 0.07
104 1794 206.3 267.2 -1.671 —0.3439 5.198 0.3381 0.0555
1793 208.0 263.1 -1.653 -0.3304 5.022 0.3029 0.0555

1.41 4.54 0.00 0.01 0.09 0.27
105 7048 251.1 388.8 -3.163 -0.5764 26.97 2.220 1.012
7071 253.6 384.9 -3.240 —0.5490 29.10 2.044 0.9133

0.91 26.91 0.00 0.04 0.89 0.37
106 73810 469.9 903.9 -36.10 -2.301 2777 77.50 17.45
74647 516.6 869.4 -37.70 —1.798 3061 29.21 17.28

5.44 88.16 0.20 0.26 29.19 12.44
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illustrate the influence of these factors on the absolute
errors of TRIM calculations, we also display the values
of characteristic parameters in the third row for each
1|
determines the error of ARM® and AYM®, and so on.

The numerical errors of the PSAL calculations can be
controlled with different algorithm settings as described
in [1]. They are less than about 3% for all given data for
energies more than 10 keV, but they can attain up to
10% for the third and fourth order parameters for lower
energies.

From Table 1, one can see that the results
of calculations by the PSAL-algorithm and by the
MC-modelling qualitatively coincide. The quantitative
coincidence is observed when the ion energy increases
and the order of parameters decreases. This is because
the influence of the ion backscattering that is included
in the TRIM -calculations is not taken into account
in the LSS theory. But this effect is significant only
at low ion energies. For energies higher than 20 keV,
the number of backscattered ions is less than 0.5% and
the first five parameters coincide within this accuracy.
The remaining differences between the TRIM and PSAL
results in the table, especially for higher orders, are
explained by approximations used in both methods: the
extrapolation errors for PSAL [1]; the piece-straight-line
approximation of an ion trajectory in TRIM [4]. It must
be noted that, for light ions implanted into a heavy
target when p < 1, the discrepancies between TRIM
and PSAL calculations are about 25%. The reason for
this is that we did not take into account the electronic
straggling in the presented PSAL version.

Our calculations for many different ion-target
combinations and various interaction potentials,
screening radii, and electronic stoppings showed the
following features of the dependences of the distribution
parameters on the ion energy: 1) they are all positive
for low energies, when the nuclear scattering dominates;
2) only the first and second order parameters increase
always with energy, but all the others decrease at low
energies; 3) the third order parameters decrease and
reach zero, and further they become negative for very
high energies, when the electronic stopping dominates;
4) the fourth order parameters decrease at low energies,
and then they become negative and reach a minimum.
Further, they increase and become large positive for
high energies; 5) the parameters of the total range
distribution behave analogously [1]. Our study of the
parameters up to the eighth order has shown that the
number of zeros N, on the energy axis for a cumulant

energy. So, |YMC| determines the error of RpMC,
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and its order N are related as

N.=N-2 for N >2. (13)

We have also tested the validity of this relationship for
parameters of a spatial distribution up to the fourth
order by calculations within PSAL and TRIM. If this
formula remains valid for the all higher parameters,
they become more and more oscillating functions of
energy with increase of their order. But since the
distribution varies continuously with change in energy,
the contribution of these moments must be accumulated
into the second characteristic function in Eq.(4) in such
a way that it must smoothen the dependence on energy.

This behaviour of parameters can influence their
values that are fitted to experimental data for the
implanted impurity distribution. For example, for a high
energy of projectiles, their distribution created by a flat
source is shifted to the right and is narrower concerning
a Gauss distribution. Therefore, if these experimental
data are approximated by a Gaussian, this leads to
an overestimating of R and an underestimating of
ARP®. For intermediate energies where Sk ~ 0,
Ex| < 0 always, and this leads to an overestimating
of values of ARZ*P. For low energies, the fitting errors
are opposite to ones for high energies. If one uses the
Pearson distribution, the analogous errors for skewness
will appear because of the influence of higher-order
cumulants. Moreover, when a fitted projective range
is overestimated (underestimated), skewness must be
overestimated (underestimated) too, because it shifts a
maximum of the fitted distribution to left (right) and
cancels right (left) shifts of the maximum caused by such
a range. Deviations of both parameters from the true
values should be proportional according to properties of
the Pearson distribution.

The examples of such a cross influence of
fitted parameters are presented in Fig. 1,a,b. There
are experimental data (circles) for the distribution
parameters of ions Mo implanted into Si obtained in [13]
by fitting their spatial distribution with the Pearson-
IV distribution; the results of PSAL-calculations (lines)
and TRIM-simulations (crosses) are obtained with the
above settings. It is obvious that the results of our
calculations and TRIM-simulations practically coincide
and the behaviour of the experimental data qualitatively
testifies to the described cross correlated errors.

The analogous relation between the longitudinal
straggling and the excess is also valid and can be seen
in Fig. 1,¢,d. However, in [13], the excess did not fit to
experimental distributions, and instead the approxima-
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Fig. 1. Energy dependences of the distribution parameters for Mo implanted into Si. Experimental data — o, PSAL-calculation — lines,

TRIM-simulations — X; a — the projective range, b — skewness, ¢ — longitudinal straggling, d — longitudinal excess

tion Ex = —0.2 + 2.4Sk was used. Therefore, we
cannot use the experimental data to obtain numerical
estimations of the correlated errors. However, our
calculations of the Pearson-IV distribution with the
experimental data and the Pearson distribution which
corresponds to the PSAL parameters in Fig. 1 show a
reasonable coincidence within two stragglings near the
maximum.

Thus, the parameters of the impurity distribution
obtained by fitting the theoretical curve to experimental
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data have cross correlated errors. The higher-order
parameters always have systematic errors depending on
the projectile energy.

In Fig. 2, the dependences of the dimensionless
first derivatives of ersatzcumulants n;,,(¢) for the
combination Nit —Fe are shown. These derivatives are
basic functions in the PSAL algorithm and all others
quantities are related to them. It is obvious from Fig. 1
that they are not monotonic functions of energy. We
have found that the observed change in the monotonic
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THE CUMULANT ANALYSIS

#5 ﬂ’H(E) a)
30

23

20

~
=
~
-

-20

r
]
n

B

Y Ig(E), keV

ke

Fig. 2. Energy dependence of the dimensionless first derivative of ersatzcumulants 7}, (¢) for Ni implanted into Fe (E in keV): a —

n=1b—n=2;¢c—n=3;d—n=4. The index k is shown near each curve

behavior happens near the energy £*, where the effective
nuclear scattering approximately equals the electronic
stopping. As was shown in [12], the derivative of the
projective range can be written down with reasonable
accuracy as

%1@)~;§%5-%00ﬁ,

where Si(€) = Se(g)+5¢ (¢) and S&f(e) = S, (e)(u+1)/p
is the so-called effective nuclear scattering. This allows
estimating the above-mentioned energy approximately
as € =~ 2 + 8 for all ion-target combinations. Fig.
2,a shows that the effective total stopping of Ni ions
in a random Fe target decreases when the ion energy
increases from about 60 up to 320 keV. By using the
analogy with total cumulants [1], we can assume that
solutions of the integral equations (10)—(12) also can
be approximated qualitatively with solutions of the
differential equations:

n—1 \Pkn(/jfa E)
St (6)n+1

where ¥, (u,€) are combinations of nuclear scattering
moments and electronic stopping which are similar

Men(€) ~ +0("), n>2

)
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to ones obtained in [1]. According to this formula,
increasing the monotonically changing amplitudes
Nen(€) in Fig. 2,b—d is stipulated by the decrease
of S¢(e), and the sign change of n,,(¢) is stipulated
by the sign change of g, (u,e). Therefore, these
changes, namely their amplitudes and the zeros
and extrema of derivative functions are sensitive to
fine details of the electronic stopping and nuclear
scattering. This opens the possibility to wuse the
spatial distribution moments higher than the first
one for the analysis of ion-atom interaction. However,
the discussion of the results [13] shows that a
sensible and accurate method for the determination of
higher moments of a distribution has not else been
developed.

Conclusions

Thus, the cumulant method applied in this paper to
the spatial distributions of implanted ions allowed us to
create an accurate and fast algorithm for the calculation
of distribution parameters. The energy dependences of
the higher order parameters are oscillating functions,
and these parameters must be included into an
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empirical distribution in a way that will smoothen
the energy function. The influence of higher moments
can stipulate significant errors for all parameters if
they are obtained by fitting the empirical distribution
to the experimental one. The method offers the
possibility of a more precise determination of ion-
atom interaction details through the analysis of higher
moments.
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KYMYJIAHTHUN AHAJII3 PO3HOALTY
IMITJTAHTOBAHUX IOHIB

B.B. Iavina, M.B. Maxapeydb
Peszmowme

Meron amasnizy pisuaus Jlingxapma—Illapdda—Illiorra, panimre
3aIPOMOHOBAHUM aBTOPAMHU IS PO3MOJLIY MOBHHUX HPOOIriB iM-
IUIAHTOBAHUX iOHIB, BEKOPHCTAHO I MOIIYKY IapaMeTpPiB IXHBO-
ro mpocTopoBoro posmnoziny. OgepkaHo iHTerpaJibHi PiBHSIHHS [1J1s1
NepmuX BOCBMHU KYyMYJSHTIB i 3HAWIEHO IX YHCENbHI PO3B’A3KH
IIJIsI OJJHOKOMIIOHEHTHUX MimneHeil B giana3oni enepriit Big 100 eB
mo 1 I'eB. BcranoBieHo 3arajbHi 3aKOHOMIPDHOCTI B 3aJIE2KHOCTIX
mapaMerpiB posmogimy Bijg emepril iomis, mokazano, mo miAroH-
Ka PO3IOIiJIIB JO E€KCIePUMEHTAJIHHUX JAHUX MOXKE 3YMOBJIIOBA-
TH 3HAYHI CKOpejhOBaHI MOXuOKHW 3HaligeHnx nmapamerpis. Merosn
I03BOJISIE BPAXyBaTH BCi MOMEHTH PO3MOZIIY IJis 3HAXOMKEHHS
aTOM-aTOMHOI B3aEMOJIIT.
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