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The scaling hypothesis for finite-size binary liquid mixtures is
used to study the susceptibility in the liquid-liquid and liquid-
vapor critical regions. The dependence of the susceptibility on
temperature and field variables as well as on the scaling densities
©»1, @2 and the linear size of a system is found to determine the
consequences which can be verified experimentally. A change of the
critical behavior of susceptibilities determined by the correlators
(pr1p1), (p22), and (p19p2) has to exist for the liquid-vapor
critical state in a finite-size binary liquid mixture. The limiting
transition from the susceptibility of a finite-size binary liquid
mixture to that of a system where all its linear sizes become
infinite is examined.

Introduction

Resent achievements of the physics of phase transitions
and critical phenomena are resulted, first of all, from
the fundamental ideas which use scaling transformations
and a renormalization group approach, as well as
from the results of precise experiments [1—5]. All
this enables one to formulate the fundamental laws
of transformations of physical quantities, which are
determined by the strong interaction between the order
parameters of an investigated system at large spatio-
temporal distances. These laws had been based upon
the scale invariance hypothesis which has been defined,
for the first time, for infinite-size individual substances
[1, 6], and then it was extended to finite-size binary
mixtures [3] because of the isomorphism hypothesis.
The physical meaning of the scale invariance hypothesis
consists in the realization of a consequent scale transition
from interatomic lengths to the correlation length of
fluctuations of the system order parameter, a new
parameter in the critical region that has the dimension
of length.
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The nature of phase transitions and critical
phenomena in various systems, particularly in
individual liquids and binary or multicomponent liquid
mixtures, essentially changes in the cases where the
investigated systems become finite-size. Such systems,
the investigation of which is of not only a theoretical,
but great practical interest, include various surfaces,
transient layers (interfaces), pores, as well as vitally
important biological objects — biomembranes, synaptic
junctions, etc.

The scaling hypothesis for finite-size individual
systems (one-component liquids and magnetics) was
established in [7] (see also [8]). In [9], the scaling
hypothesis was extended to the case of finite-size binary
liquid mixtures in the critical region.

In the present work, the scaling hypothesis which was
established in [9] will be used for the investigation of the
susceptibility of finite-size binary liquid mixtures in the
critical regions of mixing—stratification (liquid-liquid)
and vaporization (liquid-vapor) with the purpose to get
those consequences that can be verified experimentally.

Liquid-Liquid Critical State

For the critical state of binary liquid mixtures with a
finite-size configuration, it is necessary to consider two
different cases depending on which additional variable —
a field one or the density— is fixed under experimental
conditions. According to [10], the field variables mean
such physical quantities which take on equal values in
coexistent phases (the pressure, temperature, chemical
potential of mixture components, etc.). Unlike the field
variables, there are the density-related ones which reveal
a discontinuity when passing through an interface (the
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densities of components, mixture concentrations, specific
entropy, etc.). The fixation of an additional field variable
in a binary liquid mixture makes this system isomorphic
(similar) to a one-component liquid. In the opposite case
where a density variable is fixed, the critical indices
of a binary mixture can be renormalized under certain
conditions in comparison with the critical indices of one-
component liquids [3, 7].

Let us examine binary liquid mixtures with a
finite-size configuration near the liquid-liquid (mixing—
stratification) critical state. For this case, we pick out
a field variable — the chemical potential p* = ps — 1,
where pu; and po are, respectively, the potentials of a
pure solvent and a solute per mole — as a variable
additional to the independent ones, the temperature T'
and the pressure P which describe the thermodynamics
of a one-component system. As mentioned above, the
isomorphism of the critical behavior of a binary liquid
mixture and an individual liquid has to take a place for
the independent variables T', P, and p*.

Using the rules of selection of isomorphic
thermodynamic quantities (for more details, see [3]),
we have

a) The thermodynamic potential which depends on
this additional field variable p* is the chemical potential
w (T,P,p*) = ® — p*z, and its total differential is
dutf = —SdT — VdP — xdp*, where ® is the Gibbs free
energy, S is the entropy, and V is the volume;

b) The order parameter ¢ is a deviation of the
concentration from the critical value, i.e. ¢ =  —x.(P);

c¢) The external ordering field h which is conjugated
to the order parameter ¢ in the thermodynamic sense is
determined by the difference p of the chemical potentials
of a mixture as follows: h = [pu* — p*(z.,T)]/RT..

Then, taking into account the results obtained in [7—
9] and using the isomorphic variables T', P, and p*, the
scaling hypothesis for a finite-size binary mixture near
the liquid-liquid critical state looks like

M1 (T, P: u*)singul = Lidfu ((upl/BLl/Va thBd/V): (1)
¢ = Lfe(ap"/P LY, bhL7/). (2)
In Egs. (1)—(2), the following notations are

introduced: g (T, P, t*)singu1 is the singular part of
the thermodynamic potential per mole, which is the
chemical potential of a solvent in this case; & is the
correlation length of fluctuations of the order parameter
(the concentration) of a binary liquid mixture; h is
the external field which is conjugated to the order
parameter; L is the typical linear size of a dish with
the investigated mixture; d is the spatial dimension of
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a system (since we investigate the three-dimensional
liquid mixtures limited in one, two, or three directions
in the present work, d = 3); fu(y,z) and fe(y,z) are
the corresponding scaling functions; 3, §, and v are the
critical indices; a and b are the non-universal (different
for different mixtures) constants.

The scaling functions f,(y,z)and fe(y,z) which
appear in Egs. (1), (2) for the scaling hypothesis for
finite-size binary liquid mixtures are characterized by
the following asymptotic formulae as L— oo:

fu(y - OO) -~ yﬁ(é—i—l) -~ (106—1-1 ~ 7_2—04’

f,u(z N OO) N1+1/6N h1+1/6,

fely = 00) ~my ™ ~ 7B

fulz = 00) ~ AL h_"/m, (3)

where 7 = [T — T.(P)]/T.(P) is the divergence of the
temperature of a mixture 7' from the critical value T.(P).

Thus, under the transition to an unbounded system
where the specific linear size L becomes infinite, the
dependence on L disappears in the scaling hypothesis
(1), (2) for finite-size systems, just as expected. Actually,
the using of asymptotics (3) in Egs. (1), (2) results
in the following estimates for the fluctuation part of
the thermodynamic potential of a solvent and for the
correlation length of fluctuations of the concentration of
a solute in a binary liquid mixture:

1 L p2ma | pil/s

,Ulsingul ~ Q
E~TV ~ RV, (4)

Here, the following relations for critical indices are
used: —d+ (28 +7)/v=0,dv=2—a, a+28+v=2,
B(6 — 1) = ~. Estimates (4) demonstrate the realization
of a limiting transition from the scaling hypothesis (1)—
(2) for the systems with a finite-size configuration to one
for the unbounded systems [1—5].

To obtain the susceptibility x of a finite-size binary
liquid mixture in the critical region, it is necessary to
calculate the second partial derivative of the singular
part of the thermodynamic potential (1) with respect to
the chemical potential p*, i.e.

xp,r = —RT.(0* tisingu /™) p,1, (5)
since, in the investigated case, the susceptibility is
xpr = —RT.(0x/0u*)pr and the concentration is

x = —(0u1/0p*)pr. Taking into account that the
chemical potential p* is determined by the external field
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h = [u* — p*(zc,T)]/RT. which appears in the second
scale argument z = bhLP/¥ of the function f,(y,?)
of the singular part of the thermodynamic potential in
Eq. (1), we get

X = —RT(0” prasingu1/0°2) p.1(02/Oh)* (O /O™ )7 =

= (=RT.) ' L™Y(0%fu(y, 2)/0%2),b* L*7°/" =

=L f\(y,2), (6)

where the susceptibility scaling function is f,(y,z) =
—b*(RT.) Y (8*fu(y,2)/0z%), and the well-known
relation between critical indices —d + 280/v = v/v
is also used.

Let us use the asymptotic formulae for the scaling
function f,(y,z) as L — oo which appears in Eq. (6) to
determine the limiting transition from the susceptibility
x of a finite-size medium to the susceptibility of an
infinite-size medium:

fX(y — OO) ~ y—’Y,
fx(z = 00) ~ 2 V/BS, (7)

As a result of the using of such asymptotes, we
get the power dependences of a susceptibility
(L = o0) ~ 777 ~ h~=7/5% on the temperature 7 and
the field variable h for a finite-size medium which are
known from [1—5].

Liquid-Vapor Critical State

Consider the vaporization (liquid-vapor) critical state,
whose thermodynamics is described by such a set of
independent variables: T' (the temperature), p; (the
chemical potential of a solvent) and p* (the difference
between the chemical potentials of a solvent and a
solute). The order parameter is a divergence of the total
molar density p of a mixture from the critical value
Pey 1e. 9Ap = [p — pe(p*)]/pc(p*), and the external
field conjugated to the order parameter is the quantity
h = [m — pi(pe,T)]/RT. [3,11]. For the indicated
independent variables, the thermodynamic potential (2
per unit volume, i.e. the pressure P = —Q/V, satisfies
the relation

dP =pSdT + pduy + pxdy”, (8)

where pS is the entropy density, S is the molar entropy,
and x is the molar concentration of a solute.

The singular part of a pressure Pringui = P — Preg (P
is the total pressure, and P, is the regular part of a
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pressure which has no singularities and is an analytical
function of the variables T', p1, and p*) is determined
by anomalous fluctuations of a density and satisfies the
following scaling hypothesis for a finite-size binary liquid
mixture near the liquid—vapour critical state:

Pyngu = 727 f{V (ar LY, bh LP17), (9)
¢ = LfY (arL'” bhL/). (10)

Hence, the isomorphic susceptibility of such a system is
described as follows:

= T () BT (0
Do Pe 3/1% T, 1" Pe aul T, u*
T AN AN AN
N 022 Oh 8u1 B
y

52 Igl)
D) =g, )
Yy

— L—deLQB(S/V(RTC)—2 (

where the scaling function is f, = b*(RT.)7?x
><(82f,g1)/822)y, y = arL'/V, 2z = bhLP/V. Tt is easy
to see that, according to the isomorphism hypothesis,
susceptibility (11) has a critical behaviour x7 ,«(L —
00) ~ 777 when proceeding to an infinite system
and is equal to the isothermal susceptibility of a one-
component liquid in the critical region.

The scaling hypothesis (9), (10) for a finite-size
binary mixture near the vaporization critical state can
be restated in another way

A-Psingul = L_df;gQ) (Zly 22))

&= Lf5(2) (21,22), (12)
where the corresponding scaling function f1§2) depends
on the arguments z; = hiLP%/v and zy = ho LYV, In Eq.
(12), we used two scaling fields hy and hs [11,12],

h1 = alAul + o7 + (13A/J,*,

hy = b7 + boApy + bsAp™, (13)
and also the dimensionless quantities for the singular
part of a pressure APsngui = Piingul/pcRTc, the
chemical potential of a solvent Auy = (1 — pie)/pe,
and the difference between the chemical potentials of a
solvent and a solute Ap* = (pu* — pk)/pk.
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The density-related scaling quantities ¢; and 2
which are conjugated to the fields h; and hy are
determined by the equations

o1 = aAPsingul — Lid‘i’ﬁ&/" 8f£2) _
! ohy ), 021

_ af(2>
— 1-B/v p
-y ( ) (14)
09 8A1 singul L,dJrl/,, 8f;g2)

6h2 Ry 622

_ af(2>

_ 7(a=1)/v p
=L (—822 : (15)

which were derived with regard for the relations dv =
2—a,B(0-1)=v, 24+a+p+y=-8,1-dv=a—1.
It follows from Eq. (14) that the density-related scaling
quantity plays the role of the order parameter, since
o1 ~ L7P/" ~ 78 according to the results of work
[9] on the relation between the spatial dependence of
some physical quantity in a finite-size system and the
temperature dependence of this quantity in an infinite-
size system in the critical region.

Now we can obtain the required relations for the
susceptibilities of a finite-size binary mixture as follows.

1. For the susceptibility x; which determines the
critical behavior of the order parameter correlator (p?),
we have

_ (PAPingu)  _ (9p1) _ (Op) 9: _
), e )y, " \oa ) an

2)
_ o (& =LY fM (21, 20)
072 X TR

z2

(16)

where the scaling functions of a susceptibility and
a pressure are related by the relation f,gl)(zl,zg) =

2 2
(%’;’E;) . One can see that, under the transition to
an inﬁnitzé—size system, the susceptibility y; which is
similar to the isomorphic susceptibility x7 .« [see Eq.
(11)] is characterized by the strong divergence x1(L —
00) ~ 77, where y = 5/4.

2. For the susceptibility x» which determines the
critical behavior of the correlator of the second density-
related scaling quantity (p3), we get

_ (PARingu)  _ (992 _ (Op2) 0z _
SN IR Y R CEY
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_ 7(a—1)/v a2flg2) /v _ talve(2)
=L 5. LYY =L fi9(21,22),  (17)
2

. . (2) NS
where the scaling function fy™ (21, 22) = ( 52 > LI
is evident that, under the transition to an inﬁnitg—lsize
system, the susceptibility y» shows a weak divergence,
namely y2(L — 00) ~ 77%, where a = 0.1 According to
the results of the fluctuation theory of phase transitions
[1], this means that the correlator (p3) defines thermal
fluctuations or fluctuations of the system energy.
3. Along with the susceptibilities y; and y2, we can
also introduce the so-called cross susceptibility

_ 62A-Psingul _ % _ % _
= T omoh, ~ \ohs ), ~ \om ),

= L(liﬁ)/yf)(f)(zlvzé)) (18)

here the scaling function ¥ = 2B
where the scaling function fy”(21,22) = z:5-

is clear that the susceptibility y3 defines a behavior
of the correlator (p1p2) which is nonzero for liquid
systems (unlike magnetics) [1]. According to Eq. (18),
the temperature dependence of the correlator (p;s)
for an infinite-size system is (p1¢2) ~ 7771, where the
exponent is f — 1 ~ —2/3. So, the susceptibility xs
should show a critical behavior which is intermediate
between those of susceptibilities x1 and ya.

The experimental confirmation of the existence of
various critical behaviors of the susceptibility of a
finite-size binary mixture should be expected when
investigating the optical spectra of critical opalescence,
i.e. a dynamical dispersion of light near the liquid—vapor
critical state.
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CIIPUNHATJIUBICTD IPOCTOPOBO OBMEXKEHUIX
BIHAPHUX PIIKMUX PO3YMHIB Y KPUTUYHIN OBJIACTI

K.O. Yanut
Peswowme

T'imoresy macmrabHOl iHBApiaHTHOCTI JjIst IPOCTOPOBO OOMEIKEHHX
OiHAPHUX PIAKUX PO3YUHIB 3aCTOCOBAHO [JIsI BU3HAYUEHHS CIIPUN-
HSATJMUBOCTI B KPUTUYHUX O0JIACTSAX piauHa-pigmHa Ta piguHa-
mapa. 3 MeTOH OTPHUMAHHS THX HACTIAKIB, KOTpi MOXYTb Oy-
TH IepeBipeHi eKCIepHMEHTAIbHO, 3HAMIEHO 3AJIEXKHOCTI CIpHii-
HATJIUBOCTI BiJl TeMIepaTypHOI Ta HOJbOBOI 3MiHHUX, & TAKOXK BiJ
IyCTHHHUX CKeHIIHrOBHX BEJIMYHH (1, (2 Ta JHIHHOrO po3Mipy
IOCHiKyBaHO! cucTeMu. JIyisi KPHTHYHOTO CTAHY HIApPOYTBODEH-
HS TIPOCTOPOBO OOMEXKeHOro OGIHAPHOrO pPO3YMHY MOBHUHHA iCHY-
BATH 3MiHA KPUTHYHO! MOBEIIHKHU CHPHIHATINBOCTEH, siki BU3HA-
JaIThCA KopensaTopaMu {(p1¢1), (p292) 1 (p1yp2). Orpumano
rpaHUYHHUN [epexijg Bij COPUMHSATIMBOCTI IIPOCTOPOBO OOMeEXKe-
HOro OiHApPHOTO PiAKOrO0 PO3YMHY IO CIPUNAHATIUBOCTI Ii€l CH-

HOCTI.
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