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A criterion of stability for oscillations of the Hopf-bifurcation
origin, an interval of stability for the pumping parameter A,
a periodic solution in the quadratic approximation, an analytic
form of the limit cycle in a first approximation, and the intervals
of variations of the control parameters have been obtained for the
classical model of dynamics of a solid-state single-mode laser with
a @-switch of the universal cusp-deformation type.

Introduction

An insertion of a non-linear element into a resonator
of a solid-state laser, as was pointed out in [1], is
one of the effective manners to affect its dynamics,
which is proved to be true experimentally. Nevertheless,
such an influence, to be studied in detail, should
be described theoretically, which comprises a solution
of differential equations, depending on a number of
parameters, including those for a Q-switch control. But
the absence of general methods for integrating nonlinear
systems interferes in obtaining the coefficients defining
how phase coordinates, and those of a photon irradiation
field in the first place, are sensitive to parameters.
The problem becomes more difficult if a dependence
of the @-switch on the photon field is not specified.
It is practically impossible to obtain particular results
providing such a formulation of the problem. An attempt
[1] to realize such an approach has reduced to several
comments.

In this context, a subtask arises to select an adequate
local method of integration and a specific dependence of
the nonlinear element on the photon intensity, which,
nevertheless, is rather general in its class of dependences.

Formulation of the Problem

Let us consider the rate equations that describe a
dynamics of a single-mode solid-state laser:

z=Gzx(y —1—T(x)) = fi(z,y),
y=A-ylx+1) = fa(z,y). (1)
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where z is an intensity of the irradiation photon field, ¥
is the relative density of an inverse population of atomic
energy levels, G = T /T is the ratio of a relaxation time
of a difference in level population to a photon lifetime
in a resonator, A is a pumping parameter, 7 = t/T},t is
time, and the dot means a differentiation with respect
to 7. Concerning system (1), the following tasks are set:
— to carry out a bifurcation analysis of the system in the
case where the dependence of the resonator loss on the
radiation power is described by an expression 1 + ¥(z),
and a universal cusp deformation z* + az? + bz with the
control parameters a and b [2] is taken for ¥(z);

— to find a criterion for the stability of periodic
oscillations, which arise in the system due to the Hopf
bifurcation;

— to construct approximate periodic solutions;

— to demonstrate an example of the calculation of the
limit cycle.

To achieve those aims, we use the Hopf bifurcation
method [3]. All quantities in system (1), both
phase coordinates and parameters, are dimensionless.
Concerning the methods to vary the parameters
themselves, those issues are studied in [4].

Elements of the Bifurcation Analysis
of System (1)

A stationary solution z., y. of system (1) is obtained
from the equations

A—a(l+ 2t +ar? +bx,) =0,

Yye=Ala, a=z.+1. (2)
But it has no reason to determine z. from (2) not
taking into account the criterion of stability for periodic
oscillations, emerging due to the Hopf bifurcation. In
practice, one can find z. from Eq. (2) only numerically.
But nobody knows in advance, what numerical values
should be taken for the parameters, so that z. and
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Y. satisfy the criterion of stability that is constructed
according to the Hopf bifurcation algorithm (HBA).
Furthermore, it is important to construct a solution
in a vicinity of a stationary one, provided that the
latter obeys the Hopf theorem conditions [3]. This
compensates, to some extent, a locality of the method.
Therefore, it is more reasonable to determine, from Eq.
(2), the dependence of any parameter on the others. For
example,

a=(A—a(l+bx, +ab))(az?)t

The Jacobi matrix of the right-hand sides of system
(1) is

A

by = Goe, 1 = —; di = —a. (3)
a

Its eigenvalues

2\ = SpurM =+ [(SpurM)? — 4det M/ (4)

(k=1,2

SpurM = (0,1 + d1), detM = a1d; — Clbl)

belong to a stable focus if SpurM < 0 and (SpurM)? —
4detM < 0. At a bifurcation value of one of the
parameters, which is determined from the equation

Ge(re) + =0, (5)

the eigenvalues Ay become purely imaginary. If one takes
into account that the parameter G is of the order of
0O(10°) and the value of & can be neglected, then,
according to (5), we obtain

bo = (aze) ' [2a(zg — 1) + 24, (6)

where the subscript “0” indicates the bifurcation value of
the quantity. A linear part of system (1) has a periodic
solution, whose frequency wg is determined from the
bifurcation value of the matrix M:

My = ( _o% Gz, ) - 1)

—a
Its eigenvalues are A\, = tiwg, where

Gz A

wo = £v/detMp = ( a?)t? ,

Gz A B
a

«a
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which is a zero approximation to a modulation frequency
w. Taking into account (6), the parameter a becomes as
follows:

ao = —(az?) "'[A + a3z — 1)). (8)

An application of the HBA makes it possible to
construct a periodic solution of the nonlinear system (1)
in the vicinity the bifurcation value of the parameter
bo, which describes a limit cycle around the stationary
solution, and to determine a criterion of the cycle
stability. For this purpose, the following steps should
be made. We find an eigenvector of matrix (7), which
corresponds to the eigenvalue iwg: R = Re R 4+ Im R.
Using its real and imaginary parts, we construct a
transformation matrix P, with the help of which we
introduce new variables z; and zs:

1 0
P:<_L _ wo >7
Gz, Gz,

(3)=()r(2)

Then the transformed system is

21\ _ por [ filz,22) \ _ [ B
<2"2>_P <f2(21,22)>_<F2>’ ©)
where P! is a matrix inverse to P. The nonlinear terms
of the second and third orders of the joint power of the
variables z; and zs on the right-hand sides of system
(9) are needed only for the further consideration. The
summands of higher orders are supposed as those which
may be neglected. The resulting, truncated in such a

way, right-hand sides of system (9) are marked hereafter
by a bar over F; and F5:

Fy = —(GBz} + wor, 2120 + GDZ}),

_ aG «
2 —1 3
Fy = —Bz{ +z, 2122 + —Gz7,
Wo wo

B = (ay — A)(aw.) ™",

D =Bz +42%; v =322 + 1. (10)
Then, using the partial derivatives of the second and
third orders of the functions F}, calculated at origin, we
find the complexes

~GB+2(@GB -1,
Wo

N | =

g1 =
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1
925 = 5 {—GB Fal i (E(GB SE: ﬂ)] ,
2 wo T,

3 Q@
=-GD|-1+i— ). 11
91 =7 < + zw0> (11)
They are employed to create a quantity
i 1 g4
b= —2lg11? = =|g2]? 2 12
o (-2l - Glonl?) + 2, (12)

where the notation |...| means the absolute value of
a complex number. The real part, Re®, is a principal
summand of the Floquet index and the imaginary one,
Im®, is used to find a correction to the oscillation period
T = 2% An isolation of the real part of (12) making use
of complexes (11) results in a following value:

1 «
Red = o [QGB(GB “n o+
Wo 3
+GBZY — (@B~ 1)] - 50D, (13)

It turns out that the sign of (13) is determined by the
summands that involve the factor G, provided that z.
is far enough from zero, which means, in practice, that
x. > 0,1. Hence, the terms, which do not involve G
or involve it, raised to a negative power, are discarded.
Moreover, 1f one take into account that wi = G’zw“

the criterion of the periodic oscillation stability is of the
form:

GQ
8Aax?

Re®y = <0,

Q= A?(2z.+1) — aA(8(z, +2a) + 62°) + a®+* < 0.(14)

According to (14), the inequality is valid if the pumping
parameter A is in an interval (A;, As):

1

A = §[aH F oy 17z, + 8)](2z. + 1)1,

H =~(5z. + 2) — 2z,. (15)

Derivation of the Approximate Periodic
Solution

The approximate periodic solution is obtained according
to formulae presented in [3]:

(5)=C)r(2)

z1 = Rez; 25

< r

=Imz,
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. 2 . .
2=ee?ip [g2e 19" — 3g2e1% 4+ 6g1] + O(£?),
60.]0
it m
=T n 2 4
0 ik wO( +11e” + O(e")),
1 I
T = —w—O(Im(I)O — Re(I>0 )\I ),
2 (b—bo) Xy 2
= b—0b .
= =B 0% 4 0 - to))

To use them, there is nothing to do but to determine the
values of w(, A}, and Im®:

A,:aRe)\_%
°= op 27
:8Im)\__g Gx.a
=T T 2V A
B Ga , _, 1
Im®g = = Az (B*G + ZS)’

S = 2Ba(5Ba’ — 2A)(Azx.)"" — 27ax?. (16)

The solution is written down as a truncated power
series of a functional parameter € that must satisfy the
inequality € < 1. For the variables z; and z», we obtain

z1\ cos 26 2@ —2sin46
(zz >_E< sin 26 >+ﬁ cos 46 B+
L cos 40 \ aB N 2 cos 46 i B
2sin40 | wq sin 46 wo

—1
_ awg
3( 1 )B

where e = —4(b — bp)Aaz?/Q. Since —Q > 0 in the
interval of stability, for the condition €2 > 0 to be
fulfilled, it has to be b > by, i.e. the bifurcation is super-
critical.

+0(e%), (17)
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Calculation of the Limit Cycle Elements

The results obtained make it possible to find an interval
of the parameter b variation, an analytic expression
of the limit cycle, at least in a first approximation, a
shift between the photon field and the inversion, an
oscillation period with an accuracy of €2, an average
output intensity on a (Q-switch over a period, and the
stability limits for the parameter A at x. selected. It
follows from £ < 1 that the parameter b varies in the
interval

b < b < by 4A1‘§CM’
where A is selected from interval (15) at z. selected. An
interval of the bg-variation, in its turn, is determined
from (6), where the interval limits (15) should be
substituted into. With the help of (17) and the
transformation matrix P, we find the intensity of the
photon field in a square approximation:

e’G

T =2x,+eccos20 + —x
¢ 6w?

X [(—2wp sin46 + a cos 40 — 3a) B+
+2A4a7" cos46] + O(e?).

An expression for the limit cycle in a first
approximation is obtained after the exclusion of the
parameter 6 from the solution

T = T, + € cos 26,

Y=Ye — Gi‘c (a00520 + Wo Sin 20) =

N cos(26 — 61),

T

€
=Yc—
6, = arctgﬂ, N = (a? +wg)%.
o

Since wg = (GAxcafl)% >> «, the initial phase 6, is
close to 3 for solid-state lasers but always less than 7.
In a first approximation, the curve of the limit cycle,

which surrounds the stationary solution, has the form
(z = 20)*(wp — @®) + (y — ye)*(Gae)* =

= &?wh + 2awp (T — 2.)\/€2 — (z — 2.)2.

The expression for the period can be simplified taking
into account the large value of the parameter G. First,
we find

Q Ga
—1
Re®owo(X) ™" ~ g5\ T
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then the first-order correction is

1 [Ga [, 1 Q
o (o5 (25 )|

which results in a following approximate value for the

period T':
1+§a/Ga
6 V Ax,

An average radiation intensity over the period T,
which is generated at the modulator, is calculated below
in a first approximation according to the formula

T1 =

1 Q
2 u— R —
BG+8<25 Am§>

Wwo

a [T
=3 [ s =
T Jo
a [T
:—/(ﬁ+%ﬁ+%ﬁw.
T Jo
The substitution = x, + € cos 20 results in

T =G |22 + apz) + bor+

+&? <5a:§ + gaoxc + %) + +%xcs4] .
As is seen, the stationary solution x. makes the main
contribution to the integral.

To define the safe and dangerous limits of stability
for the limit cycle, it is necessary to find the first
Lyapunov’s value. To do this, we have to know the
coefficients of expansions of the right-hand sides of
system (1) in a power series of & — z, and y — y. up
to the third order inclusive. The coefficients of the linear
terms were obtained earlier. Let a,; and by; stand for the
coefficients of the expansions of the functions fi; and fs,
respectively, with ¢ + 7 = 2 for the second-order terms
and g + j = 3 for the third-order ones. Then,

3GT»
ax = — ['1;a11 =G5 a2 =05 azo = — ;
azx, az,
as1 = a1z = ag3 = 0; b1 = —1; bag = bp2 = 0;

byj =05 ¢ +j = 3;

769



I.0. SHUDA

[y =425 + 112 + 922 —da? — 2. — A+ 1;
Ty = 1122 + 1722 + 822 —z. — A + 1.

The first and second subscripts indicate here the order of
the derivative with respect to the first or second variable,
respectively. The Lyapunov value for a system of the
second order is quoted in [5]. In the present case, it equals

L1 = — (1161(1%1 + a1b1 (b%l + bllazo)—

— |
4b1wg
—2@1()1(1%0 + (b101 — 2@%)&11@20 + 3((1% + blcl)b1a30].
A substitution of the coefficient values gives

wG?

L=-—"5
! 4bjwia?

Q;
Q =4G*2 T p(Tyz,% — 2p)a 1+
2 36 3 -
+G 2p1’c(A — Fl) — AFl — El’cp FQ + 9F2,

p=z—1.

Below, we present a numerical example of the
calculation of the solution elements, the criterion of
stability, and the intervals of the parameter variations.

Let . = 1,5. Then, A € (11.26 82.97). One may
select A = 30. The bifurcation value of by and the
relevant value of ag are calculated according to formulae
(6) and (8):

bo = (ax.) " [2a(z: — 1) + 2A] = 18.166;

ap = —(ax?) ' [A+ a(3z2 —1)] = —11.638.
Then, for ¥, we obtain

U = le + 0,0563 + boz. = 6.126 > 0.

The principal factor of the criterion of stability is
2(1.5,30) = —3614.2 < 0.

Then, — i = 2.379. Therefore, b € (18.166;20.545).

The phase shift is

1 [GAz,
wo _ L JOATe _ a6 arctgs36 — 89.803°.
(0% (0% (0%

The principal factor of the first Lyapunov value @
changes its sign depending on the sign of the first term.
For example, if . = 1, then, in accordance with (15),

770

we may take A = 10. Then, @ = 600.69G + 664.37 < 0,
iie. L1 > 0. For z, = 1.5, we may take A = 30.
Then, Q = 60(1004.133G? — 371.195G + 11.072) > 0,
i.e. Ly <O.

Although the selected values of the parameters
satisfy the criterion of stability (14), the stability limit
is “dangerous” in the former case and “safe” in the latter
one [6].

Conclusions

A model of the @Q-switch of the universal cusp-
deformation type provides a stable periodic mode of
photon irradiation in a wide interval of variation of the
parameter A for each selected z.. Those intervals are
partially overlapped for close z.’s, which allows one not
only to select A at the specific z., but to vary also z. at
the already selected A.

As the parameter z. grows, the intervals for A
as well as their overlap intervals widen. If a distance
Az. between neighbor z.’s enlarges, the stretches,
not overlapped by stability intervals (the so-called
“lacunae”), emerge. However, as the value of . increases,
the lacunae narrow and, above a certain x., disappear.
For example, the intervals, corresponding to z. =
0.5,1.5, and 2.5, do not overlap. At the same time, the
intervals, corresponding to . = 2.5 and 3.5, partially
overlap.

Contrary to the criterion of stability, the sign of
the first Lyapunov value is defined not only by a large
value of the parameter G' but also by a selected value of
the parameter z.. The Lyapunov value gives therefore
a larger body of information concerning the stability
limit of the dynamics of a solid-state laser operating in
the mode of periodic irradiation, than the criterion of
stability.

The theoretical results obtained can be tested
experimentally. The use of a @-switch as a nonlinear
crystal is widely applied in practice and scientific
researches. In particular, there are enough experimental
evidences for the emergence of the Hopf bifurcation [1].
The problem is to ensure a task-oriented influence on
one of the Q-switch parameters for the stable oscillations
of the intensity, which modify the stationary mode
of irradiation taking place at the beginning of the
experiment, to start. Various methods can be used
for the technical implementation of an appropriate
influence, including an optoelectronic feedback. The
latter is known to control laser parameters according
to the intensity. It is the second approach that is
advantageous, because it can change the phase-plane
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portrait of the system without a displacement of the
stationary point, which means, in this case, a transition
from the stable focus to a non-stable one. And just
providing the latter, the Hopf bifurcation emerges. That
is, the process of irradiation, having started from the
stationary mode, then converts to the oscillation one
around the starting stationary point under the action
of an optoelectronic feedback on a derivative of the
intensity.

One of the schemes of the optoelectronic feedback on
a derivative of the photon field intensity is given in [1].

Perspectives

An application of the Hopf bifurcation theory [3]
to laser dynamics, concerning both classical and
semiclassical models, only gets under way. Wide
perspectives of the HBA application open in those
research directions, which practically have not been
started yet for elaboration in theoretical aspects, e.g.,
the inverse problems of laser dynamics, the studies of
the delay effect on the dynamical characteristics of the
periodic mode of irradiation, the problems of secondary
bifurcations, and so on.

1. Khanin Ya.l. Fundamentals of Laser Dynamics.— Moscow:
Nauka, 1999 (in Russian).

ISSN 0503-1265. Ukr. J. Phys. 2004. V. 49, N 8

2. Poston T., Stewart 1. Catastrophe and Its

Applications.— London: Pitman, 1978.

3. Hassard B.D., Kazarinov N.D., Wan Y.-H. Theory and
Application of Hopf Bifurcation.— Cambridge: Cambridge
University Press, 1981.

4. Peshko I.I. Self-effecting Physical Processes in the Solid-
state Lasers. Thesis for the Doctor degree in Physics and
Mathematics.— Kyiv: Institute of Physics of the NAS of
Ukraine, 2002.

5. Bautin N.N., Leontovich E.A. Methods and Techniques for
Qualitative Analysis of Dynamical Systems on the Plane.—
Moscow: Nauka, 1990 (in Russian).

6. Marsden J., McCracken M. Hopf Bifurcation and Its
Applications.— Berlin: Springer-Verlag, 1976.

Received 27.10.03.
Translated from Ukrainian by O.I. Voitenko

Theory

BI®OYPKAIIA XOIIDA
B TBEPAOTIVZILHOMY OJHOMO/JOBOMY
JTIABEPI 3 KEPOBAHOIO JOBEPOTHICTIO PESOHATOPA

1.0.1llyoa
Pesmowme

Jloist kmacu9aHO! MOJe i JUHAMIKM TBEpPAOTIJIBHOINO OZHOMOIOBOIO
Ja3epa 3 MOZYJISTOPOM JOOPOTHOCTI THIY yHiBepcaJsbHOI medop-
MaIlil 3rOPTKU OJEPKAHO KPHUTEPiil CTIHKOCTI MepioguIHUX KOJIHU-
BaHb, BUKJUKAHUX Oidpypkamiero Xomda, inrepsas crifikocti mis
rnmapaMerpa HAKAIKU A, MepioguIHUNi PO3B’SI30K Y KBAJPATHIHOMY
HaOMKeHH], aHAJIITHYIHUH BUTISA TPAHUYHOIO IIUKJLY B IEPIIOMY
HaOJIMKeHHi, IHTepBaJl 3MiHI IapaMeTpiB KepYyBAaHHS.
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