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In the present work, we investigate the equation of state of hot
and cold nuclear and neutron matter using the Gogny effective
interaction. The binding energy per particle, symmetry energies,
free energy, and pressure are calculated as a function of the density
p, fm~3_ for the nuclear and neutron matter. The results are
comparable with previous theoretical estimates using the Seyler—
Blanchard effective interaction and the famous calculation of
Friedman and Pandharipande using a realistic interaction.

Introduction

The equation of state gives the pressure as a function
of temperature and density of a physical system,
and is related to both fundamental physics and the
applications in gases, condensed matter, astrophysics,
and elementary particle theory. It describes also states
of matter in extreme density and temperature domains.

In nuclear physics, the equation of state is used
to study the properties of nuclear and neutron
matter. The nuclear matter is an infinite uniform
system of neutrons and protons interacting via a
strong nucleon-nucleon force. Such static properties
of nuclear matter, like binding energy, asymmetry
energies, incompressibility, etc., can be determined with
success at zero temperature. Furthermore, at finite
temperature, the thermal properties of nuclear matter
can be investigated: e.g., free energy, entropy, effective
mass, chemical potential, and all possible phases in
which the matter may exist. Intermediate-energy heavy-
ion collisions and high-energy proton-induced reactions
indicated the possibility of the occurrence of a liquid —
gas phase transition in nuclear matter, which attracted
the interest to study such a system at finite temperature.

In neutron matter, the equation of state is also a
very useful tool for studying the properties of neutron
stars and their evolution. Different theories and models
are used to study the nuclear and neutron matter,
such as: Hartree—Fock [1—3], Brueckner theory [4—6],
relativistic mean field theory [7—9], variational methods
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[10—13], and the Thomas—Fermi model [14—17]. In
those models, different types of potentials are used, e.g.,
the Skyrme interaction [18, 19], Reid potential [20], two-
and three- (n-n) potentials [13], Paris potential [21], and
Seyler — Blanchard (SB) potential [14, 15].

Most of the calculations on nuclear matter consider
the symmetric case, i.e., cases where the number of
neutrons and protons are equal (N = Z). Finite nuclei
or neutron stars, which are a closer approximation to
nuclear matter, are, in general, asymmetric with N >
Z. Thermostatic properties of hot asymmetric nuclear
matter have also been considered by several authors,
e.g., see [22] and [23]. The extension to the case of
polarized nuclear matter with N 1# N |# Z 1#
Z | has been considered by several authors [24—28],
where the symmetry energies may be compared with the
experimental data.

In the present work, we used a density-dependent
interaction which was derived by Gogny [29] to calculate
the properties of polarized nuclear and neutron matter.

This interaction has been used only for symmetric
[29] and asymmetric nuclear matter [30]. This force has
several advantages, it is rather simple to give closed-form
analytical expressions for nuclear and neutron matter,
has a finite range, and gives a good description of the
behavior of pairing phenomena in finite nuclei [31]. It
also gives pairing gaps in nuclear matter which are
compatible with more sophisticated forces with similar
results of the pairing in neutron matter [32—34]. The
aim of the present work is to use the Gogny interaction
to calculate different properties of polarized nuclear and
neutron matter in the general case which has not been
considered in previous works. The calculation are then
compared with

a) the results obtained using the SB effective
interaction,

b) the famous estimates of Friedman and
Pandharipande (FP) [13] who used a realistic potential
in their calculation for both nuclear and neutron matter.
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In the next section, we describe the potential used
in the present work along with the different quantities,
which give the properties of the nuclear, and neutron
matter at zero and finite temperatures. The last section
is devoted to a discussion of the results obtained.

1. Theory

1.1. Density-dependent Effective Gogny

Interaction

The derivation of the Gogny effective interaction was
done essentially along the lines described in [35].
Decharge and Gogny [29] postulated an interaction of
the form

V() = Y (Wi+BiPy + HiPr + M;P,Pr)e " +

i=1,2

+t0(1+1’0Pa-)p66(7_"1 —Fz). (1)

It comsists of two central potentials. Omne is
independent of the density [36], and the other part
is a density-dependent term with zero range. Here,
we used the set of parameters D1 to calculate the
different properties of nuclear and neutron matter. The
parameters (to, To, ;, 8, Wi, By, Hy, M;), i = 1,2, are
given in Table 1.

1.2. Nuclear Matter at Zero Temperature

Nuclear matter is an infinite system of nucleons with a
fixed ratio of neutron to proton numbers. We mainly
consider nuclear matter composed of N 1 neutrons
with spin up, N | neutrons with spin down, Z 7
protons with spin up, and Z |protons with spin down
and with densities ppt, pny, ppt, and pp), respectively.
The composition of the system considered may be
characterized by the total number of nucleons

A=N41+N | +Z++Z 1. (2)

Hereby, we refer the reader to one of our previous
works [27, 28] for details and notations. The total energy
of nuclear matter for the considered system at zero

T able 1. Values of the parameters for D1 Gogny force
[29]

«, Wa Ba Ha M: ﬂ tO: zo
fm—2 | MeV | MeV | MeV | MeV MeV -fm*
2.0408 4024 -100 496.2 23.56

1/3 1350 1
0.6944 —21.3 —11.77 -37.27 68.81
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temperature is given by a sum of a kinetic energy part
and potential energy part:

E=(T)+(PE)=

R L
2

=

where V75 is the nucleon-nucleon Gogny interaction, and
the energy finally takes the form

Z (k12| Via |kike — koky), (3)

2m

E/A=E;, + %ETC@ + %Eaai + E(,Ta”, (4)
where terms higher than those quadratic in «a are
ignored. FEyo is the volume energy per nucleon with
a; =0 (z =71,0,07), E; is the isospin symmetry energy,
E, is the spin symmetry energy, and E,. is the spin-
isospin symmetry energy, and

=(Nt+N|-Z1-Z|)/A (5a)

= (Nt+Z1t-N|-Z|)/A (5b)

=(Nt+Z 1 -N|-Z1)/A (5¢)

We finally obtain the following analytical expressions
for different energies:

2/3
3 (3_7@) P

By =
'~ Jom \ 2

p (4W; + 2B; + 2H; +M)+Zt pPH—

+l21:2 8\/7ra

3\ [3r2\"*

i=1,2

+4M;) / e~ J2(kpr)dr, (5d)
0
2/3
E. = h_2 3~ / 2/3
T 3m 2
Z i p (2H; + M;) to(1 4 220)p°H
— i i) — —to 0 -
o122V Ta}
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—sz (WZ +2.Bi+Hi+2Mi)X

i=1,2
o)

x/rze’

0

i (J2(kpr) — J2(kpr))dr+

+mp > (Hi+2M;

i=1,2

‘]0 k?FT) + ‘]1 (k‘FT‘))d

0o
/ Tzeia“ﬂ
0

(5¢)

p(2B; + M;) — ~to(1 — 2z0)p° Tt -

—7p Y (Wi+ B + 2H; + 2M;) x

i=1,2

oo

x/r2e_°‘ r (Jg(krpr) -

0

JE (kpr))dr+

JO (kpr) + Jl (kgr))dr,

i=1,2

+mp Z (B; +2M;) /r2e_°‘”"
0

(5f)

h? (37{2)2 1
B 2 () a3 L
3m 2 Z 122‘/ 4
—sz (Wi+2.Bi+Hi+2Mi)X

i=1,2
00

X /rQe*“”"

0

(J3 (kpr) — JE (kpr))dr+
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+mp Y (Bi+ H; + 2M;)x

i=1,2
2 —a;r?( 72 2
x / 2= (J2 (kpr) + T2 (ker) ) dr- (5¢)
0
The pressure of nuclear matter is defined as
P = p*dE/dp, (6)

where p is the density of symmetric nuclear matter.

1.3. Nuclear Matter at Finite Temperature

It is well known from classical thermodynamics [37]
that the thermodynamic properties of nuclear matter are
determined completely if the free energy F' is known in
terms of the density p and temperature T',

F=E-TS, (7)
E being the total energy and S is the entropy. Using the

T?-approximation [28], we obtain the entropy S, free
energy F', and pressure P as follows:

T 32 1/3 _
ST_ E( 72 ) (T) p 2/35 (8)

T? [(2m* 372\ /?
Pr=P(T = — (=) (= 1/3 1
rrr=o+ g () (55) s o
12 21 (3x2\°
L e /3
<2m> 2m 37r<2> Z(W+
i=1,2
(oo}
+2B; + 2H; + 4M;) /r3e ir® I\ (kpr)dr, (11)
0

where m* is the effective mass, kp is the Fermi
momentum, and J; (kpr) is the spherical Bessel function.
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1.4. Neutron Matter

Assume that we have N neutrons in the periodicity box
of volume 2. Among the N neutrons there are N 1
neutrons with spin up and N | neutrons with spin down
(N =N 1 +N |). For a fixed density p = N/, the
ground state energy E(N 1, N |) depends on the spin
excess parameter

ar = (N 1 =N |)/N (12)

and the binding energy per neutron in this case is written
as

1 2
E/A =E + §E(,aa, (13a)
where terms higher than quadratic in «, are neglected
and

2
= ﬂ (37r2)2/3 pz/s+

E,
°' " Tom

(2W; + B; + 2H; + M;) +

+
121:2 8\/7ra

1 3
+Zt0(1 _ xo)pﬁ+1 _ <;> (37r2)1/3 p1/3x

o0
X Z (W;+2B; + H; + 2M,)/ e*ai'ﬂJf(kFr)dr,
i=1,2 0
(13b)
h? 2/3
E, = p*/ (B; + M;
3m ( * Z + M) -

112

1
—5to(1 = x0)p? ™t = 2mp > (Wi + Bi + H; + M;)

i=1,2
oo

x/r2e_

0

ar® (J2(kpr) — J2 (kpr))dr+

+2mp Z (B; +

i=1,2

JO kFr)

00
/ r267alr
0
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+JE (kpr))dr. (13c)
The pressure is defined as in the previous case of nuclear
matter.

The thermodynamic properties of neutron matter are
determined completely if the free energy F' is known in
terms of the temperature 7" and the density of neutron
matter p,
F=FE-TS. (14)
Using the T?-approximation, we obtain the entropy S,
free energy F', and pressure P as follows:

_ T [2m 20\1/3 _2/3
ST_12< = )(37r) p23, (15)
7° (2m;, 2\1/3 _2/3
FT_EVOI_E< B2 > (37r ) P ’ (16)
T% (2m} 1/3
Pr=P(T = — & 1
r= P =0+ g (B5) )P0 an
h2 h2 ]. 2 2/3 2/3
<2m;> = 2y o2y BT )X
x> (Wi+2B; + H; + 2Mi)/r3e_“”2 Ji (kgr)dr,
i=1,2 A
(18)
where m;, is the neutron effective mass. The magnetic

susceptibility is a measure of the energy required to
reproduce a net spin alignment in a given direction.
It is inversely proportional to the energy required to
polarize the spins. Following Haensel [24], one can
write an expression for the ratio of the magnetic
susceptibility of neutron matter to that of the Fermi
gas of noninteracting neutrons as

X/ = 5(B, fer), (19)

where ep is the Fermi energy for unpolarized neutron
matter:

er = W2k /2m,,. (20)
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Fig. 1. Free energy (MeV) against the density p (fm—3) for the
three potentials (Gogny D1 [PW], SB [27, 40], and FP [13] at
T = 0 for nuclear and neutron matter

1.5. Results and Discussion

In the present work, we used the D1 Gogny
force to calculate some physical properties of the
nuclear and neutron matter, where some of them
for polarized nuclear matter, are presented for the
first time. It is composed of two Gaussians, one
of which simulates a short-range force and the
other one an intermediate range. Also, it contains
all possible admixtures of spin, isospin, and space
exchange operators p,,pr and p,. The other part is
a density-dependent zero range, which together with
the Gaussian shapes give rather simple analytical
expressions which reduce the computation time.

T a b le 2. The nuclear matter properties calculated
with the D1 Gogny force

kF7 E/A7 E‘r; Ea’: Ea"r, m*/m
fm—1 MeV MeV MeV MeV
1.348 -16.12 61.54 55.14 62.37 0.72

T able 3. Symmetry energies of nuclear matter in MeV

Present Work | A | B | C | D
ET 61.54 52 46 44 52
Eo, 55.14 63 57 53 67
Esr 62.37 62 57 48 43

N o t e. Brueckner theory with the Reid soft core potential [24]
(A); from the Landau parameters of [38] (B), from the Landau
parameters of [39] (C), from the Landau parameters of [40] (D).
The present work calculated at kg = 1.3489 fm~—!. Calculated at
kp = 1.36 fm~1.
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Fig. 2. Same as in Fig. 1 but for T'= 10 MeV

The parameters were chosen to fit the bulk properties
of nuclei and some collective states as well as the
nuclear matter properties. Furthermore, some of its
parameters may be varied without affecting too much
most of the properties which were fitted originally. The
results obtained are compared with another effective
interaction using a generalized SB potential [28§],
which is extended to study polarizable nuclear or
neutron matter. The comparison is also made with
the realistic force calculation [13]. The parameters
(t07m07aivﬂvWiaBiaHini)v i = ]-72v are shown in
Table 1. At kp = 1.348 fm !, we present the values
of the volume energy E,, and the symmetry energies
for polarized nuclear matter F,, E, and F,, in
Table 2. The results are comparable with previous
theoretical estimates as shown in Table 3. From Table
3, one observes that E, is slightly greater than that
obtained by previous calculations [24, 38—40], whereas
E, is comparable with that in [38, 39]. E,, is in
good agreement with that of [31]. The free energy at
temperatures 7' = 0 and 10 MeV are presented in Figs. 1
and 2 for both nuclear and neutron matter using the
Gogny D1 force (present work (PW)) and our previous
calculation using a modified Seyler—Blanchard effective
interaction MSB [27, 40] along with the results of FP
[13] using realistic forces. The potentials agree very well
in the case of nuclear matter where the results of the
present calculation are closer to those of FP. For the
neutron matter, the three results are comparable and
have almost the same shape. The pressure density curves
for both nuclear and neutron matter are given in Figs.
3 and 4 for the temperatures T = 0 and 10 MeV,
respectively. Here again, we have a good agreement with
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Fig. 3. Pressure vs density for three potentials (Gogny D1 [PW],
SB [27, 40] and FP [13] at T = 0 for nuclear and neutron matter

the FP values in the nuclear matter case where, as for
the neutron matter case, the agreement is fair.

Our results of the ratio of the magnetic
susceptibilities xr /x are plotted in Fig. 5 for the neutron
matter case, using the SB potential and the Gogny D1
force as a function of Fermi momentum kr together
with the results obtained [41]. The results have the
same behavior, i.e. it increases with the density until it
reaches a maximum and then decreases.

Since the analysis of the neutron star with zero
proton content is very unrealistic, we present the energy
E and pressure P at zero temperature for pure neutron
matter with zero proton content and neutron matter
with the 5% proton ratio in Table 4. From Table 4,
one concludes that the system is still unbound, and the
behavior of E and P as a function of p is the same with
little differences between the two sets of calculations.

T a b 1 e 4. Comparison between the energy E and
pressure P at zero temperature between pure neutron
matter and neutron matter with 5% proton ratio

p, fm=3| E, MeV E, MeV |P, MeV-fm~—3|P, MeV-fm~3
Pure neutron |5% proton | Pure neutron | 5% proton

matter ratio matter ratio
0.250 7.20 6.59 0.01 0.005
0.563 11.80 10.74 0.35 0.313
0.750 13.90 12.64 0.65 0.587
0.100 16.85 15.30 1.03 0.947
0.125 19.37 17.63 1.50 1.394
0.163 22.91 20.96 2.35 2.232
0.200 26.10 24.02 3.30 3.215
0.225 28.13 25.99 4.00 3.940
0.250 30.00 27.85 4.70 4.675
0.275 31.77 29.62 5.49 5.518
0.300 33.75 31.62 6.30 6.428
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Fig. 5. Comparison of the quantity xr/x as a function of the Fermi
momentum kg (fm~!) using the Gogny D1 [PW] and SB [27, 40]
potentials with the results obtained in [41]

In summary, our results show that the D1 force
[PW] gives reasonable values for the properties of
nuclear matter in comparison with the realistic force
calculations, which are in turn related to the phase shifts.
Similar results are obtained using the SB potential,
where we present the nuclear matter calculation [28] and
the neutron matter case [40]. For the neutron matter,
the agreement is fair between the three potentials
considered in this work. In [27] and [40], the parameters
of the SB interaction potential are changed to fit the
polarized nuclear matter. Also we considered the same
SB potential which is modified by adding terms to
it which depend on the different proton and neutron
densities in the polarized case [28]. The results of our
calculation are made for the Gogny force using simple
analytical expressions without modifying the potential
functional form or its parameters, and it looks very
promising in describing a large number of nuclear
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properties despite its simple form. In conclusion, the
Gogny interaction may be better used because it can
overcome the disadvantages of the famous Skyrme
interaction [18] (which has a zero-range and density-
dependent part) as well as those of the Brink and Boeker
interaction [40] (which has a finite-range force), being a
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BJIACTUBOCTI AJEPHOI TA HEXNTPOHHOI MATEPII
3 BUKOPUCTAHHSAM ITOTEHITAJTY TOT'HI

X.M.M. Mancyp, X.A. Pamadan, M. Xammad
Pesmowme

JlocmimKeHo PiBHAHHS CTaHy rapsdoi Ta XOJIOJHOI sfepHoi Ta Heil-
TPOHHOT Marepil 3 BHKOpHUCTaHHSM edeKTHUBHOI B3aemozii [orHi.
Emnepriro 3B’43Ky Ha OJHY YaCTUHKY, €HEpPril0 CHUMeTpil, BIIbHY
eHepriio i THCK po3paxoBaHo AK byHKIi rycTuan p (y by~ 3) ama
sanepHOl Ta Hefirporuoi marepii. i pe3ynbprarn mopiBHSHO 3 mome-
pPeaHiMH TEOPETUIHUMHU OIIHKAMHU 3 BHKOPUCTAHHAM e(dEeKTHUBHOL
B3aemogil Ceitstepa—bnangapma ta 3 Bigomum pospaxynkom Ppiz-
MaHa i [Tapgxapinanzge, e BUKOPHCTAHO PEATbHY B3AE€MOIIO.
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