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Stationary states of even-even atomic nuclei, whose mean self-
consistent field is simulated by the Woods—Saxon potential,
are described in the framework of the adiabatic three-particle
model of nuclei. The description is carried out in the terms of
collective variables, namely, the hyperradius R, hyperangle «,
and conventional spherical angles (0;, ¢;), ¢ = 1,2. The efficiency
of the adiabatic approach is illustrated by the example of the
numerical calculation of the energy spectra of low-lying excited
states of even-even atomic nuclei *°Ca, 64Zn, 74Se, and 200Hg
which possess two valent nucleons in the external shell.

The impossibility to exactly solve the many-particle
Schrodinger equation stimulates us to search for the
approximate methods of its solution. One of the methods
of the description of a many-particle system is the
Hartree—Fock one which was developed for the first
time in atomic physics in [1]. This method allows one
to consider a many-particle problem as the problem of
the movement of one particle in the self-consistent field
created by all particles of the system under study. The
condition for a successful application of the Hartree—
Fock method in nuclear theory is the requirement that
the nucleon-nucleon interaction potential be sufficiently
smooth, i.e. it should have no singularity as r — 0.
The Hartree—Fock method in nuclear theory prevails in
calculations for the magic nuclei. But the application
of this method to non-magic nuclei meets essential
mathematical difficulties if we take into account a
repulsion in the nucleon-nucleon potential at small
distances.

The angular and radial correlations of nucleons and
the pairing effects for nucleons of the same sort play
an important role in the formation of excited states of
nuclei and appear, particularly, in the presence of gaps
in the energy spectra of excited states of even-even nuclei
and in their absence in the spectra of odd and odd-odd
nuclei. Thus, it is necessary to develop another method
for the calculation of the wave functions and the energy
spectra of stationary states of even-even nuclei, which
would go beyond the limits of the one-nucleon Hartree—
Fock approach [1].
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To this end, a hyperspherical adiabatic approach
(HAA), which transcends the frames of the one-nucleon
approach, was suggested in [3—6] to solve the mentioned
problem.

As known, pairwise correlations of nucleons of the
same sort, which result particularly in the existence
of superfluid states of nuclei [7], are considered most
logically and correctly in the superfluid model of nucleus
[8, 9] within the secondary quantization formalism.

In the present paper, we suggest to consider the
pairwise correlations between nucleons in the potential
approach in the framework of the adiabatic three-
particle model of nuclei [3—6], based on the assumption
of separability of the motion of valence nucleons of
a nucleus into the high-speed movement in angular
variables, i.e. on the sphere S°(2) and the adiabatic
(low-speed) movement of nucleons along the hyperradius
R and on the introduction of the notion of adiabatic
potential term of nucleons of a nucleus U,(R) which
is convenient for the description. We recall that the
adiabatic three-particle model of nuclei is based on the
assumption of the existence of an average self-consistent
field in the model of independent particles with taking
into account a short-range residual interaction of valence
nucleons.

The further development and application of the
adiabatic approach in nuclear theory to the investigation
of the energy spectrum of both spherical and deformed
even-even nuclei within the framework of the adiabatic
three-particle model of nuclei and with consideration of
the Coulomb interaction between valent protons besides
the strong one are considered to be topical now.

1. Theoretical Description of the Energy
Spectrum of a Spherical Nucleus

In [3—6] within the HAA method, a theoretical
description of the energy spectrum of excited states of
nuclei, which are modeled by a spherically symmetric
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even-even “core” plus two nucleons on the outer unfilled
shell, was carried out. For the 4X nucleus with two
valent nucleons, the nucleus description in the HAA
method is carried out in terms of collective variables,
whose role is played by the hyperradius R, hyperangle
a)

R=(r{ +73)"?, o =arctg(rs/r1), (1)

and usual spherical angles 7; = {®;,0;}, 1 =1,2.

In the adiabatic three-particle model of nuclei, the
efficient self-consistent field is modeled by the static
spherically symmetric Woods—Saxon potential [10]

N-2Z
Ui(ri) = —Vo <1 +0.63—— ) x

—1
x<1+exp<rl_R0>> + Vi, 1=1,2, (2)
ao

where “+” should be taken for a proton and “—” for a
neutron and Ry = rqA/3.

If there are two valent protons on the external shell,
then the Coulomb potential V}, can be modeled, for the
sake of simplicity, as [10]

2

Vi=Y Vi(ri), (3)

=1
where
2
3 1 e?(z=2) r; < Ro
Vi (r3) = [22 2 (RO) ] (4)

Here, Vi, (r;) is the potential energy of interaction
between the i-th proton and the Coulomb field of the
uniformly charged sphere.

For the simplification of further calculations, we
can represent the residual strong interaction of valent
nucleons between one another as the potential with
zero interaction radius with regard for the repulsion of
nucleons at short distances [11]

) = —Vis {1 —gp (Fl ;”)] S —7).  (5)

The repulsion of nucleons is characterized by the
term p(’"1+r2) which denotes the total one-particle
density of nucleons. The relative contribution of
repulsion is defined by the constant g (¢ > 0). Such a
choice of the residual interaction simplifies the algorithm

‘/res (Fla
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of the energy spectrum computation, because it allows
one to calculate, in the explicit analytic form, the
matrix elements of this interaction and does not distort,
possibly, the real situation. In the future, more realistic
models of the interaction should be developed.

In the case of valent protons, their Coulomb
interaction

62

|71 — 7%

Viiz = (6)
must be added to (5).

The spin-orbit interaction of the i-th nucleon is given
by

Wi(r) = —x— 2, i=1,2 (7)

Thus, in the framework of the adiabatic three-
particle model of nuclei in terms of collective variables
(1), the potential energy V (R,2) of the system under
study is given by

V(R,Q) = U (Rcosa) + Wy (Rcosa) (l_i -§1) +

+Us (Rsina) + W (Rsina) (l} : 5‘2) + Vies + Vitz. (8)

We note that using the Hamiltonian with central
two-particle and spin-orbit one-particle interactions
for a spherical nucleus corresponds to the so-called
intermediate coupling approximation.

As was shown in works [3—6], the problem of
determination of the energy spectrum for spherical
atomic nuclei in the framework of the adiabatic three-
particle model of nuclei is reduced to solving the two
following problems.

In the first place, it is the problem of determination
of adiabatic potential terms U, (R) of nucleons of the
nucleus and the corresponding basis functions ®, (R, (2).
This can be done by a numerical solution of the system
of differential equations for the variable a,

d? I (l1 + 1) l2(l2 + 1) (1)
{E o cos? a sm a U" (R) (p]fhlllz (R’ CM)-l—
U1l (r) _
+R> Y V%lj?l,l,,z (R, @)@y ss s (R ) =0, (9)
J1dalily
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where the coefficients

<p§.‘3.2lll2 (R,a) = sinacosa®”) | (R, a). (10)

Jijzlilz

System (9) is supplemented by the boundary
conditions that ensure a boundedness of the function
vu(R, ) at zero and the validity of the Pauli principle:

(‘05321112 (R,Oé = 0) =0,
Pjrjatils L0 ¥)la=m/4

= (_]_)J‘*J‘l *]'2+1Lp§.l;]).1l2ll (R, 7_[_/2 _ a)|a:7r/4;

0] 111, (R 0) /000y =

= (=1)7 =20l | (R, a)/0alamr)s- (11)

Thus, we can find the adiabatic terms U, (R) and
basis functions ®,(R,{) by solving system (9) with
boundary conditions (11) [3]. The expansion of the
full wave function of the system in the hypergeometric
adiabatic basis {®,(R, )} [3] looks

U(R,0) = R°*Y " F,(R)®,(R,9Q). (12)

Secondly, we must determine the radial functions
F,(R) and the energy spectrum E of bound states of
nucleons through a numerical solution of the system of
differential equations for the variable R

{_dd—R2 - 4—11%2 + Uu(R) — QE}FH(R)+
- Z{H (R)Fy () + Quye (R) 75 Fu (R)+

d
+ o Quw (R)Fy (R)]} =0. (13)

The radial functions F), (R) satisfy the boundary
conditions

F,(0) = F,(c0) = 0. (14)
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In numerical calculations, we substitute the interval
(0,00] of R by a finite interval [0, Rpax] and truncate
system (13) to that with a finite number of equations.
Using the adiabatic approximation, in which expansion
(12) contains only diagonal matrix elements, reduces
system (13) to a single equation.

The explicit form of potentials (2) — (7) is given in
[4, 5].

The efficiency of the HAA method in the framework
of the adiabatic three-particle model of nuclei has been
illustrated by the example of numerical calculations [12—
15] of the energy spectra of nuclei ®*He, 1°Be, C, 16C,
18Ne, 180, 42Ca, and °8Ni under assumption of spherical
symmetry of the nucleus field. The calculated energies
of excited states of nucleons for the certain studied
nuclei indicate the necessity to take into account the
polarization effects for the even-even core, i.e. to consider
a deformation of the nucleus core field by nucleons from
the external unfilled shell.

2. Theoretical Description of the Energy
Spectrum of a Deformed Nucleus

In the calculations of stationary states of deformed
nuclei, the oscillatory Nilsson potential was used for
a long time as an effective potential of the average
nuclear field of a core [16]. With the help of the Nilsson
potential, a rather simple scheme for the determination
of the one-particle levels and corresponding wave
functions of states of deformed nuclei was developed.
However, the Nilsson potential has a number of
essential limitations. For example, it has infinite depth,
which yields the improper behaviour of wave functions
on the nucleus boundary and outside it. Moreover,
the spin-orbit interaction in the Nilsson’s scheme is
independent of the mass number A and the deformation
parameters.

Therefore, a more realistic finite anisotropic Woods—
Saxon potential becomes recently to be widely used
in calculations of the energy spectrum of deformed
nuclei [17, 18]. For the first time, the problem of
determination of one-particle levels and wave functions
of states in a deformed Woods—Saxon potential was
investigated by Nemirovskii and Chepurnov in [17].
Later on, other methods of solving the Schrodinger
equation with anisotropic Woods—Saxon potential were
proposed in the one-particle approximation [18].

It is necessary to note that the integral of motion
for deformed nuclei with the form of an ellipsoid of
revolution is the projection K of the total angular
momentum of a nucleon on the nucleus symmetry axis,
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i.e. one-particle nucleon states are characterized by
energy, parity, and projection K.

In the adiabatic three-particle model of nuclei, the
stationary states of two valent nucleons in the deformed
nucleus field, which is simulated by the anisotropic
Woods—Saxon potential, are determined [19] from the
Schrodinger’s equation

2 2
(—h—Al—h—A2+V—E>\I!:0,

15
2 2p2 (15)

where the potential energy operator of the system is
given [19] by

A

V =U. (71, B) + Veo (71,01, B) + Ua (7, B) +

+Vio (2, 52, B) + Vies (71, 72). (16)

Here, U; (7, 8) is purely the nuclear potential energy
of the i-th nucleon at the point 7; in the deformed axially
symmetric Woods—Saxon field [10]:

N-Z
Ui(7;, B) = —Vq <1i0.63 " >><

X <1+exp {w})* + Vi, i=1,2. (17)

a

The radius R(6;,8) of the deformed axially
symmetric field of a nucleus depends on the deformation
parameter 3 and the angle #; relative to the symmetry
axis of a nucleus and is chosen as

R(0:, 8) = Ro[l + BY20(0:)]- (18)

As is well known, spin-orbit interaction operators in the
case of the nuclear potential U; (7, 5) have the form [17]

Vo (73,05, B) = —x[Ps x &3] - gradU;(73, B).

In (15), we separate the spherically symmetric part
of interaction and the additional term which sets a
deviation of the interaction symmetry from the spherical
one. As a result, we obtain the equation

(19)

K2 K2
_Q_MAI - 2_,U2A2 + V(71,01,7, 02, 8)—

_V(F17&1;F2;627/8 - 0) + V(F17517F27&27B = 0)+
+Vies(T1,72) — E) ¥ =0.
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It is convenient to seek for solutions of Eq. (20)
in hyperspherical coordinates (1) in the form of a
superposition of solutions ¥, sk,

K(R,Q) =" CosrUnsk (R, Q), (21)
n J
of the stationary Schrodinger’s equation
h? h?
— A1 = —As + V(1,51,72,52, 8 = 0)+
2/J,1 2/J,2
+‘/1"es(7?177?2) _EnJK> U,k =0 (22)

with the spherically symmetric potential V (7, &1, 72, &,
B =0).

The stationary states
Uik =V (R,Q) = Fuyk (R)®, 5k (R, Q) (23)
of the corresponding spherical nucleus can be obtained
from (22) according to the scheme introduced in [3—6]
and briefly given in Section 1.

After the substitution of (21) to (20), multiplication
of all terms of the equation by ¥~  (R,(), and
integration over the whole region of hyperspherical
coordinates, we obtain

Y (ens = E)Crskbunbrr + Y Y Coyrc %
n J

n J

X<\I’n’J’K’|V(F17&1>F2)3276)|QHJK> :0) (24)
where
V(1 61,7%, G2, B) = V(i1, 51, 75,62, 8)—
_V(F17&17F27&276 = 0) =
2 ~ ~
:Z[Ul(ﬁaﬁ)-{_mso(ﬁ:&uﬁ)]a (25)
i=1
0@(7:;76) _Uz(ﬁyﬂ)_Uz(ﬁyﬂzo)a (26)

ISSN 0508-1265. Ukr. J. Phys. 2004. V. 49, N 8



INVESTIGATION OF CORRELATIONS OF NUCLEONS

Wso(ﬁ;ﬁiyﬂ) = Wso(ﬁ;ﬁiyﬂ) - ‘/iso(ﬁ;&iaﬂ = 0)

We

(27)

can represent the spin-orbit addition

Vo (71,01,72, 02, 3) (27) in potential (25) as [17,18]
Voo (71, 51,72, G2, B) = W1 + Wa + W3, (28)
where
5 -
1 6Ul(7‘“,3) 1
W, = — S . — ——po.0.
1 Xiz:; e ors Po;Tp; gin eipwlgfh )
(29)
5 .
1 aUz(ruB)
Wy = — o 30
2 X; r?sing;  06; PoiTri (30)
5 -
1 aUz(Tlaﬁ)
W3 = —_—— 0.0y, 31
3 Xlzzl r; 691 prz UWN ( )
and
0 0
.= —ih = —th— = —ih . 32
Dri hgm P hog Pei thaa (32)

In (29)—(31), o,,04,, 0, is the Pauli matrices which
are given explicitly in [17].

To numerically solve the system of equations (24),
we need to know the matrix elements of the potentials
of both purely nuclear and spin-orbit interactions.

For the determination of matrix elements in (24), it
is convenient to expand V (7, &1, 7,2, 3) in a series in
terms of spherical functions. For the nuclear terms of
potential (25), we obtain

UZ(FM/B) = Z A)\imi(riva:B)YAimi(aia‘Pi)- (33)
Aim;
Respectively
801 (ria B)
Tri = Z B)\imi (Tiva:/B)YAimi (ai;@i); (34)

)\i m;

where the expansion coefficients Ay, m,(ri,a,8) and
By, m, (ri,a, B) should be obtained numerically.

In the examined case of an axisymmetric nucleus,
m; = mo = 0.

Non-diagonal matrix elements of the operator
V (71, 31,7, 52, 8) in Eq. (24) are given in Appendix.

The system of homogeneous equations (24) has
nonzero solutions if the determinant composed from
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the coefficients of the unknowns C,jx equals zero.
Expanding this determinant, we obtain an algebraic
equation for the determination of FE.

By solving system (24) in the standard way, we can
find the energy spectrum FE of the deformed nucleus,
coefficients C, sk, and, hence, the corresponding wave
functions of stationary states of the deformed nucleus.
We can obtain the unknown energy E of the deformed
nucleus for § < 1 by the method of perturbation theory
with respect to the deformation parameter 5 < 1.

For the case of minor deformations f < 1, we
can consider the operator V (L, &1, 7, &2, §) in Eq. (24)
as an operator of perturbation which represents the
difference between a weakly deformed Woods—Saxon
potential with deformation parameter § < 1 and a
spherical Woods—Saxon potential. The energy of an
arbitrary level E, x of a deformed nucleus in the first
approximation of perturbation theory is given by

(35)

where €7 is the energy of the j-th level of a spherically
symmetric nucleus and V;, 7k nsk is the unknown matrix
element of the operator V (7,81 ,7, 32, 3).

As seen from formula (35), due to the axial symmetry
of the Woods—Saxon potential, the energy levels e,
that were found for a spherically symmetric Woods—
Saxon field decay in the axially deformed Woods—
Saxon field into the energy levels that correspond to
different values of the quantum number K of the angular
momentum projection J on the nucleus symmetry axis.
That is, the degeneration 2J + 1 in |K| is removed,
but the twofold degeneration of levels in the sign of K
remains.

Thus, to determine the energy spectrum of a
deformed nucleus 4X in the framework of the considered
adiabatic three-particle model of nuclei, it is necessary,
following works [3—6], to obtain the spectra of levels
eng and the corresponding wave functions of stationary
states in the assumption of the spherical symmetry of
the field of a nucleus 4X, and then to take into account
the deformation of the nucleus field while numericaly
solving system (24).

E = E,(Ll])K =¢ens + Vasknik,

3. Numerical Calculations of the Energy
Spectra of Nuclei 4°Ca, %4Zn, 7*Se, and
2001_]:g

Below we illustrate the main points of the numerical
calculation of the energy spectrum of the nuclei in the
framework of the adiabatic three-particle model of
nuclei. It will be done by the example of low-lying excited
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states of even-even nuclei °Ca, %4Zn, "Se, and 2°°Hg
which possess two valent nucleons in the external shell,
namely, “°Ca and %4Zn have two protons, and "*Se
and 2°°Hg have two neutrons. For the simplification of
calculations, we simulate the strong interaction of valent
nucleons by the spherically symmetric Woods—Saxon
potential. For the valent protons, we also consider the
Coulomb interaction in addition to the strong one.
Accordingly to the asymptotic behavior of the terms
investigated 1 in [5] in detail, the calculations of the
energy spectra of nuclei *°Ca, %4Zn, "Se, and 2°°Hg
under assumption of the spherically symmetric field of
a nucleus core were carried out as follows. Parameters
of the Woods—Saxon potential were selected in such a
way that the potential terms of nuclei *°Ca, 4Zn, ™Se,
and 2°°Hg tend to the corresponding levels of isotopes
with mass numbers less by unit as R — o0, i.e. to the
corresponding levels of isotopes *°K, %3Cu, "Se, and
199Hg, respectively. The values of the Woods—Saxon
potential parameters for nuclei *°Ca, %4Zn, 7Se, and
200Hg defined in such a way are shown in Table 1.
Then, following works [3—6], the spectra of levels and
the corresponding wave functions of stationary states
without regard for the matrix elements H,,, and @,

were determined by using the determined parameters
of potentials. As the reference zero point, we took the
energy when both valent nucleons were in the ground
state, i.e. zero reference point, we took the energy
of the state where both valent nucleons were in the
ground state: two protons on the levels 2s; /5 and 1f5/»
for nuclei “°Ca and %*Zn, and two neutrons on the
levels 2p;,» and 2f5/, for the nuclei ™Se and 2°°Hg,
respectively.

The results of calculations of the energy spectrum €, 5
of low-lying excited states of nuclei *°Ca, %4Zn, ™Se, and
200Hg under assumption of a spherically symmetric field
are given in Table 2, and their positions on the adiabatic
potential terms U, (R) / R? of the nuclei are presented,
respectively, by straight lines in Figure. As a null, we
took the energy of separation of two nucleons from

T a ble 1. Parameters of the Woods—Saxon potential
for nuclei 4°Ca, 64Zn, 74Se, and 20°Hg

Nucleus | Vo, MeV | Via, MeV | ro, fm | ag, fm | X, fm?

100y 45.5 33.0 1.24 0.63 0.263
647n 49.0 33.0 1.24 0.63 0.296
74Ge 59.0 33.0 1.24 0.63 0.310
200Hg 57.3 33.0 1.24 0.63 0.368

T a b 1 e 2. Results of calculations of the energy of nuclei 4°Ca, 64Zn, 74Se, and 209Hg states under assumption of

the spherically symmetric Woods—Saxon potential

Nucleus Configuration JT Ends Eexp) Uu(R)/R? for Eexp
Ax of nucleons MeV MeV R =12 fm, MeV for 41X, MeV
40Ca, 251722512 0+ 0 0 ~11.8375 ~3.8560
Lfz/21f7/2 ot 7.4532 5.2116 -1.1285 ~3.5642
Lfz721f7/2 2+ 7.4856 5.2488 -1.1285 ~3.5642
Lfz/21f7/2 4+ 7.5267 5.2788 ~1.6424 ~3.5642
Lfz/21f7/2 6+ 7.6029 — ~1.6423 ~3.5642
2p3/22P32 0t 9.6124 7.3007 -2.2736 ~2.4397
2p3/22P3)> 2+ 9.8108 7.4664 ~2.2648 ~2.4397
647n 1fs5/21f5/2 ot 0 0 -10.5294 ~5.1589
1fs/21f5/2 2+ 0.0586 0.9915 -10.5294 ~5.1589
1fs/21f5/2 4+ 0.1093 2.3067 -10.5294 ~5.1589
2p1/22p1/2 ot 0.1727 1.9103 ~11.1537 ~5.4513
1g9/2199/2 ot 4.9490 3.2400 ~1.5556 -3.9131
1g9/2199,2 2+ 5.0637 3.2972 ~1.5555 -3.9131
Lgo/2lgg)2 4+ 5.1504 3.3069 ~1.5553 -3.9131
Lgo/algg)2 6+ 5.3822 3.4650 ~1.5550 -3.9131
Lgo/algg)2 8+ 5.4606 — ~1.5549 -3.9131
74Se 2p1/22p1)2 ot 0 0 -17.3143 -8.3024
1g9/2199/2 ot 4.4014 1.6575 -8.3838 -8.3930
1g9/2199,2 2+ 4.4239 1.8387 -8.3838 -8.3930
1g9/2199,2 4+ 4.4272 2.1080 -8.3838 -8.3930
1g9/2199,2 6+ 4.4498 2.2315 -8.3838 -8.3930
1g9/2199,2 g+ 4.4594 3.1984 -8.3838 -8.3930
200 g 2f5/22f5/2 0t 0 0 ~13.0605 ~6.4906
2fs/22f5/2 2+ 0.0282 0.3679 ~13.0552 ~6.4906
2fs/22f5/2 4+ 0.0428 0.9472 -13.0525 ~6.4906
3p1/23P12 0t 1.4823 1.0293 ~15.1259 ~6.6490
748 ISSN 0508-1265. Ukr. J. Phys. 2004. V. 49, N 8
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Behavior of the potential curves (terms) U, (R) /R? and the energy levels of nucleus *°Ca (a), 54Zn (b), Se (c), 2°°Hg (d) under

assumption of the spherically symmetric Woods—Saxon potential

nuclei 4°Ca, %Zn, ™Se, and 2°°Hg, respectively:
Eyp(*°Ca) = 14.708 MeV, E,,(°*Zn) = 13.83 MeV,
Es,("Se) = 20.463 MeV, and E»,, (*°°Hg) = 14.678 MeV
[18].

As for deformed nuclei, we have shown in
Section 2 that the problem of determination of
the energy spectrum of stationary states of an
axisymmetric deformed nucleus is divided into three
stages: 1) numerical determination of the coefficients
Ax;m; (ri,a, B) and By,m, (ri,a, ) of expansions (33)
and (34) in series in spherical functions Y, (6;) for
the purely nuclear potential U; (7, 3) and its derivatives
%:;’B), 2) following formulas (A.2), (A.5), (A.9),
and (A.13), the determination of matrix elements
of the interaction operators U(Fi,d1,7%,d2, ) and
‘750(771,5'1,1:’2,6'2,6) in analytic form with the Dbasis
functions @,k (R, ), 3) numerical calculations of the
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corresponding matrix elements according to (A.1) and
(A.3) and determination of the energy spectrum of a
deformed nucleus according to (35).

In future, for the numerical calculation of the energy
spectrum of the stationary states of deformed nuclei, it
is necessary to develop a package of applied computer
programs, which would give us a possibility to use
more realistic interaction potentials. With regard for the
deformation of the nucleus core field and the spin-orbit
interaction (19), we hope to improve the accuracy of
calculations of the energy spectra of deformed nuclei.

Numerical calculations of the energy spectra of
deformed nuclei in the framework of the adiabatic
three-particle model of nuclei are actual for further
investigations. Thus, the adiabatic three-particle model
of nuclei developed by us allows one to carry out, in the
potential approach, the adequate theoretical description
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of pairing effects of nucleons and their angular and radial
correlations which result, in particular, in the creation
of superfluid nuclear states.

APPENDIX

Non- diagonal matrix elements of the purely nuclear interaction
U= Z U; (73, B) which appear

in (24) are defined in terms of hyperspherical coordinates as

/2

/dR/dax

f]‘ ‘I’nJK> Fnik(R),

<\1/n, R

[7‘ ‘I’nJK

(A1)

XFys yogcr (R) (@ e

where the matrix elements of the operator U in terms of basis
functions @, 5k (R, Q) in analytic form are
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Here, Ay 0(r1i,,8), Ax,o(r2,a,B) are the coefficients of
expansion of potential (33) for the first and second valent nucleons,
respectively.

Non-diagonal matrix elements of the spin-orbit interaction

. N X« . 3. .
Voo = W1+ Wa 4+ W3 = 3 Wy can be represented as

q=1
/2
<xpn,J,K, Vao xanK /dR/daF,J,K, R)x
0o /2
><<(I>nrJrKr ‘750 @nJK>Fn‘]K(R):/dR/dCMF:;rJrK/(R)X
0 0

(A.3)

3
><<¢nrJrKr ZWq ¢RJK>FnJK(R).
g=1

Matrix elements of the operator of spin-orbit interaction V,
in terms of basis functions @, 7k (R, @) are given by

3
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q=1
3 ~ ~
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(A.4)

where matrix elements of the operator W in terms of spin-angular

functions @;nl’ (0i, i) in (A.4) have the following analytic form:
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m; y At last, non-diagonal matrix elements of the operator Wi in
j'mg
+2\/§j’(]” +1) Cjimil(o)Jr terms of spin-angular functions are given by
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TOCTLIYKEHHS KOPEJISIIIIN
HYKJIOHIB [TAPHO-TTAPHIX SI/[EP B PAMKAX
ATIABATUYHO! TPUYACTUHKOBOT MOJIEJI SIJTPA

P.M. Ilaexan, B.IO. Iotida, I.B. Ximiu
Pesmowme

YV paMKax aaiabaTHYHOI TPHIACTUHKOBOI MOJEJI gapa MPOBEIEHO
TEOPETUYHHUY ONHC CTAI[iIOHAPHUX CTAHIB MAPHO-IAPHUX ATOMHEIX
SIIep, CepeIHE CAaMOY3TOIKEHE IOJI€ SKUX MOIEIIOETHCS MOTEeH-
miagom Bynca—Cakcona. Omuc npoBefeHO B TepMiHax KOJEKTHB-
HUX 3MIiHHHX, a caMme: rimeppajiyca R, rimepkyTa « i 3Buvaii-
uux chepuunux KyrTiB (0;,p;), ¢ = 1,2. IIpoinocTpoBano edex-
TUBHICTH aiabaTUIHOrO i X0y HA MPHUKJIAII YUCEIBHOrO PO3pa-
XYHKY €HePreTUIHOTO CIEKTPA HU3bKOJIEeKAINX 30y I7KEeHIX CTaHIB

napro-mapuux aromunx aep 40Ca, 64Zn, ™Se, 200Hg, B axux ma
30BHIIIHIA 000JIOHIII MiCTUTBCs [{Ba BaJIEHTHI HYKJIOHU.
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