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Using the known experimental data, we consider the inverse
problem of neutrino diagnostics of a reactor core. On the one hand,
its solution allows us to restore distantly (with known accuracy)
the current values of the nuclear density of each component
forming the isotope composition of a nuclear fuel and, on the other
hand, gives a real possibility of creating a neutrino technology for
diagnosing the temporal evolution of the isotope composition of
nuclear fuel and the reactor power in the on-line mode.

It is known that a nuclear reactor represents an
extremely powerful source of electron antineutrinos with
a spectrum formed as a result of the beta decay of fission
fragments of four nuclear fuel isotopes: 235U, 23°Py,
238U, and 24'Pu. They are usually registered using the
reaction of elastic capture of antineutrinos with the
target protons or, in other words, the reverse beta decay
reaction

e +p—e’ +n. (1)

The intensity of neutrino events n, registered with
a detector in reaction (1) is related to the heat rating
(Wnpp) of a reactor as

ny, = <WNPP> e 2NPEV) S_la (2)
(Ey)  4n(R)
where
Emax
¥, =M, (Uup> y M, = p(Eu)dEua
Egnr
Emax Emax
(ovp) = | owp(Ev)p(Ev)dE,[ [ p(Ey)dE, (3)
Egnr Egnr
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Here, (E,) = > (a;E,;) denotes the average energy
absorbed in a reactor per one fission act at a given
fuel composition, where «; is the contribution of isotope
i (1 =5,9,8,1) to the total fission cross section [1—9];
(4m(R)*)~! is the effective space angle allowing for the
actual distribution of energy release in the reactor core;
N, and yeo — characteristics of the detector (the number
of hydrogen atoms in the target and the effectiveness
of registration allowing for the portion v of registered
neutrons corresponding to reaction (1)); X, and (o,p)
are the cross sections of the neutrino reaction measured
in cm?® per one fission act and cm?® per v-particle,
respectively; for the fuel composition, ¥, = (a; Y_,,);
M, — the number of electron antineutrinos per one
fission act; p(E,) = > (a;pyi) — the energy spectrum of
antineutrinos (MeV~!-fission event~!) radiated by the
mixture of products of fission of all actinoids forming the
nuclear fuel; o,,(E,) — the cross section of interaction
between monoenergetic antineutrinos with the energy
E, with regard for recoil, weak magnetism, and radiation
corrections [10—13].

It is easy to demonstrate [14] that (2) immediately
gives the basic balance equation of the spectrometry
of reactor antineutrinos which characterizes the
contribution «; of each actinoid to the energy spectrum
1(E,) measured experimentally in the flux 7, (at a given
geometry and characteristics of the detector):

€0 Np -1
El/ = iOv El/ iAa M ) 4
where
) E
no =5 [ 1UE)AEL X = aid, X = Waee)/(E7),6)
Einy
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Fig. 1. Spectrum of positrons of reaction (1) at a distance of 18 m
(positron energy is given in units of 10~%3 ¢cm?-MeV~! fission—1')
[15, experiment 3c|. Full curve represents the calculated (expected)
spectrum [15]. The histogram step — 300 keV

At is the duration of measurement; A and \; are the
average and partial (i = 5, 9, 8, 1) fission rates of nuclear
fuel.

It is worth noting that theoretical calculations
developed for today (together with the contemporary
level of experimental ideology and technique of
antineutrinos measurements) not only allow one to
pose a number of fundamental problems of the
physics of reactor antineutrinos but also give a real
possibility to effectively solve the basic problem of the
neutrino spectrometry of intrareactor processes: the
determination of the nuclear density of each component
forming the isotope composition of a nuclear fuel and
their dynamics directly in the course of the reactor
operation. The development of an effective technique
allowing one to solve Eq. (4) with respect to A; evidently
represents a crucial point for creating a neutrino
technology for diagnosing the temporal evolution of
the isotope composition of a nuclear fuel in the on-
line mode. Along with searching for optimal numerical
methods, such a technique should also include the
physical substantiation of procedures determining the
basic energy functions n(E,), p,, and o,,(E,) contained
in this equation. That was the purpose of this paper.

1. Problem Statement

Though there exists a great number of publications
dealing with the problems of registration of reactor
antineutrinos, we managed to find only three
experiments completely reflecting the essence of the
basic equation (4) for the spectrometry of reactor
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Fig. 2. Experimental spectra [4]: ¢ — the sum of the effect and
correlated noise, b — correlated noise

antineutrinos [4, 15, 16]. Figs. 1—3 represent the energy
spectra of positrons S.+(E.+) of reaction (1) obtained
in these papers. The main parameters characterizing the
geometries of the experiments, detector, and reactor are
given in Table 1.

Now we should pay attention to the procedure of
obtaining the energy spectrum n(E,) or, in other words,
the spectrum “with respect to the registration place”
of 7,. The spectrum of antineutrinos can be directly
determined using the kinetic energy of a positron T+, as
it differs from the energy of an antineutrino absorbed by
a proton only by the threshold energy of 1.804 MeV.
But as was demonstrated in [4, 15—16], the partial
absorption of annihilation quanta in the volume of a
spectrometer results in the fact that the observed energy
of a positron is always larger than the actual kinetic
energy by the value AT,+(~0.6 MeV) on the average.
That’s why the shift procedure for the spectrum of
positrons S,+ (E.+) must be refined, and this fact should
be taken into account when determining the energy
spectrum 7(E,):

E, = (T,+ — AT,+)+1.804+ O(E, /M,), MeV. (6)
Numerical values of the additional shift energy AT+

obtained in experiments [4, 15, 16] are given in
Table 1. Numerical values of the energy spectran(E,)
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Fig. 3. Measured spectra of positrons of reaction (1) (a) and events
of correlated noise (b) [16]. Dots — experiment, dotted curve —
approximation [16]. The histogram step — 290 keV

for the energy interval 2—9 MeV obtained using the shift
procedure (6) for the spectra of positrons taken from [4,
15, 16] (see Figs. 1, 2 and 3, respectively) are given in
Table 2.

Besides defining the spectrum 7(E,) “with respect
to the registration place” of 7., it’s necessary to examine
the technique of obtaining the spectra p; “with respect to
the origination place”. They differ not only in the “place”
but also in the mode of determination. The calculational
technique for obtaining the spectrum p; “with respect
to the origination place” of 7, for a given fissionable
nucleus is based on the fact that the ratio of the v-
spectrum (p;) to the fB-spectrum (pg) of the mixture of
fission products of each actinoid under the condition of
secular equilibrium is characterized by a high stability
not depending on hypotheses about the character of
unknown models of fission [5, 17]. Though the stability
of this ratio has no clear physical substantiation [7],
the experimental data obtained when measuring the (-
spectra of fission fragments of 2*°U, 239Pu, and ?*'Pu |9,
16, 18] confirm the results of numerical simulation [5, 17]
with high accuracy. The spectra p; necessary for further
calculations and converted in such a way are given in
Table 2. The B-spectrum for 23U was not measured,
that’s why we use a calculated spectrum [5].

The cross section o,,(E,) of the interaction between
monoenergetic antineutrinos with energy F, for reaction
(1) is the most theoretically developed energy function
among the mentioned ones: n(E, ), p;, and o,,(E,). The
technique of its calculation is described in detail in a
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number of papers, for example in [10—12]. In this case,
the cross section of the capture of an antineutrino by a
proton with regard for the behavior of the cross section
near the reaction threshold (dgny), recoil (drec), weak
magnetism (dwwm), and the external radiation correction
(0raa) has a form:

ovp (By) = 00 (Ey) (14 dthr) (1 + 6wt + Orec) X
X (14 6ra) - 7)

Analytical relations for all the corrections and their
detailed discussion are given in [11, 12]. The “naive”
cross section og(E,) [11, 12] corresponding to the
approximation of infinitely heavy nucleons or, in other
words, E, & my, E.+ < my (h=c=1), is given by

253
o0 (E,) = 27k In 2 ll:(EV —A)2 _mzc4

1/2
m3c™ (fri2) ¢ ] %

x (B, - ), (®)
where E, — (my, — my)c> = E, — A = E,+ represents
the total energy of a positron in reaction (1) because
the recoil energy of a neutron in this reaction can be
neglected at the energies of antineutrinos appearing in
the reactor; A=1.293 MeV is the physical threshold
of reaction (1), fr, is the so-called reduced half-life
of a neutron [7] with the phase space factor for a
neutron f =1.7146 [13] determined to within 0.01% and
the half-life period 7, = 7In2, where 7= 887.4 s +
0.2% [19].

Now we have all necessary preconditions for solving
Eq. (4) which turns into a system of linear equations
after discretization. The results of discretization of Eq.
(4) are seen from the analysis of data given in Table 2. It
allows us to draw the evident conclusion that the general
determinant of the system has a lot of “zeros” and the
system can be quasiconfluent. This implies that we deal

T a bl e 1. Basic detector and reactor characteristics
and the geometry of experiments
Experiment
[15] | [4] | [16]
Target Liquid scintillator (CpHay)
Np(10%8) 1.506+1.5 %  5.8204+1.5 %  5.820+1.5 %
€0 0.322+5.5 %  0.321+5.5 %  0.321£5.5 %
o 1.00 0.75 0.75
(R*)/2, m  18.1840.3 %  18.00+0.3 %  18.00+0.3 %
(W), MW 1452+2.0 % 1375+2.0 % 1375+£2.0 %
AT, 4, MeV 0.50 0.55 0.60
n, per 10° s 309.5+0.7 % — 835.0+0.3 %
Number of
measurements 66 70 174
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with an ill-conditioned system of linear equations and its
solutions can be unstable with respect to small variations
of input data. In other words, such a problem belongs
to a class of incorrect problems which can be solved
with the help of the regularization method of Tikhonov
[20, 21].

2. Dynamic Renewal of the Isotope
Composition of a Nuclear Fuel

We’ll demonstrate the effectiveness of solving the
inversed problem (4) of the neutrino spectrometry
of intrareactor processes discussing the experiments
described in [4, 15, 16].

For this purpose, let’s put down the original equation
(4) as

n
y=> 0,
i=1

where

veoNp
47 R?

y=n(E,), 2 = Ata,,p(E,,

)piv

or, after discretization,

k= ZANJ,(:), k=1,2,..
i=1

where N— the number of energy values taken for
measuring the spectrum.
At this stage, the values of A; are usually evaluated

7N7

discrepancy minimum:

N n 2
=3 (z ) ) |
k=1 =1

which states that partial derivatives 9x/0\; are equal
to zero. It results in such a system of linear algebraic
equations with respect to \;:

Zxk Ye, J=1,2,..,n

It can be written shortly as

9)

n

Z /\a:k

i=1

AN = u, (10)

where

ZJ_E:xk wk’ U’J_E:wk Yk-

Let the quantities A;; and u; be given with errors h
and ¢, respectively. Then, according to the regularization
method of Tikhonov [20], the determination of the
normal solution of Eq. (4) or, which is the same, the
system of equations (10) is reduced to searching for
the minimum norm vector over the set of vectors A =
(A1, ., An) satisfying the condition [|AX—u|| = 2(h]|\||+
). Abiding by [20], we’ll solve this problem using the
Lagrange method of undetermined multipliers, that is,
we’ll search for the vector A% minimizing the smoothing
functional

by the least-squares procedure using the condition for a  M* (A, u, A) = ||AX — u||* + a||A|]*. (11)

T able 2. Experimental n(E) and converted spectra p;(E.)
E,, n(E), (MeV)~1! pi, (MeV fission act)~!
MeV n(E) [15] [ n(B)/0,30 [4] | n(E)/0,29 [16] 2350 9] | ®®Puf9] [ U5 | *"Pu]y]
2.0 23.032+3.6  42.857+2.85 21.285+2.21 0.130(+1)£4.2  0.107(+1)£4.5  0.153(+1)  0.124(+1)+4.3
2.5 57.928+3.6  73.571+2.76 53.285+2.23 0.900(0)+4.2 0.710(0)+4.3 0.111(+1) 0.870(0)=£4.0
3.0 79.091+2.4 80.357+3.83 74.1434+2.40 0.673(0)+4.2 0.491(0)+4.3 0.835(0) 0.623(0)£4.0
3.5 87.267+2.4  91.428+2.91 81.357+3.30 0.473(0)+4.2 0.317(0)+4.3 0.586(0) 0.420(0)+3.9
4.0 84.077+3.4 82.857+5.95 73.04243.11 0.283(0)+4.2 0.190(0)+4.4 0.386(0) 0.270(0)+£3.9
4.5 71.503+2.3  78.428+3.11 60.714+2.28 0.172(0)+4.2 0.107(0)+4.8 0.245(0) 0.157(0)+4.2
5.0 62.129+3.2 60.000+4.13 53.357 £+ 4.73 0.105(0)+4.2 0.576(-1)£5.2 0.152(0) 0.920(-1)+4.4
5.5 49.37842.2  52.142+3.17 35.757+2.18 0.617(~1)+4.2 0.350(~1)+5.9 0.908(-1) 0.525(~1)+4.9
6.0 35.377+3.2 37.857+3.75 25.5004+1.91 0.370(-1)£4.3 0.177(-1)+6.8 0.549(-1) 0.267(-1)£5.6
6.5 26.00742.7  22.499+2.63 15.714+1.93 0.203(—1)4.4  0.940(-2)£7.4  0.328(-1)  0.139(~1)%6.1
7.0 16.74442.7  14.999+2.67 7.428+1.73 0.105(-1)+4.7 0.468(~2)+11 0.176(-1) 0.683(=2)%7.0
7.5 8.693+0.48 9.2854+1.85 2.64241.83 0.429(-2)+£5.0 0.180(-2)+£19 0.787(-2) 0.254(—2)+£8.0
8.0 3.562+0.42 6.071+2.31 0.13440.56 0.136(~2)+6.0 0.500(-3)+35 0.313(-2) 0.890(~3)+11
8.5 1.03340.45 2.14241.82 — 0.237(-3)%10 0.220(-3) %80 0.526(-3) 0.235(-3)+24
9.0 0.13940.36 1.42841.82 — 0.560(—4)+27 0.398(—4) 0.124(-3) 0.470(~4)+90

N o t e s: 1) errors are given in percents; 2) a decimal exponent for converted spectra p; is given in parentheses, errors are given in

percents with probability 90 %.
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The parameter « is determined from the condition

1A = ul] = 2 (R[|A%]| +9) . (12)

Trial values \; represent the solution of the system
of linear algebraic equations

n n n

aXi+ > ) ApiAihj =

Ajiuj, 1= 1, ., n, (13)
j=1k=1 j=1

which result from the condition for a minimum of
functional (11): (OM*/0A}) =0, =1,...,n.

The substitution of the trial sequence {)\;} obtained
from (13) (at a given initial estimate of the regularization
parameter («)) to condition (12) results in an equation
for the parameter a. Solving it by means of numerical
methods, we can obtain its actual value. Then the
solution of Eq. (13) at the determined value of the
parameter a will be a final required solution of Eq. (4)
(or (10) with respect to A$).

The regularized solutions {A¢'} of system (10) that
characterize the values of fission rates for the nuclear
fuel actinoids are given in Table 3, while Table 4
demonstrates the normed values of these quantities

{a?}:
af =X /3¢,

This corresponds to the contribution of fissile isotopes
averaged over the measurement time (At = 10° s) to
the total average number of fission acts a;(5).

The comparison of contributions of fissile isotopes
to the total number of fission acts (14) and (5)
characterizing the same experiment but obtained in
different ways (see Table 4), indicates their good
agreement.

(14)

3. Error of the Regularized Solution

Here, abiding by [22], we’ll briefly discuss a somewhat
unexpected but very fundamental question: is it possible

T a ble 3. Regularized solutions {A} of the system of
equations (10)

A-1019, [15] [4] [16]
fission-s—1!
As 2.688 2.486 2.457
A9 1.223 1.203 1.232
As 0.320 0.296 0.298
A1 0.196 0.196 0.195
Ao =D\ 4.42745.42 % 4.181+£6.36 % 4.18245.18 %

738

in principle to estimate the error of an approximate
solution of an incorrect problem? Unfortunately, in
the general case, it is not. This main and important
result was obtained by Bakushinskii (see [23] or [24]).
Despite his pessimism, this result is very logical from
the physical point of view: if nothing is known about the
characteristics of the accurate solution, that is, there are
no model ideas describing the investigated phenomenon,
we can’t expect any additional information (for example,
information concerning the accuracy of an approximate
solution). In other words, in the absence of any a
priori information, the fact of obtaining an approximate
solution of an incorrect problem represents a certain
achievement. But it results in the basic uncertainty
of the error of this solution. It is a really nontrivial
outbreak in our understanding of the problem stimulated
by the efforts of Tikhonov’s school [20—24], which is
proved by the fact that, till 1960s, a lot of investigators
influenced by Hadamard [25] considered the attempts
of solving incorrect problems to be a demonstration
of mathematical tastelessness. On the other hand, a
persistent mistake (which has been very popular recently
in the scientific literature) concerning the expectations
that there exists a hypothetical method of estimating an
error of the approximate solution of a problem incorrect
by Tikhonov in the absence of any a priori information is
obviously explained by unwillingness of an investigator
(who has overcome though the traditional but serious
difficulties related to the statement of the problem by
means of sound estimates of the error of the operator
|Ap, — A|| < h and experimental data |lus — ul] < )
to understand that it is not enough. However, knowing
the error of the operator and the right-hand side of Eq.
(10) is absolutely insufficient for obtaining an estimate
of the error of an approximate solution, but (and it is
very important!) it is essentially necessary for obtaining
an approximate solution in general [26]. In particular, as
was demonstrated in [27] and [28], using the error h is
necessary for constructing the stable methods of solving
ill-conditioned systems of linear algebraic equations such
as Eq. (4) or (10).

T a b le 4. Relative contributions of fissile isotopes a;
to the total number of fission acts Ag

a; Our [15] Our [4] Our [16]
results results results
as 0.607 0.606 0.595 0.593 0.588 0.586
ag 0.276  0.274 0.288 0.286 0.295 0.292
as 0.072 0.074 0.071 0.075 0.071 0.075
al 0.044 0.046 0.047 0.047 0.047 0.047
Wnpp, MW  1451.7 1452 1374.6 1375 1375.6 1375
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Thus, a stable method of solving incorrect problems
doesn’t guarantee the possibility of obtaining an
estimate of the error or the rate of convergence of
an approximate solution. It can only guarantee that
an approximate solution, if it exists, asymptotically
approaches the accurate one [20] but says nothing about
how close or how far it is situated from the accurate
solution. But the situation changes substantially if
we know some additional information concerning the
unknown accurate solution. In particular, if this
additional information concerns the structure of the
set including the accurate solution, then there exist
sufficiently effective methods of finding the error of an
approximate solution.

Here, we observe two kinds of mostly developed
methods. The first one occurs in the case where it is
known a priori that the accurate solution belongs to a
compact set. It implies that the problem is reduced to
a rather common case where it is known for sure that
the unknown accurate solution represents, for example, a
monotonic or convex function. Then, if the operator Ay
of the problem is injective (embedded) and continuous,
the problem can be easily reformulated giving a well-
conditioned (correct by Hadamard) problem which can
be dealt with applying traditional numerical methods
[24]. Examples of effective calculations also including the
estimation of the error of approximate solutions for such
a kind of compact sets can be found in [29].

The other kind of the mentioned approaches occurs
in cases where the accurate solution admits a source-
like image with a compact operator [30]. In particular,
it is shown for inverse problems of heat conduction (see
references in [30]). In this case, there exists a possibility
of calculating the so-called a posteriori error of an
approximate solution. A method of estimating the a
posteriori error and its domain of applicability for such
a kind of problems is given and discussed in [22, 30].

Now let’s discuss the question concerning the
accuracy of a stable approximation of the solution or,
speaking more accurately, the normal solution (the
normal pseudo-solution) of our system (4) or (10).
Applying the regularization method to solving ill-
conditioned systems of linear equations is characterized
with one particularity. Its essence is determined by
such an important theorem [31]: while searching for
a normal solution A of a consistent system like (10)
with the help of the regularization method using the
smoothing functional (11), it is possible to choose the
regularization parameter & = a(h) in such a way that,
for 0 < h < hg = const and for any o > 0, the error of

ISSN 0503-1265. Ukr. J. Phys. 2004. V. 49, N 8

an approximate solution satisfies the estimate

|A*||[o + R(1+ V2)|IA]

et ] < - -

‘ - 1— h||A*|

= O(h+0), (15)
where || - || is the Euclidean norm.

This estimate is accurate by the order of magnitude
of the errors o, h and the pseudoinverse matrix ||AT]]
contained in it. So, particular is the fact that the
approximate solution obtained with the help of this
method using approximate data of problem (10) has the
optimal order of accuracy (15) only in the case where
the system is solvable (see [32] in more details). If the
system is not consistent and we search for its normal
pseudosolution, then the regularization method may not
give the optimal order of accuracy in the general case.
It’s worth noting that it isn’t possible in the general case
to judge about the solvability of an accurate system from
its approximate data [32].

It isn’t our case. The system is obviously solvable
as the existence of the accurate solution is known a
priori. The latter represented in the generalized form
is equivalent to the nominal heat rating of a reactor
(Wnpp) (see Table 4) which can be easily estimated from

(5):
WNPP = Z )\iiEf = )\Z aiiE'f.

In practice, the quantity (Wynpp) is usually
determined and controlled in independent way, for
example, using the calorific method characterized with
the approximately 2% error extent [15]. The obtained
approximate solutions {A¢} of system (10) coincide with
the values of the nominal power of a Rivne reactor
VVER-440 determined in the mentioned experiments
[4, 15, 16] within the limits of 0.07 % (see Table 4).
A comparative estimate denotes that the total error
of the approximate solution with allowance for the 2%
error of the calorific method of defining the reactor
power exceeds 2—3%. Let’s show it by means of estimate
(15) which can be used for estimating the error of
approximate solutions of the experiments [4, 15, 16] due
to the solvability of system (10).

While solving system (4) in the energy spectrum
“with respect to the registration place” n(E,), we've
chosen the values of this function at energies E, =2.5;
3.0; 3.5; 4.5 MeV. That’s why the relative error of the
experimental data (see Table 2) amounted to: o ~2.71%
in [15], 0 ~3.18 % in [4], 0 ~2.59 % in [16]. On the
other hand, the error of the operator ||A;, — A|| < h
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in (4) is determined mainly by the average error of
the energy spectrum of electron antineutrinos p(E,) =
> a;p;) radiated by the mixture of products of fission
of all actinoids forming the nuclear fuel. In this case,
the relative error is equal to h = 5.7 % (see Table
2). But we should take into account the fact that the
error of experimental data o is much larger in absolute
magnitude than the average error h of the energy
spectrum of electron antineutrinos, that is, o >> h (see
Table 2). So, in our case, the optimal order of accuracy
(15) is defined mainly by the order of magnitude of the
error of the experimental data ¢ in problem (10):

Then, with allowance for the obtained estimates of the
average errors o of experimental data [15, 4, 16] and
the presumption about the uniform distribution of errors
over the components of the regularized solution A =
(A1, ... A1), we can obtain the estimated accuracy of each
component of the approximate regularized solution as

Ao (k) _ AH — | AN < O(0). (16)

. 0(1,355%)  [15],
AX= AN = Z[IAN] = O(1,500%)  [4], (17)
0(1,295%)  [16].

On the other hand, the values of the total fission rates
Ao being the sum of the components of the regularized
solution {A%} of system (10) for each case [15, 4, and
16], respectively (see Table 3), allow us to estimate the
summarized approximate solution and its accuracy in
such a form:

Ao =D AT E[AN =

Now there arises a natural question: how should we
pass from the estimate of the optimal order of accuracy
of the approximate solution (18) directly to the estimate
of the accuracy of the solution itself? On the ground
of the above-mentioned facts, the general plan of this
procedure is clear enough: basing on some model ideas
about the solution, we should make use of the additional
information which will allow us to restrict the set of
solutions including the accurate one and, by that, will
make possible obtaining a sound estimate of the error of
the chosen set of solutions. Below, we’ll explain how it
was done in this case.

It is known that the burnout of 23U and the
accumulation of plutonium result in the temporal

4,427-10'° £ 0(2.71%)  [15],
4,181-10° £ O(3.18%)  [4],
4,182-10' £ 0(2.59%)  [16].

(18)
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variation of both the spectrum of antineutrinos of a
nuclear reactor and hence the cross section of reaction
(1). As noted in [4], due to the burnout, the contributions
of isotopes a; change significantly during the operating
period. Moreover, variations in the spectrum can reach
10%, while the total cross section of reaction (1) changes
by nearly 6% during one operating period (as was
demonstrated experimentally in [33]). It’s comparable to
the errors of the results given in expression (18) or even
exceeds them. In practice, the contributions of isotopes
a; are usually calculated with the help of programs with
the relative error of calculations reaching for example
5% for a reactor VVER-440 [33]. That is, if the values of
the relative contributions of isotopes «; used in the direct
problem (2) and those obtained in the inverse problem
(4) are close with all other things being equal (see
Table 4), it is equivalent to the closeness of estimates
of the optimal order of accuracy of solution (16) —
(18) and the error of relative contributions of isotopes
a; obtained with the help of programs calculating the
worked-out fuel [33]. In other words, it implies that the
accuracy estimate of the error of each component of the
approximate regularized solution (4) can be now written
in a form acceptable for calculations:

Its essence supplements quite an abstract content of
expressions (16)—(18). For example, expressions (17),
(18) with condition (19) being satisfied allow one to
estimate the error of relative contributions of isotopes «;
(Table 4) of each component forming the approximate
regularized solution (18) of the balance equation (4) of
the spectrometry of antineutrinos in experiments [15, 4,
and 16]:

bl A Ay (AN 2+ Ao\
Z_)\O (673 - >\z )\0 -

Ah) ,\H = [|AX]| < O(0) = 20, (19)

5.6% [15],
:{ 6.6% [4], (20)
5.3%  [16].

This estimate correlates well with data obtained from
the calculations of a worked-out fuel [33]. The most
important thing is that such a procedure of passing from
estimating the optimal order of accuracy of approximate
solution (18) directly to estimating the accuracy of this
solution implies at the same time that condition (19)
remains valid in all similar experiments and improves the
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statistics of measurements (for example, at the expense
of an increase of the sample size) or degrades.

And, at last, it’s worth noting that there exists a
method allowing to avoid the difficulties concerning the
problem of consistency or inconsistency of systems of
equations of kind (10). It turns out that the theory
of a generalized discrepancy principle developed in
[32] for solving nonlinear incorrect problems allows
one to construct a method of solving ill-conditioned
systems of linear equations with approximate data, and
its accuracy doesn’t depend on the solvability of an
accurate system. This method (the so-called method of
pseudoinverse matrix [32]) will be used in the following
paper for the further analysis and the choice of a stable
and reliable procedure allowing one to determine the
accuracy of an approximate solution for the inverse
problem of the neutrino diagnostics of intrareactor
processes with allowance for the statistics of origination
and registration of reactor antineutrinos [34—36].

Conclusions

We have proposed a basically new method for
determining the nuclear density of each component
forming the isotope composition of a nuclear fuel and,
respectively, the dynamics of their variation in the
course of the reactor operation. The neutrino-based
method obviously has all the characteristics necessary
for an independent and absolute technique, which is very
actual for the remote diagnostics of the most important
characteristics of the reactor core in on-line mode. It
can be applied to both “short-range” problems connected
with the determination of the current heat rating and
the dynamics of variation of the nuclear density of each
actinoid contained in the composition of a nuclear fuel
and “long-range” ones like those of identification of a
mixture of fission products and defining the integral
density of a neutron flux.
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OBEPHEHA 3AJIAYA JTUCTAHIINHOT HEMTPUHHOT
JIAPHOCTUKY BHYTPIITHHOPEAKTOPHIX
[IPOIIECIB

B.Jl. Pycos, B.O. Tapacos, /[.O Jlimeunos, I.FO. Illaabar
Pesmowme

Ha mpuknani BiZOMHX €KCIIEpUMEHTAJIBHUX JAHUX DPO3LJISHYTO
obepHeHY 3aJady JUCTAHIINHOI HEHTPUHHOI MiarHOCTUKH AKTUB-
HOI 30HH DEAaKTOpa, PO3B’SI30K sKOI, 3 OZHOrO OOKY, JO3BOJISIE
3 BiZIOMOI0 TOYHICTIO AUCTAHI[IHHO BU3HAYATH I[OTOYHI 3HAYEH-
HSI SiIEPHOI IIJIBHOCTI KOXKHOI 3 KOMIIOHEHT SIJ€PHOTO MaJIH-
Ba, a 3 IHMIIOrO — BigKpPHUBAaE PEASbHY MOXKJIUBICTH CTBOPEHHS
HeHTPUHHOI TexHOJOril AlarHOCTHKH YacoBOI eBOJIIONil i3oTomHO-
ro CKJIAQJy SAepPHOTO HAJMBA i MOTYXKHOCTI peakTopa B pPeXXuMi

on-line.
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