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We study the evolution of colour gluon states in an isolated
QCD jet at the non-perturbative stage. Fluctuations of gluons
are less than those for coherent states under specific conditions.
This fact suggests that there gluon squeezed states can arise. The
angular and rapidity dependences of the normalized second-order
correlation function for present gluon states are studied at this
stage of jet evolution. It is shown that these new gluon states
can have both sub-Poissonian and super-Poissonian statistics
corresponding to, respectively, the antibunching and bunching of
gluons by analogy with squeezed photon states.

Introduction

Many experiments at ete™, pp, ep colliders are devoted
to hadronic jet physics, since detailed studies of jets
are important for a better understanding and testing
of both perturbative and non-perturbative QCD and
also for the finding of manifestations of new physics.
Although the nature of jets is of a universal character,
ete™- annihilation stands out among hard processes,
since jet events admit a straightforward and clear-cut
separation in this process. In the reaction ete™ —
hadron, four evolution phases are recognized by various
time and space scales. These are (I) the production of a
quark-antiquark pair: efe” — qq; (II) the emissions of
gluons and quarks from primary partons — perturbative
evolution of the quark-gluon cascade; (III) the non-
perturbative evolution and the hadronization of quarks
and gluons; (IV) the decays of unstable particles.

The second phase of ete™- annihilation has been
well understood, and sufficiently accurate predictions
for it have been obtained within the perturbative
QCD (PQCD) [1, 2]. But predictions of the PQCD
are limited by small effective coupling a(Q?) < 1
and the third phase is usually taken into account
either through a constant factor which relates partonic
features with hadronic ones (within local parton-
hadron duality) or through the application of various
phenomenological models of hadronization. As a
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consequence, theoretical predictions both for intrajet
and for interjet characteristics remain unsatisfactory.
For example, the width of the multiplicity distribution
(MD) according to the predictions of PQCD is
larger than the experimental one. The discrepancies
between theoretical calculations and experimental data
suggest that the quark-gluon cascade undergoes non-
perturbative evolution after the perturbative stage
after that hadronization effects come into play. New
gluon states, generated at the non-perturbative stage,
contribute to various features of jets. For example,
such a contribution to the multiplicity distribution
can be in the form of the sub-Poissonian distribution
[3, 4]. Therefore, we must take into account both the
perturbative and non-perturbative stages of the jet
evolution.

Calculations performed within PQCD [5, 6] show
that the multiplicity distribution at the end of the
perturbative cascade is close to a negative binomial
distribution. At the same time, gluon MD in the range of
small transverse momenta (thin ring of jet) is Poissonian
[7]. Thus, parton MD in the whole jet at the end
of the perturbative cascade can be represented as a
combination of Poissonian distributions each of which
corresponds to a coherent state. Studying a further
evolution of gluon states at the non-perturbative stage
of jet evolution, we obtain new gluon states that are
squeezed states (SS) [8—10]. These states are formed
as a result of the non-perturbative self-interaction of
gluons expressed by nonlinearities of the Hamiltonian.
In this paper, we prove that the non-perturbative
stage of jet evolution can be one of sources of a
gluon SS by analogy with the nonlinear medium for
photon SS [11—14]. Squeezed states possess uncommon
properties: they display a specific behaviour of the
factorial and cumulant moments [15] and can have
both sub-Poissonian and super-Poissonian statistics
corresponding to the antibunching and bunching of
photons. Moreover, the oscillatory behaviour of MD of
photon SS is differentiated from Poissonian and negative
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binomial distributions (NBD). Because of the analogy
between photon and gluon, MD of gluon SS must
have oscillations and, using Local parton hadron duality
(LPHD), we can compare derived gluon MD with hadron
MD. It is clear that, in this case, the behaviour of hadron
MD in jet events is differentiated from NBD and this fact
is confirmed by experiments for pp, pp-collisions [16—
18].

In series of works [19—21], it was shown that the
presence of a chaos amplifies the effect of squeezing. It
was demonstrated that one of the causes of chaos is a
local instability of a dynamical system [22] which can
lead to the mixing of trajectories in the phase space
and, as a result, to a non-regular behaviour of the
considered system [23]. A keen interest to chaos in field
theories [24] is connected with the facts that all four
fundamental particle interactions have chaotic solutions
[25]. Since the chaos phenomenon can be related with
confinement [26] and with fractality for the factorial
moments [27], the question about a condition of the
appearance of chaos in a jet is important. In this
connection, we investigate the SU(2)-jet model for the
purpose of revealing the local instability which can lead
to chaos.

1. Squeezed Gluon States in QCD Jet Ring

The Hamiltonian of the four-gluon self-interaction V' in
the jet ring of thickness df has the next form [9, 10]

V= 27ru2fabcfade{ (1 +up — % sin? 9) x

x [a575 + ai§is] + (1 + u sin® 9)a3§%§} sinf df. (1)

2 k?4 2

Here, u; = (1 — i—%), Uy = —4(2;)3% uf, abede =
alTattaflal, +altal,al al, +abaltaltal, +hc. , al(al )
is the operator annihilating (creating) a gluon of colour
b and vector component [, g3 and kg are correspondingly
the virtuality and energy of the gluon at the end of the
perturbative cascade, g is the coupling constant, fupc
stands for the structure constants of the SU.(3) group,
# is the angle between the jet axis and the momentum
k (0 <0 < Omax, Omax 1s half of the opening angle of the
jet cone).

It is obvious that Hamiltonian (1) includes both the
squares of the creation and annihilation operators for
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gluons with fixed colour and vector indices and the
product of the corresponding operators with different
colour and vector indices. As is known from quantum
mechanics and quantum optics, the presence of such
a structure in the Hamiltonian and, consequently, in
the evolution operator is a necessary condition for
the emergence of single- and multi-mode squeezed
states [13], since the unitary squeezing operator S(z)
can involve both quadratic combinations of creation
and annihilation operators (single-mode squeezing) and
the product of the considering operators (multimode
squeezing)

S(z) = exp{z*aiaj - zaj'aj}, (2)

where z = re' is an arbitrary complex number, r is a
squeeze factor, phase ¢ defines the direction of squeezing
maximum [13].

In order to verify whether the final gluon state vector
describes the single-mode SS, it is necessary to introduce
the phase-sensitive Hermitian operators (X7); = [a} +
(a?)*]/2 and (X})2 = [a} — (af)T]/2i by analogy with
quantum optics and to establish conditions under which
the variance of one of them can be less than the variance
of a coherent state.

Mathematically, the condition of squeezing is
expressed as the inequality [14]

<N (A(X}’)é)2> < 0. (3)

Here, N is the normal-ordering operator such as

(v (aehy)) = 3= [(())-

w2 fort) (st )] @

The expectation values of the creation and annihilation
operators for gluons with specified colour and vector
components are taken for the vector

1)y = TTITIei @) = [Tl ) — v TT]T e ).

c=1l=1 c=1l=1 c=1l=1
(5)
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Let us consider the specific case where the colour
index is b = 1 and the vector index [ is arbitrary. Then
we have

2
<N (A(Xll);) >: tdmust sin0d0{(1 + up) %
X [5l1(Z33 + Z32) + (1 — 5l1)Z11} + [512Z33 + 613222 |+
Lo 1 1
+u, sin” 0 [—5511(Z22 + Z33) + 012(Z33 — §Z11)+

+013(Z22 — %Zn)} } (6)

7
Here, Zun = 3 ((X5)1){(X5)2)
k=2
Since, at small values of the squeeze factor,

(m,n = 1,2,3).

reoss=¥2(N (A(X);)2>, (7)

expression (7) can be rewritten taking into account
formula (6) in the form

7 cosd = — 8muyt sinﬂdt‘){(l + uy) [611(Z33 + Zao)+
+(1 - 511)Z11] + 012233 + 813222+

. 1 1
+uysin?6 [—5511(Z22 + Z33) + 012(Z33 — §Z11)+

+013(Z22 — %Zn)} } (8)

Evidently that <N (A(X);)2> £ 0ifr # 0 and

3
o # g,?ﬂ In the final state under consideration,

fluctuations of one of the squared components of
the gluon field, A(X})s, are less than those in the
initial coherent state under the following conditions:
<(X7]%)1> < 0,<(XTI:L)2> < 0 or <(X7]%)1> > 0 and
((XF)2) >0 (k#1,m #1). Then, as follows from (8),
™

7r
5 <d< Eh In this case, we have phase-squeezed gluon

states by analogy with quantum optics [12, 13]. If the
conditions ((X})1) > 0,((XE),) <0or ((X})1) <0
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and ((XE)o) >0 (k# 1,m # l,—g <d< g) are
satisfied, fluctuations in another squared component of
the gluon field, A(X});, will be less in the final state

8 3

vector [] []|af(¢)) than in the coherent state. In this
c=1l=1

case, we arrive at the amplitude-squeezed states (as in

the case of photons [12, 13]).
Rewriting expression (8) in terms of the amplitude
and phase of the gluon coherent states (a} =|a?| e?7)

7
. ! uy .
rll cosd = —8mwust smt‘)dt‘);{(l—kul - éstG)x

3
X [611 Z |k |? sin(29F) + (1 = 6)| of |2 sin(27f)] +

n=2

+(1+ g sin?6) [5l2| ok |? sin(294) +

o] Psin(2:5)] | o)

we see that the effect of single-mode squeezing is absent
(rf cosd = 0). Then the initial gluon coherent fields
are either real (v* = 0,n # [,k # 1) or imaginary
(vk = w/2,n # I,k # 1). Similar conclusions will also
be valid for a gluon field featuring other colour indices.

8 3

Thus, the vector [] []|af(t)) describes the squeezed
c=1l=1

state of gluons that are produced at the non-perturbative

stage of the jet evolution within a small interval of time
t. Here, the corresponding fluctuations of the squared
components of the gluon field will be less than those in
the case of the initial coherent state.

It should be noted that the Hamiltonian of the three-
gluon self-interaction which is proportional to fgp. in the
momentum representation does not lead to the single-
mode squeezing effect. In fact, rewriting the expression

for <N (A(th);)2> (4) for small times as

(5 (stxiy)) =7 @l @, 1t (1), V1110)-

(@ |[[V,a™ ()], " <k>1a>}, (10)
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it can be shown that [a]'(k),[al(k),V']] = O,
[[V',a " (k)],a;" (k)] = 0 since frny = 0. That is, the
squeezing condition (3) does not hold.

There is also a direct relation between squeezing and
chaos in some quantum-mechanical systems [19 — 21].

The problem of the existence of a chaos in the
SU(2)-jet model merits an especial attention. Here, we
take the case of SU(2)-group only for a simplification
of calculations. The respective Hamiltonian of the
interaction V is obtained from the Hamiltonian for
SU(3)-jet (1) by replacing the structure constants of
the SU(3)-group by the corresponding SU(2)-group
constant, that is fape — €ape (a,b,¢ = 1,3).

The local instability for the given Hamiltonian has
been verified by the Toda criterion [28]. Analysis was
made numerically accordingly to the next algorithm:

1) we come to the classical Hamiltonian by keeping the
order of operators at,a and consider them as c-
numbers (a*, «);

2) we have 18 variables and calculate the instability
matrix 18 x 18 for this case;

3) next step is the calculation of its eigenvalues to find
out whether they are real or imaginary.

As a result, the following conclusions have been
obtained:

1. If all variables a and a* are real or imaginary, then
the system of SU(2)-gluons is strictly ordered and the
effect of the squeezing is absent.

2. If at least one of a or a* is imaginary and other is
real or at least one of @ and a* is real and other is
imaginary — we have the local instability, which can
lead to a chaotic system.

2. Correlation Functions for Squeezed Gluon
States

The behaviour of a correlation function can serve as
one of the criteria of the existence of squeezed gluon
states. It is common to define a normalized second-order
correlation function as [27]

Cla)(61,62)
p1(01)p1(02)

Ci)(bh,62) = p2(61,02) — pi(61)p1(f2), with
p2(61,62) (p1(9)) being the two-particle (single-particle)

Ky (61,02) = (11)

inclusive distribution. Then, for gluons with a colour b
and a vector component [, we can write
plb(2) (017 02)

Kl (01,60) = —— 227

(12)
P?(l) (01)9?(1) (92)

At the same time, we have

/ p(8)d6 = (n) = (a*a) = /<f(o,t>|a+a|f(o,t>>d9,
Q Q
(13)

where |f(6,t)) is the final state vector. We find from (13)
that the single- and two-particle inclusive distributions
can be represented as

p1(0) = (f(0,t)|a"alf(6,1)),
p2(01,62) =
= <f(625t)7f(elvt)|a+a’+aa|f(017t)vf(027t)>'

By taking the expectation values over the vector!

(14)

8 3
IT IT | f(6:1,t), a5 (02,t)), we obtain the explicit form
c=1[=1

of the normalized second-order correlation function for
squeezed gluon states:

Kj3)(01,62) = — My (61,6)/{] af | —

—2| of [> Mi(61,65) + M2 (61,02)}. (15)

For the colour index b = 1 and an arbitrary vector
component [, we have

My(61,02) = 24tuy 7| o 2| B |2 sin (5+ g) «
X{(l +011)(2+wu; — ;1) (sin €y +sinfy)—

—% (751 (36l1 — 1)(sin3 60, + gin® 92)}, (16)

M>(0:,6:) =80tus 7 | o | B |? sin <g + %) X
><{(1 +611)(2 +ug — 81)(sin @y + sinfy)—

—% U1 (36l1 — 1)(sin3 60, + gin® 92)} (17)

I That this vector also describes squeezed gluon states can be proven by verifying the squeezing condition (3).
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In deriving these formulae, we assumed for simplicity
that a} =|a| €?*, | = any, and o =|B| €72, when b # 1
and an arbitrary I, y1 — 2 = §/2 + 7 /4.

Let us perform a comparative analysis of the
correlation function (15) for gluon squeezed states and
the corresponding function for photon squeezed states,
which was thoroughly studied in quantum optics.

In quantum optics, a normalized second-order
correlation function is defined as [14]

(o a @)
= (e b (18)
(" ar)

where the expectation values are taken over the
evolved state vector at the instant ¢. If the correlation
function is positive, there occurs photon bunching
(super-Poissonian distribution); otherwise (K2 <
0), we have photon antibunching (sub-Poissonian
distribution) [12, 14]. For a coherent field obeying
the Poissonian statistics, the normalized second-order
correlation function vanishes (K@) = 0).

For photon squeezed states whose state vector
is defined as |a,z) = S(2)|a), the corresponding
correlation function has the form (at small values of the
squeezing parameter r;)

rifade 0 + (o) )%e™)

K, = — . — .
1(2) | a |4 —2r, | oy |2 [a%e*"i + (al*)ze“s]

(19)

In contrast to the correlation function for squeezed
photon states, Kj(s), the corresponding function for the
squeezed gluon states, K;’(Q),
(15), M>(61,605) which appears because Hamiltonian
(1) of the gluon self-interaction involves a nonlinear
combination of the creation and annihilation operators
of gluons with different colours and vector components.

The angular dependence of the correlation function
for squeezed gluon states (with colour b = 1) that are
formed at the non-perturbative stage after a lapse of
t = 0.001 is investigated graphically at the f01120Wing

includes, as follows from

parameter values: 8, = 0; g> = 47 because a; = Z— ~1;
T

@ =1 GeV? that corresponds to the gluon virtuality
at the beginning of the non-perturbative stage; k, =

———— corresponds to a gluon energy in the case of
2<nglu0n>
2-jet events; /s = 91 GeV and (nguon) = || + 7| B|2.
If the amplitude |a] of the gluon field being
considered is equal to the amplitudes |B| of the
cophased gluon fields having different colours and vector
components, then the values of the correlation function
lie in the negative region (Fig.1,a), and there occurs the
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Fig. 1. The angular dependence of the cophased (§ = 0) squeezed
gluon correlation function at: ¢ — |2 =1, |B]2 = 1; b — |a|?> = 3,

61> =1

antibunching of gluons with the corresponding sub-
Poissonian distribution. In this case, the correlation
function tends to a constant (K| (61,62 = 0) =
—2.80094) as the angle #; increases. The behaviour of
the angular correlations of the cophased squeezed gluon
states (0 = 0) is similar to the correlations of analogous
photon states at small values of the squeezing parameter
[11]. If the amplitude of a selected gluon field with the
colour (b = 1) « begins to dominate in relation to the
amplitudes of other colour fields (b # 1), that is, a >
B, then the correlation function involves a singularity
(Fig.1,b) at 0; ~ 1.208725 x 107! (Jaf?> =3, |32 = 1).

For the antiphased squeezed
(6 = ), the correlation function lies in the
positive region and there occurs the gluon
bunching with the corresponding super-Poissonian
distribution. In this case, the correlation function
grows fast at small angles 6; and tends to a
constant irrespective of values of the amplitudes «
and .

states of gluons
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=
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X oo \\ //
-0.025
-2 -1 0 1 2
Y1
Fig. 2. The rapidity dependence of the cophased (§ = 0) gluon
squeezed correlation function at y» = 0: |o|? = 1,|B]%2 =1 (solid

line), || = 3, 8|2 = 1 (dotted line)
By using the transformation

tanh?
sinf = /1 - 22 y’
U1

(20)

we can rewrite the correlation function for squeezed
gluon states in terms of rapidities

Kj(5)(01,05) = — My (y1,92) /{| o] |* —

=2 | af > Mi(y1,y2) + Ma(y1,92)}- (21)

Rapidity correlations of the cophased gluon squeezed
states (Fig.2) fall within the region of negative values
and have a minimum at the center (Kj, (y1 = y2 = 0) =
—0.0267894 at |a|?> = 1). For |a| > ||, the correlation
function has a less pronounced minimum at the center
K5y (1 = y2 = 0) = ~0.00887147 at |a]” = 3.

Rapidity correlations of the antiphased gluon
squeezed states fall within the region of positive values
and have a maximum at the center (K{’(Q) (yh = y2 =
0) = 0.0241966 at |a|? = 1, K;’(Q) (y1 = y2 = 0) =
0.0080179 at || = 3).

It should be noted that the behaviour of the cophased
gluon squeezed correlation function K lb(z) (y1,y2) at /s =
35 GeV (Fig.3) is similar to that of hadron correlations
with a distinctive minimum at y; — y2 = 0.45 [27].

Thus, the behavior of rapidity correlations for the
cophased gluon squeezed states under investigation
suggests that, at the non-perturbative stage of evolution
of a QCD jet, there exists the effect of the gluon
antibunching with the corresponding sub-Poissonian
statistics.
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Fig. 3. The rapidity dependence of the cophased gluon squeezed
correlation function at /s = 35 Gev, |a]> = 1,|8]> = 1: a —
“1<y14+92<0,b—-0<y1 +y2<1
Conclusion
Investigating the gluon fluctuations, we have

theoretically proved the possibility of the existence
of the gluon single-mode SS at the non-perturbative
stage of the QCD jet evolution. The emergence of such
remarkable states becomes possible owing to the self-
interaction of gluons with different colour indices.

As one of the identification criteria of the existence
of gluon SS, a correlation function can serve. Therefore,
we have analyzed the behaviour of angular and rapidity
correlations and have compared our results with the
corresponding correlation function for photon squeezed
states, which was comprehensively investigated in
quantum optics. The form of the normalized correlation
function K ;72 for cophased squeezed states specifies the
gluon antibunching effect if the amplitudes of all gluon
fields (with various colours and vector components)
are equal to one another. Such a behaviour of angular
correlations is analogous to the behaviour of the
corresponding correlations of the photon squeezed states
at small values of the squeezing parameter. At the
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same time, there is a distinction between them: in
contrast to the normalized correlation function known
in quantum optics, the correlation function of the gluon
SS has a singularity if the amplitude for the fixed-
colour gluon field being studied is greater than the
amplitudes for gluon fields with other colour indices. The
correlations of the cophased squeezed states specifies the
presence of the gluon antibunching effect, whereas the
gluon bunching occurs for antiphased squeezed states.
Hence, the non-perturbative gluon evolution makes a
contribution to the parton distribution prepared by the
perturbative stage of jet evolution in the form of a
sub-Poissonian (cophased squeezed states) or a super-
Poissonian (antiphased squeezed states) distributions.

Thus, the behaviour of the two-particle angular and
rapidity correlations can serve as one of the criteria
of the existence of squeezed gluon states. At the same
time for a comparison of our results with experimental
data, we must take into account the contribution of the
perturbative stage of jet evolution and hadronization
effects. This can be done by using Monte Carlo methods
and will be the subject of our further investigations.

In this paper, we have investigated the possibility of
coexistence both the condition of squeezing and chaos
for some physical system: a mechanical model of Yang—
Mills field for SU(2) gauge. Using the Toda criterion, we
check the local instability in the corresponding classical
system and determine conditions of the coexistence
of this effect and squeezing at small times. Under
investigation of the local instability within SU(2)-jet
model, it was numerically shown that this effect exists
under condition if at least one amplitude of the coherent
fields « and a* is imaginary and other is real and
vice versa. Thus, for the SU(2)-jet model, the effects of
squeezing and chaos can coexist under some conditions.
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OJHOMOJOBE CTUCHEHHS I'V/ITFOOHIB
Y KX/I-CTPYMEHI

B.I. Kyswumnos, B.A. Illanopos, JI.JI. Enkoscoruti
Pesmowme

BuB4uaeTbcsi €BOMIONiA KOJIBOPOBHUX IJIIOOHHHUX CTaHIB B OKPEMO-
my crpymeni KX/ ma memeprypbarusHiit crazgil. 3a nmeBHEX yMOB
GbIyKTyalis II00HIB MeHIIA, HiXK y KOTePEeHTHUX CTaHaX. 3Biacu
BUILIABAE, IO TYT MOXKYTh BHHUKHYTH CTHCHYTI [TFOOHHI yTBOPEH-
usa. HaMu BHBU€HA KyTOBa T MIBHIKICHA 3aJI€2KHOCTI HOPMOBAHUX
KOpenaniiauxX (pyHKHiil I TaKUX IJIIOOHHUX YTBOPEHb HA JIaHiMi
crazii eBosrowil crpymensi. [loka3aHO TakOX, IO I[i HOBI TJIFOOHHL
YTBOpEHHS, 33 AHAJOTI€I0 31 CTUCHYTUMH (DOTOHHUMH yTBODEHHSI-
MH, MOXKYTb MaTH K Cy0-, TaK i CymepIyacCOHIBCbKi CTATHCTHKH,
fKi BIIIOBITAIOTH AaHTUTPYIIYBAaHHIO a00 IPYIYBAHHIO IJIFOOHIB.
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