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General expressions are obtained for the coefficient of light
absorption by free carriers as well as the intensity of the
spontaneous light emission by hot electrons in multivalley
semiconductors. These expressions depend on the electron
concentration and electron temperature in the individual valleys.
An anisotropy of the dispersion law and electron scattering
mechanisms is taken into account. Impurity-related and acoustic
scattering mechanisms are analyzed. Polarization dependence
of the spontaneous emission by hot electrons is found out. At
unidirectional pressure applied or high irradiation intensities, the
polarization dependence also appears in the coefficient of light
absorption by free electrons.

Introduction

The phenomena of the light absorption and emission
by free carriers are already being studied for years,
and it seems likely that a discovery of new effects can
hardly be expected here. However, this is not true in
the case of multivalley semiconductors. The peculiarities
of the mentioned phenomena in such semiconductors
are related to (i) a sharp anisotropy of the dispersion
law for electrons, (ii) a fact of the electron filling
of several valleys and, finally, (iii) an anisotropy of
scattering mechanisms. It is known that a “third
body” is required in the act of the photon emission
or absorption by a free electron. This “third body”
provides the energy and momentum conservation during
collisions. Impurity atoms, lattice oscillations (phonons),
or boundaries can serve for it. By this, the influence of
scattering mechanisms (including their anisotropy) on
the absorption and emission processes can be explained.

In the thermodynamic equilibrium state, the
quantity of photons absorbed by free electrons is equal
to that of emitted photons. The detailed balancing
principle is therefore valid. If the photon quantity
exceeds that in equilibrium state, i. e., a semiconductor
is irradiated with an external electromagnetic field, the
photons are absorbed by free carriers. If the external
electromagnetic field is absent, and the electron gas is
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heated (e.g., by a constant electric field), the process of
light emission by free electrons occurs.

A new effect related to the light emission by free
electrons in multivalley semiconductors, comparing to
single-valley semiconductors, is the appearance of the
polarization dependence of the emitted light intensity.
The same dependence can also appear in absorption if
the irradiation intensity of a multivalley semiconductor
is high enough.

There are various methods that allow finding the
absorption and emission by free carriers. In our opinion,
the most convenient method is to use a kinetic equation,
in which the influence of the electromagnetic field on
the free carriers scattering mechanism is taken into
account. The convenience of this method lies in that
one may derive the expression for the absorption by free
carriers both in classical and quantum cases in a single
approach. Besides absorption, this method allows also
finding the wave field induced emission by free carriers.
From here, one may obtain the spontaneous emission by
free carriers through definite formal substitutions. We
have used such an approach in [1]. In that paper, we have
investigated the mechanism of acoustic scattering in
detail, and outlined a model for the impurity scattering.
However, no analytic expressions for both classical and
quantum absorption under the impurity scattering in
multivalley semiconductors have been derived. The same
is true also for the emission regularities. That is why we
pay the principal attention in this paper to the study of
the situations where the impurity scattering dominates.

1. Collision Integral of Electrons with Ions in
the Presence of an Electromagnetic Wave

We consider the multivalley semiconductors like n-Ge
and n-Si. The Hamiltonian of electrons, which populate
one of the conduction band valleys, can be written in the
principal axes of the mass ellipsoid in the presence of an
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electromagnetic field as follows:

A= ii (ﬁa—e—;Aa)2+éU(F—ﬁi). (1)

In Eq. (1), m, are the principal components of the
mass tensor, (m; = my, = my, m. = m), Po is the
ath component of the momentum operator, ¢y is the
electron charge, ¢ is the light velocity, A, is the ath
component of the vector potential of electromagnetic

field, N is the number of ions in volume V, U (F— Rl)

is the interaction potential of an electron with an ion (7
is the electron coordinate, R; is the coordinate of the ith
ion),

6(2) —r/rp
U(r) = 50_7“6 ) (2)

€p is the static dielectric constant, and rp is the Debye
radius.
We set the vector potential A in a form

A= A0 coswt. (3)

In formula (3), A is a constant vector, w is the wave
frequency.

The electron wave function in the field of an
electromagnetic wave but without scattering centers, is
determined from the Schrédinger equation

L0 0 _ a0 N~ L (o €\,
lha@bﬁ = H! )¢5 = Z 2. (pa - ?Aa) ¢5 (4)
a=1
and equals:
(0) _ [

(s \/Vexp <ﬁp r> X

t 3.

Pl _& N2\

X exp h/dtz;Qma (pa C)Aa(t)

0 a=

In formula (5), V is the system volume, g5 =

3
S p2/2m, is the energy of electron having momentum
[e3

p. We have omitted the quadratic components in A&O) in
the exponent, when obtaining formula (5). We shall find
the electron wave function in the presence of scattering
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centers by perturbation theory. This function can be set
in the following form:

Y=o + Y, (6)

where 1/1;1) satisfies the equation:

LD () 501 _NSpr (B 0
ihsos) — Oy _;U(T—Ri) Pl (7)

We shall write the solution of Eq. (7) as the expansion
in functions (5):

1) _ > (0)

vy =30 (5 1) 0 (®)
pl

By substituting 1/15.).1) in Eq. (7), multiplying both sides

of that equation by \III(?O)*, and integrating over 7, we
obtain

320 (55 8) = L [ arexol Lia— 517
”ﬁc(”’p’t) = V/dTeXp<h(p p )T>X

N .
X ZU(F— ﬁj)exp{—%(sﬁ— Sl;;)t-i-

Jj=1

.3 ,
L€ ©) [ Pa —Po | .
+—hwc E AY (777%( ) smwt}. 9)

a=1

Integrating both sides of Eq. (9) between 0 and ¢ and
taking into account the identity

o0

e—iAsinwt — Z I, ()\) e—ilwt

l=—00

(with I; () being the Bessel function), we obtain:

C(ﬁ, o t) - %/dfexp <% (ﬁ—ﬁ) F) x

(10)

X . . (11)

Using Eq. (11), one may find the probability for an
electron to pass from the state p into the state §' in a
unit time, as a result of scattering by an impurity in the
field of an electromagnetic wave:

A (o = )\
by = Se ()]
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Substituting relation (11) in Eq. (12), we obtain:

1 . ] -\
Pﬁ’pq,:hz—vz/drexp<ﬁ(p—p’) r>><
N 2
XZU(F—R}) X
j=1
= 2 [ _€o : (0)(pa_pla)
X< 2 Z I —ZAa X
l=—00 ca:l Ma
sin (Q — lw) t
1
R )} (13)

In Eq. (13), 0= % (55— 25

The terms with [ # I’ are not written explicitly in
Eq. (13) since they do not contain resonance multipliers
and therefore disappear at ¢ — oo. Passing to the
limit ¢ — oo in Eq. (13) and taking into account that
snzt 7§ (z) in this case, we obtain the following
expression for Pﬁ E

[ares (5 (7-7) r) v (- 5|«

3 ;

€o (Pa — Do)

0 E :A(O)ia
(hwca:l « My )X

X0 (55—55, —lhw).

2w

P 72

7, p’

xi[f

I=—o0
(14)

Expression (14)

coordinates of ions {

depends explicitly on all the
Fj}. That is why it should be
averaged over all the possible ion configurations. Taking

into account that

/drexp (- F—7") F) iV:lU (F-&)| =
:Ji /drexp (% (7-7) F) U (F—ﬁj)2 +
+3 [aiew (5 (7-7) 1) v (7 - 1) x
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one may show (e.g., see [2], p. 672) that the second
term in Eq. (15) turns to zero, when averaging over the
positions of chaotically distributed scattering centers.
Therefore, the averaging results in

< /dFexp (% =7 F) iU (7~ &) 2>

j=1

- N‘/d?exp (% (5-7) F) UM

. In Eq. (16), N is the number of ions in volume V/, i.e.

2 (16)

N =Vn,, (17)

with n, being the ion concentration.

Taking into account the explicit expression for
U (7) according to Eq. (2), integral (16) can be easily
calculated:

/dFexp (% (5—;?) F) U (7)

o\ 2 -2
drel ) (P—p' 1
= Tz
€o h ™D

The average of Py 5+ over all the ion configurations
can be obtained from Eqgs. (14) and (18) as

(720)-
p,p

(18)

(27 h)® @
Vo &l

o) 3
xl_z 12 (%2&@%) 5 (eﬁ—sﬁ —lhw).
(19)

The integral of collisions of electrons with ions in the
presence of electromagnetic field looks as follows:

() =~ S )i+ 5 (5,51 (7)o

In Eq. (20), f(p) is the distribution function of
electrons over their momentums . Since we consider the
multivalley semiconductors, the distribution function
can be different in different valleys. We further write
% (p), meaning the distribution function in the ith
valley.
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2. Light Absorption under Non-isotropic
Impurity Scattering

We substitute now Eq. (19) in Eq. (20) and proceed from
the summation over p' to the integration. This results in
the following form of the collision integral for the ith
valley:

(%)
ot coll a

We assume that the distribution function f((;% is

normalized to the concentration in the ¢th valley n;:
[ a5 @ = n. (22

In thermal equilibrium, all n; are the same. Under
heating of electrons or a unidirectional pressure applied,
the filling of different valleys can be also different.

We obtain the energy absorbed by an electron of the
ith valley in a unit time from Eq. (21) after multiplying
it by &5 and integrating over p. At this, if we make
substitutions p & 1;7 and [ & —[ in the term which is
proportional to f(?) (1;7) as well as define €5 through ez

using the d-function, we obtain

. )
Po = [ (%) =
st

460

= 2na hwl/{

dpdpf (P) y
7) (h/mf}

=

3 ’
2 [ 0 (0) P 7 Pa e
x I (mc;Aa o~ 6(5p o lhw). (23)

From now on, we consider
transitions, i.e. [ = +1.
We have in this approximation:

only one-phonon

Pi= PO (4) = PO (), (24)
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where

4 =77 £ (i)
5 / dpdp’ ' (p) o

PO (2) = + 20 np .
{(5-7)" + a7}

€
3 '
2 [ €0 (0) P ~ Pa B,
xI; (ﬁwcagl A ~ ) (6,, ey £ hw) . (25)

The sign (+) means an increase of the electron
system energy (i.e., absorption), while the sign () means
a decrease of this energy (i.e., emission).

As the estimations made for all frequencies of the
optical range show, the argument of the function I (...)
in Eq. (25) is far below unity. That is why we can
consider only the first term of the Taylor series of Iy (. ..)

in Eq. (25). We then have
" e dpdp’ {9 (mé{sﬁ —e5 £ m}
PWY(+)=+
() eachw

{-p+ (ﬁ/m)2}2

2
3 '
Pa — P
X (Z Agu> (26)
Mq
a=1
The distribution function must be specified to
calculate integral (26). To be able to analyze further the
general case, we assume that concentrations (n;) and
temperatures (6;) in different valleys can be different.
We assume that

; n; Ep
£ () = oo (=57). 1)
(27r9i)3/2 my /mH 01
In the principal axes of the mass tensor,
2 2
o P
= i 28
& QmJ_ + 2mH ( )
In addition,
3
S Aoe e J0 (29)
a1 “ Mq my
where
m
— A0py (L 1(0)
A0z (m” 1) (404) (7ad)
hi=p—p (30)
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In Eq. (30), io is the ort which specifies the direction
of the line of rotation of the mass ellipsoid. The direction
of this ort coincides with that of the position of the ith
valley in the laboratory system.

The angular dependence of the energy makes the
integration much more difficult. That is why it is
convenient to use a deformed coordinate system, in
which the surfaces of equal energy are spherical.

We introduce new variables therefore:

1/2
* * mL *
Py =prL, P = <—> Py 91 —4q1;

my
my 1/2
(I\T = <m—||> q- (31)
At this,
ep=(p*)* /2m.. (32)

Expression (26) acquires the following form in new
variables:

, 6
P((;)) = j:;%oc—zzj% X
/ dp *dq * D (e,+)8 {% — m—hlp*q* cosv* + hw} 72
X
{02+ Mg + /o)
(33)
Now we take into account that dp* —

p*2dp*dQ, — p*dp* sinv*dv*dp*.

The integral over ¢ * can be easily calculated (since
nothing depends on ¢*). The integral over v* can be
calculated using the d-function:

T

he*)?  h
/dl/* sinv*d u — —p*qcosv* +hw p = mL
2m | m hp*q*
0
(34)
Equality (34) is real under the condition that
ha* 2 ha*n*
lcos v*| = |ahw — 4 /ﬂgl. (35)
2ml m

Condition (35) means that the argument of the o-
function at a specified ¢* can be equal to zero. In
other words, inequality (35) determines the limits of the
integration over ¢*. We find from Eq. (35):

=p* +p*2 £ 2m  hw,
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Nmax (£

+) = ‘—p* + +/p*2 ﬁ:QmJ_hw‘.

After the integration over the angles of the vector
P *, we find from Eq. (33):

thin ( (36)

i
) eSngni. /m
PO(+) = ——7 dee™*/% / dq"q" x
\/271'93/2 202hw A

Y@
+(1/rn)*}

x/{ o

q*2 + — q‘

Unlike Eq. (37), the integral over ¢ for the P()(-)
quantity must be calculated within limits from fw to oo
(since only electrons with energy ¢ > hw can emit hw
quanta). If we make a shift ¢ — & — fiw in the expression
for P()(—), we obtain that

i

PY(=) = —exp <—0@> P9 (4).

The latter integral over the angles of the vector ¢*

in Eq. (37) can be easily calculated with a result

qu*72 (77)

'y(q*)E/{ o i

0+ 3q? + (1/r0)’ }

ol

- q@ { (A(f))Q Bi(q") +2 (A|(|0))2 %32 (a

2
m
mH —m

We have made the following designations in Eq. (38):

*)}X

(38)

11— 1

Bl (q*) = b—2 + b—Barctgg,
. 111
B (q) = =7 + puctep
2 _ m * 2
b = . (l—l-l/(q D) ) (39)

The double integral in Eq. (37) can be reduced to a
single one by integration by parts:

(+)

Imax

/dee /b / a'q"y(q") =

qmln
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0o e . dqmax (+
— 07, / dE@ /91 {[q y(q)]q:qmax(+) %_
0

_[q*y(q)]q:qmm("r) d&\

We substitute now Eqgs. (40) and (38) in Eq. (37) and
introduce a dimensionless variable z=¢/§;. In addition,

we rewrite the quantities A(f) i A‘(lo)

in the laboratory
coordinate system, which are written in Eq. (42) in
principal axes of the ith ellipsoid (valley). This means

that
- 2 2
(4" = (i) A",

-

(AP = A — (@) A", (41)
In Eq. (41), ¢o is an ort, which characterizes wave
polarization. The ort io defines the direction of the ith
valley position.
We obtain the following expression as a result of the
operations made above:

PY(+) = eonan; [ 2mm T aor x
C deicthw \ 0 (my —m)?

X7dwe"”[\lli (¢max (+)) + ¥4 (gmin (+))] _
x (z + hw/0;)

(42)

0

We have introduced the following designation in Eq.
(42):

Ea) = B o)+ (o) | ~B ) + 25 Ba a)|

(43)

In dimensionless variables in accordance with Eq. (36),
the quantities gmax(+) and gmin(+) in Eq. (42) become

as follows:
1/2
a'/? 4 <w+h—w> ],
0,

m 92 o\ 12
Jmin (+) = M [_$1/2 + (1' + %) ] . (44)

(2ml0i)1/2

Imax (+) = A

h

i
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3. Absorption Coefficient

We have found above the energy absorbed or emitted in
a unit time. Experimentally, the adsorption coefficient
is measured, which looks as follows:

> (PO(+) + PO(-))
K= o =
> (1 — exp(=52)) P (+)

— = : (45)

In Eq. (45), II is an electromagnetic flow, which
impinges on a semiconductor:

6[1)/2 w2 0)2
Substituting Eqs. (46) and (42) in Eq. (45), we obtain
(27)3/2e8n,m!/? . oo
K= 572 0 I Zﬂ 1 —exp o X
€p C(m” — mL)2hw3 i \/0_z i

v / dre % {‘I’i(Qmax("‘) + q’z(‘]mm("‘)} -

z(x + hw/6;) "

0

Expression (47) gives the general value of the
adsorption coefficient under anisotropic impurity
scattering in multivalley semiconductors. Different
values of the filling of valleys (n;) can be connected with
different electron temperatures (6;) in valleys, or can
be caused by the unidirectional pressure (which shifts
the valleys). In a state of thermodynamic equilibrium
and without unidirectional pressure, all the n; and 6;
values are identical. The temperatures #; can become
different when electrons are heated by an external
electric field. They can also become different under
absorption of the polarized light with sufficient intensity.
That is, the polarization dependence of absorption can
appear in multivalley semiconductors at sufficiently high
intensities. This problem was theoretically studied in [3].
When n; and 6; differ in different valleys, the balance
equations of concentrations and energy should be used
to find them (e.g., see [4]).

The general expression for the absorption coefficient
(47) under impurity scattering can be substantially
simplified in the classical (hw/6; << 1) and quantum
(hw/B; >> 1) cases. Therefore, we shall analyze both
these cases.

Region of classical absorption
(hw/0; << 1). According to Eq. (44), we have
1/2 % (48)

Gmax (+) ~ (QmLez) ; Gmin (+) ~ 0.
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In Eq. (44), the
dimensionless energy x =
account that the quantity

integration occurs over the
€/6;. Then we take into

1
L — =b2(1+
m” _ mL( (q*rD)2) 0(

) (49)

has a very weak dependence on z, since (according to
estimations) (¢*rp)? >> 1. Here, ¢* is taken at average
energies (i.e., at x & 1).

We can see from Egs. (43) and (39) that ¥;(q*)
can depend on z only due to the dependence of b on
z. One may easily see that b> — oo in this case at
¢* = @min(+) & 0. According to Eqs. (39) and (43), we
obtain ¥;(gmin(+)) = 0. We now pay attention to the
U, (qmax(+)) value. At ¢* = gmax(+), the value of b? is
almost independent of z since (gmax(+)rp)? >> 1 for all
x ~1. The dependence on = becomes significant only at
small z, for which (gmax(+)rp) < 1. We shall find the
value of £ = z;, from the condition gupax(+)rp = 1.
We obtain from Eq. (48):

1 R
Lmin = gm (50)

Leﬂ“]% '
Because of the stated above, when integrating
approximately in Eq. (42), we can take out ¥; of the
integration sign and truncate the integration over x at
& = Tmin. Therefore, we obtain at fw/6; << 1:

Oodme_x‘l’i(Qmax("{_))%\Il‘oo Ood_xe_w_ 51
Vit rhopy )T Y

Tmin

In Eq. (51), we have set gmax(+) & oo. This is justified
at gmax(+)rp >> 1, as can be seen from Eq. (49).
As will be seen below, approximation (51) meets the
known logarithmic approximation in the description
of impurity scattering (so-called Conwell—Weisskopf
approximation).

According to Egs. (43) and (39), we have:

1
U, (00) = b3 [bg + ( b2) arctg%] sin? ;+

my 1 1 1 9
2—— | — —arct ; 52
my [ 1+ b2 boarc gb0:| cos” ©; ( )
with cosp; = fg(j’o, i. e., p; is an angle between the line

of rotation of the mass ellipsoid of the ith valley and the
ort of the wave polarization ¢p.
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Now we obtain a simpler form of the absorption
coefficient for the classical region from the general
expression (41), using approximation (51):

g3l 1§ LA A
. my 7 (6;)

172 o2
2 s
In expression (53), 71 (0;) and 7| (6;) are the respective
components of the relaxation tensor under impurity
scattering. At this

sin? o;
m 7y (6;)

1 8 eé(QmH)l/Q
= X
Tll(as) 3 50m 03/2
bo 9 1 1
xna bo + (1 — bO)arctgb— In(C1Xmin) ",
0
1 sej(em)"”
TL(QS) B 3 g2 ||03/2

Epm

1 _
XNabo {—bo + (1+b3) arctgb—] In (Cy Zmin) ™" (54)
0
In(Comin)~! appears in Eqs. (54) because the integral
on the right part of Eq. (51) is equal to

dx =1
—e 7= c mm 77 mm ’
;¢ (G 1;1 Kkt

Tmin

where InC7 = 0.577... is the Euler constant. Since
Tmin << 1, we have confined ourselves within only the
logarithmic approximation in Eq. (54).

The components of the relaxation tensor under
impurity scattering are connected with the mobility
tensor components by the following relations:

8 eoTL (0i) 8 eoT) (6:)
pL=—= M= E e
VToomy VLS
Region of quantum absorption

(hw >> 6;).
In this case, we obtain from Eq. (44):

(55)
m|

om, \/?
tmwe(4) % aoin(4) = (F20) = (56)
Now integral (47) can be easily estimated:
/ dxe * {\I,i(Qmax(+)) + \I,i(Qmin(+))} ~
) x(z + hw/b;)
; 1/2

~ 2V (qw) (E) : (57)
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We may set ¥;(q,) ~ ¥;(c0), taking into account that
(gurp) >> 1. As a result, for the quantum region
(hw >> 6;), we have from Eq. (41):

oo (Yl S
e c(m”—ml)%ﬂ (hw)3/2

(58)

The form of the function ¥;(c0) is specified by formula
(52), where the explicit dependence on the polarization
angle ¢; is given.

Thus, we have obtained a simple expression for the
light adsorption coefficient in the classical and quantum
ranges of frequencies under the dominating role of
impurity (anisotropic) scattering.

To complete the picture, we also present the
expression for the adsorption coefficient in the
case of the dominating role of acoustic scattering.
This will enable us to compare the peculiarities
of manifestation of various scattering mechanisms
in the phenomenon of light absorption by free
carriers.

The absorption coefficient in the case of anisotropic
acoustic scattering was obtained in [1]. Before writing
it down, we recall (e.g., see [1]) that the components
of the relaxation tensor as functions of electron energy
in semiconductors of the kind of n-Ge and n-Si
can be written in the following form under acoustic
scattering:

) =@ = =" (%) "

:
(&) =1}” (i )1/2'

The general expression for the adsorption coefficient in
the whole frequency range under anisotropic acoustic
scattering has a following form [1]:

(59)

2
K= L0V gnifi
3o ch w3

sin? ; cos? p; 5 d [ Ki(a;)
X{mﬂl(ﬁi) + m||7'||(0i)}{ai dw( a; )} (60)

[In Eq. (60), we have corrected the misprints made in
this formula in [1]].

In Eq. (60), a; = hw/20; and K;(a;) is a Bessel
function, whose asymptotic form is as follows:

_ e—hw/Hi)X

atx — 0,

1
Ki(z) = { f/ge’z at * — oo.
688

(61)

(0)

To avoid misunderstanding, we notice that 7 I in
Eq. (59) differs from Tio)” in [1] by a factor (%)1/2
(%)1/2 Tf)” from Eq. (59),

while 7, (0) = Tf)” in [1]. We do not introduce the
lattice temperature 6 at all in this paper. The electron
temperatures #; stand everywhere, which can coincide
with the lattice temperature or differ from it.

We obtain the absorption coefficient in the classical
and quantum ranges of frequencies from the general
formula (60), using asymptotics (61).

Therefore, we get in the classical range (hw << 6;):

2 .
L _Ccos” i }
my 7 (0;)

(62)

)

since we have 7, (6) =

K 32w eo Z sin? <pl
3 /e w? mi 71 (6;)

In the quantum range (hw >> 6;), we have, respectively,
A €2 1 haw\M?
K=Z-—%mn (9—> X
Ep CW p i

x{ sin? p; N cos? p; }
m,T| (91) m”T”(B,)

From the comparison of formulas (53) and (62),
one may see that the light absorption coefficient in
the classical frequency range depends equally on the
components of the tensor of relaxation times and the
components of the mass tensor both under impurity and
acoustic scattering. The only difference is in numerical
coefficients, which is stipulated by the different energy
dependence of the relaxation times under impurity and
acoustic scattering.

A totally different situation appears in the quantum
region, as can be seen from the comparison of Egs.
(58) and (63). The reason for these differences is that
the impurity scattering potential (18) would have a
singularity at w — 0 without screening (i. e., formally
at rp — 00). Therefore, the screening effect for a
charged impurity should be taken into account in the
classical region. This screening is not significant in the
quantum frequency region. For the acoustic scattering,
in difference to Eq. (55), we get

(63)

4 ety (0;)

Ho = ﬁ me (64)
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4. Polarization Effects under Light Emission
by Free Carriers

If the electron gas is heated (e.g., by electric current),
the effect opposite to the Drude absorption occurs, i.e.,
free carriers emit light. Polarization dependences can
appear in the case of the anisotropic dispersion law of
free carriers. Such polarization effects take place in the
cases of different heatings or under the same heating but
with different fillings of the valleys.

We can obtain the spontaneous emission by hot
electrons, which is of interest for us, using the
expression for the field-induced emission, which we
derived previously. For this, the vector potential (E(O))
of a wave should be first normalized so that [V, photons
are in volume V| i.e. the following condition should be
used:

2
1 E2 1 w 2
From here,
orh 1/2
A = 9 (\;Tw ph> . (66)

Then we should substitute expression (65) in the
formula for P (), setting Npp = 1.

And, finally, we should multiply the obtained
expression by the density of finite field states in a unit
frequency interval and a solid angle d2:

v

3 w2dQ.
(2me)

dp (w) = (67)

As a result of procedures described, we obtain the
following expression from P)(—) for the emission of
electrons in all the valleys into a solid angle d2 in the
case of impurity scattering:

W) = egna\/m_”dﬂ

2r)*? 23 (m) — ml)2

&e_hw/&/ dze”
Vi

0

X

Jt{\:[,z'(qmax) + \I,i(Qmin)} )

z(x + hw/6;) (68)

e

Expression (68) gives the emission intensity from
a unit volume with > n; electrons. To obtain the

emission from an arbitrary volume V', expression (68)
should be multiplied by V. Note that the signs of
the expressions P(Y)(4) and P()(—) are different, since
P (4+) characterizes the energy incorporation into the
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electron subsystem (i.e., absorption), while P()(—)
describes the energy extraction from it. In Eq. (68), we
use the absolute value of emission intensity.

One may derive simple expressions in the limiting
cases of the classical and quantum frequency ranges
from the general expression (68), similarly to the case
of absorption.

In the case of the classical frequency range (hw <<
0;), we have:

W) = egna i X
(271')3/2 e3c? (mH — ml)2

00) In (C1 Zmin) Lao. (69)

v

We obtain, respectively, in the quantum frequency range
(hw >> 6;):

V2meded (m) —m1)? hw
x Y n;®;(c0)e M/ %dQ. (70)
Using the explicit expression (52) for ¥;(co0) and the

formulas for the components of the relaxation tensor
under impurity scattering (54), formula (69) becomes

 3eg sin cos? @;
ds.
T 16n3268 Z {mﬂl (6;) * ) }

w)
my 7 (0;

(71)

The term In(Cizmin)~!' in Eq. (69) is related to
the screening effect of the Coulomb potential of an
impurity. The screening effect is not significant in the
quantum frequency range. Therefore, this term does not
appear in formula (70) which cannot be expressed by
the components of the relaxation tensor, as in the case
of Eq. (71).

Under the dominating role of acoustic scattering, the
energy emitted by all electrons in all the valleys per unit
time into a solid angle df? is equal to

—260 —hw/6;
W) 37r5/2c3 Zn 06w/
sin? ; cos?; | 3. d
X + a;e’— (Kq(a;)/a;) dQ
{mLu(Gi) mHTH(al) dai( 1( )/ )
(72)
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We obtain from here for the classical frequency range
(hw << 6;):
4e? sin? ;
w=) = =0 .0, ¢
37(5/20321,:” m 11 (6;)

2 .
oS w’)}dﬂ.

my 7y (6;
(73)

A simple expression for the emission intensity can also be
obtained from Eq. (72) in the quantum frequency range
case (hw >> 6;):

(-)_ _% ni 3/2_—hw/0;
w G2 zl: \/e_l(hw) e X
sin? ; cos? ;
dsl. 74

We can see from Eq. (73) that the emission intensity
does not depend on the emitted light frequency in the
classical frequency range, and drops exponentially in the
quantum frequency range. We recall that 7, and 7
in Eqgs. (72)—(74) are the components of the acoustic
relaxation tensor, which are set by formula (59).

We can see from the comparison of formulas (71)
and (73) that the dependence on the parameters is
the same. The numerical coefficients are only different,
which is stipulated by the different dependences of the
relaxation tensor components on the electron energy
under impurity and acoustic scattering.

5. Conclusion and Remarks

In this paper, the general expressions are obtained
for the absorption coefficient, as well as for the
emission intensity in the presence of hot electrons.
These expressions are derived taking into account the
multivalley character of the electron spectrum as well as
the anisotropy of the dispersion law and the scattering
mechanisms. The obtained expressions depend both on
the concentration of electrons n; and their temperatures
#; in individual valleys.

In the case of thermodynamic equilibrium, all 6;
values are the same (and are equal to the lattice
temperature). Moreover, the populations n; in all valleys
are also identical when the unidirectional pressure
is absent. Under unidirectional pressure applied to a
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specimen, n; are the known functions of the applied
mechanical stress (e.g., see [5]).

Under an electric field applied, all §; and n; values
(or a part of them) can be different. The procedure for
their calculation is well known (e. g., see [4]).

The especially simple case of the polarization
dependence of emission appears when all electrons
migrate to a single valley. It is remained the only
dependence on one angle — between the polarization ort
and a rotation axis of the ellipsoid of the surface of equal
energy of the populated valley. Experimentally, the
polarization dependences in n-Ge have been investigated
in [6].
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OCOBJIMBOCTI IIOTJIMHAHHSA I BUITTPOMIHIOBAHHSA
CBITJIA BIJIbHUMU EJIEKTPOHAMMU

B BATATOJOJIMHHUX

HAMIBITPOBITHUKAX

II.M. Tomwyk
PesmowMme

OTpuMaHo 3arajbHi BHpa3u AJisd Koedil[ieHTa MOTIMHAHHS CBIiTJIA
BiJIbHUMHF HOCISIMH | IHT@HCHBHOCTI CIOHTAHHOTO BHIIPOMIiHIOBAHHS
CBiTJIa rapsi9MMU eJIeKTPOHAMHU B OAraTOLOJMHHUX HAIBIPOBIIHM-
Kax. OTpuMaHi BUpa3u 3aJieXKaTh Bil KOHIEHTpAIlil €JIeKTPOHIB B
OKpeMHX IOJHMHAX i Ix Temmeparyp. Bpaxosano amizorpomiro 3a-
KOHY aucmepcii i MexaHi3MiB po3cisgHHS eseKTpoHiB. Po3rmsauyTo
noMmimkoBu# i akycTuaHEM MexaHi3M po3cisuus. Bcraxnossieno mo-
JISpU3aIiiiHy 3aJ1eKHICTh CIIOHTAHHOTO BUIIPOMIHIOBAHHSI TapsSunX
€JIEKTPOHIB. Y BHIAIKY OZHOHAIPSIMIIEHOIO TUCKY a00 BEJIMKHX iH-
TEHCUBHOCTEIl ONpPOMiHEHHS IOJAPHU3AIINHY 3aJI€XKHICTH BHSBJISAE
i KoedillieHT MOTJIMHAHHS CBiT/Ia BITbHUMH €JI€KTPOHAMU.
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