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The hypothesis of scaling transformation for spatially
bounded two-component liquid mixtures in the critical
domains of vapor formation (vapor — liquid) and
stratification (liquid — liquid) is proposed. The concept
of spatial boundedness of systems in the critical
domain is introduced, and the hypothesis of scaling
transformation  for  spatially unbounded two-component
liquid mixtures with the usage of different independent
variables is  discussed. Some  consequences of  the
scaling hypothesis that is formulated in the paper
(in particular, the limiting transition to a spatially
bounded system and the critical behavior of the order
parameter in a system with bounded geometry) are
considered.

Introduction

Last time, the influence of spatial boundedness on the
course of phase transitions and critical phenomena has
aroused a considerable interest of both theorists and
experimentalists (see, for example, [1—3]).
Achievements of the modern physics of phase
transitions and critical phenomena were associated,
first of all, with the formulation of the scaling
hypothesis. Its main idea is reduced to establishing
the transformation laws of physical quantities that are
characterized by anomalous fluctuations of the order
parameter of a system in the critical domain and,
when passing to a new scale, to the determination
of the correlation radius of these fluctuations ¢&.
At first, the scaling hypothesis was formulated
for spatially unbounded one-component liquids and
magnetic materials [4]. Later on, it was extended
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on the spatially unbounded two-component systems
with the wusage of the isomorphism hypothesis
[5, 6].

In this paper, we consider spatially bounded systems.
The scaling hypothesis for one-component liquids
and magnetic materials with bounded geometry was
proposed, for the first time, in [1] (see also [3]). In
accordance with this hypothesis, the fluctuation part
of thermodynamic potential turns out to be dependent
not only on the reduced temperature 7, the external
field h, and the conjugated order parameter ¢ as it
occurs in spatially unbounded systems (really, it happens
in systems whose linear sizes are much more than
the correlation radius), but on the typical size L of
a system in the direction of its spatial boundedness.
Specific features of the critical behavior of equilibrium
and nonequilibrium physical properties of spatially
bounded liquids have been studied in many papers
[1—3, 7—12]. The aim of this work is to formulate
the scaling hypothesis for spatially bounded two-
component liquid mixtures in the critical domains of
vapor formation (vapor — liquid) and stratification
(liquid — liquid). At first, we introduce the notion of
spatial boundedness of a system in the critical domain.
Further, we discuss the scaling hypothesis in different
independent variables for the spatially unbounded two-
component liquid mixtures. In conclusion, we formulate
the scaling hypothesis for binary mixtures of classical
liquids with spatially bounded geometry and discuss
some consequences of this hypothesis (in particular, the
limiting transition to a spatially bounded system and
the critical behavior of the order parameter in such a
system).
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1. The Concept of a System Spatially Bounded
in the Critical Domain

Although the concept of spatial boundedness of a system
is clear on the intuitive level, it requires, to our mind,
a more precise definition. We call the system to be
spatially bounded near the critical point or in the
vicinity of the critical point (line) of a second-order
phase transition if its typical linear dimensions in the
direction of spatial boundedness do not exceed the
maximum value of the correlation radius of fluctuations
of the order parameter that could be reached in the
given experiment. We note that the role of the order
parameter is played by fluctuations of the density of one-
component liquids in the critical domain, fluctuations of
the concentration of a liquid mixture near the critical
state of the liquid — liquid system, etc.

At first, we consider classical one-component liquids
in the critical domain. In this case, the correlation radius
of density fluctuations £ in the zero external field or in
the near vicinity of the critical isochore is defined by
the following temperature dependence: £ = £,7~ Y, where
7= (T —T.)/T. is the deviation of temperature T from
its critical value T¢, v = 0.63 is the critical index, and &
is the correlation radius amplitude that is of the order of
1-10 nm for classical liquids. In modern experiments with
the classical liquids, approaching to the critical point as
close as T — T, & 1072 — 103 is rather real [6, 7]. Then,
for the liquids with critical temperature T, ~ 10° K, we
obtain that the enlarging factor of the correlation radius
£/& = 77V is 103. Therefore, the liquid systems such
as thin films, cylindrical pores, spherical specimens, etc.
can be considered as spatially bounded in the critical
domain if their linear sizes in the direction of spatial
boundedness are about 1-10 pm.

For quantum liquids (for example, liquid He' in
the vicinity of the A-point), this evaluation of spatial
boundedness is considerably underestimated. In fact,
for liquid He! in the vicinity of the A-point, the
following experimental values are known [13,14]: the
correlation radius amplitude ¢ = 0.36 nm below the
temperature of the second-order phase transition at
T\ = 2.17 K and & = 0.14 nm above it, respectively.
At the same time, the critical index of the temperature
dependence of the correlation radius is v = 0.671.
The minimal temperature approach to the second-
order phase transition of liquid He® in the A-point,
which was obtained in the experiment in [15], is the
record in smallness and equals AT = T — T, = 2
nK. For the dimensionless temperature deviation, this
gives 7 = (T — Ty)/T\ ~ 107°. Correspondingly, the
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enlarging temperature factor of the correlation radius
£/& = 77V is 10° with regard for the experimental
values of 7 and v or by three orders larger than that
for classical liquids. As a result, the correlation radius
of fluctuations of the order parameter in liquid He?
reaches macroscopic values: ¢ = 0.36 mm and ¢ =
0.14 mm while approaching the A-point from the lower
and higher temperatures, respectively. Therefore, in the
specific experiment [15], the film of liquid helium L =
0.1 — 0.3 mm in thickness has to be considered as
a spatially bounded system in the vicinity of the A-
point.

2. Scaling Hypothesis for Spatially Unbounded
Two-component Liquid Mixtures

Let a two-component liquid mixture be spatially
unbounded. This means that the typical sizes of its
volume (in all directions) are much larger than the
maximum (under the given thermodynamic conditions)
value of the correlation radius &,ax >> L. While
formulating the scaling hypothesis (as well as the
isomorphism hypothesis) [5, 6], which establishes a
definite correspondence between the critical behavior
of two- or multicomponent liquid solutions and the
idealized models such as the Ising model, model
of lattice gas, model of incompressible binary alloy,
etc., it is necessary to distinguish what kind of
variables (field ones or density variables) are chosen
as complementary with respect to the variables of the
above-specified idealized systems. We recall that the
field variables are those that take the same values in
the coexisting phases (temperature, pressure, chemical
potential, or the chemical potentials of binary mixture
components, and so on). The density wvariables are
those that change their values by step when passing
through the interface (entropy, volume, concentration,
or densities of binary mixture components, etc.) [5—
7].

The critical state of a liquid-liquid
sy st e m. In the vicinity of this critical state, a binary
liquid mixture is isomorphic to the idealized model of
incompressible binary alloy, which is described by the
independent variables “temperature 7' — concentration
2” and becomes ordered below the order-disorder phase
transition. In this case, the pressure P becomes a
complementary natural variable for a two-component
liquid mixture. But the system under consideration
has compressibility that tends theoretically to infinity
while approaching the critical state unlike the indicated
idealized model.
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To formulate the scaling hypothesis, it is convenient
to use the thermodynamic potential that, in this case, is
the Gibbs free energy G(T', P, z) calculated per one mole
[i.e., the chemical potential p = G /N, where N is the
number of moles (in our case, N = 1)]:

G(T,Pz) = p(T,Px) = (1 — @) + poz = pu + p'x.
(1)

Here, uy and po are the chemical potentials of one
mole of a pure solvent and a dissolved substance; u* =
w2 — w1 = (0G/0z)r,p is the difference of chemical
potentials that is the field variable of the double solution
as well as the pressure P; x = (0G/0u*)r,p is the
concentration of the dissolved substance.

Relation (1) may be considered as the Legendre
transformation from the Gibbs free energy G(T,P x) to
the chemical potential of a pure solvent py (T, u.) since

dG(T, P,x) = —SdT + VdP + p*dz,
dpy (T, P, p*) = —=SdT + VdP — zdu*. (2)

The Gibbs free energy consists of two terms: G =
Go + Gsing. The first term (Go) is the regular part of the
thermodynamic potential that has no singularities in the
critical state. The second term (Giing) is the fluctuation
(singular) part that is determined by the interaction of
strongly developed fluctuations of the order parameter.
In the vicinity of the liquid-liquid critical state, the order
parameter is p(P) = =z — X (P), i.e., the deviation of
the concentration z from the critical value z.(P). The
above-presented results concerning the Gibbs energy are
completely related to the chemical potential of a pure
solvent puy (T, P, p*), i.e., pt1 = fireg + Msing -

The generalization of the scaling hypothesis
formulated for a one-component liquid to the case of
a two-component liquid mixture being in the vicinity
of the critical liquid-liquid state (stratification) in the
spatially unbounded system can be written as [6]

Gsing(T, P,x) = [r(P)* 41 [p(P)/7°(P)], (3a)

where 7(P) = [T — T.(P)]/T¢(P) is the reduced
temperature or dimensionless temperature “distance” to
the critical point (line) T°(P),a =~ 0.1 and § ~ 1/3 are
critical indices.

The scaling hypothesis can be reformulated with
the help of the following formulas that are completely
equivalent to expression (3a)

Gsing (T, P,z) = [p(P)) T ha[r(P) [0'/P (P)], (3b)

Giing (T, P, z) = [1(P)]*~ 43 [h/ 7% (P)], (3c)
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where h = [u* — pu*(z.(P),T)]/w*(z.(P),T) is the field
that orders the system and is conjugated to the order
parameter ¢(P) = z — z.(P); and the critical index
0 ~4.7+5.0.

The scaling functions ¥ (y), ¥2(z), and 3(v) that
enter formulas (3) satisfy the following asymptotics:

Y1(y = 0) = const, ¢(y — o00) ~y" (4a)
23(z = 0) = const, (2 = 00) ~ 2279, (4b)
Y3(v — 0) = const, 3(v — 00) ~ v' T/ (4c)

The substitution of the asymptotic expressions (4)
in formulas (3) of the scaling hypothesis allows one
to obtain the known scaling-based results for the
fluctuation part of the thermodynamic potential (Gibbs
free energy):

Gsing ~ 27% for P = P., x =z,
Gsing ~ (37 — CUC)6+& for T = T., P=PF,;
GSing ~ (u* _ N:)1+1/a for T = TC; Tr = x.. (5)

We underline that the Gibbs free energy G(T', P, )
and the chemical potential of a pure solvent uy (T, P, u*)
are expressed through the so-called isomorphic variables,
because the complementary variable, pressure P, that is
used with respect to the variables of the idealized model
of incompressible binary alloy, is the field variable. It
is precisely the case, in accord with the isomorphism
hypothesis [5, 6], where there is no renormalization of
the critical indices of a two-component liquid mixture
near the critical liquid-liquid state as compared with the
known critical indices of the chosen idealized model. In
particular, this is confirmed by formulas (5).

Critical liquid-vapor
st at e In the vicinity of the critical state of
vapor formation (liquid-vapor), a two-component liquid
mixture is isomorphic to the idealized model of lattice
gas. This model is usually described by the independent
variables “temperature 7' — density p or volume V” and
the relevant thermodynamic potential is Helmholtz’s
free energy. Based upon the lattice gas model, we have
to choose the concentration z (as the natural density
variable of the binary solution) or the difference of the
chemical potentials of the solute and solvent u* = ps—pu1
(the field variable conjugated to the concentration) as
the complement variable for the binary liquid mixture
(with respect to variables T, p or T, V). We emphasize

ISSN 0508-1265. Ukr. J. Phys. 2004. V. 49, N 7



SCALING TRANSFORMATION HYPOTHESIS

that Helmholtz’s free energies for two collections of
variables T, p,x and T, p, u* are equivalent since they are
connected by the Legendre transformation: F (T, p,x) =
F(T,p,u*) + p*z. At the same time, in accord with
the isomorphism hypothesis, the independent variables
T, p, u* have considerable advantage. In this case, under
fixation of the complementary field variable u* = const ,
the critical behavior of a two-component liquid mixture
near the critical state of vapor formation and that of the
lattice gas model are identical. Moreover, it is important
that the same is true for the critical behavior of the
one-component liquid near the isolated critical point, the
system being isomorphic to the lattice gas model.

The order parameter of a two-component mixture
near the critical liquid-vapor state is a deviation of the
mixture density from its critical value, p(p*) = [p —
pe(*)]/pe(1*)]. The field conjugated to this parameter
is a dimensionless deviation of the chemical potential
of the solvent from its value on the critical isochore,
b=l = pa(pe(p), D))/ (pe(p*), T).

Keeping this in mind, we can write down the
scaling hypothesis for a two-component liquid mixture
in the vicinity of the critical liquid-vapor state
(vapor formation) in the spatially unbounded system
analogously to formulas (3):

Fang(T, pt*) = [r(u)2 05 [o(u) /P2 ()], (6a)
Fang (T, p, %) = (") 03[ () /P (u")),  (6b)
Fang(Tu pyt®) = ()2 05 h(u") /7 (). (60)

Here, () = [T — T.(u"))/To(u) is the

relative temperature deviation. The scaling functions
¥i(y), 3 (2), and 5 (v) have the same asymptotics that
are valid for the scaling functions ¢ (y), ¥=2(z), and 3 (v)
[see formulas (4)].

Application of these asymptotic expressions to
formulas (6) of the scaling hypothesis to a two-
component mixture near the critical state of vapor
formation allows us to obtain the following scaling
results for the fluctuation part of Helmholtz’s free
energy:

Fsing ~ [T - TC(M*)]2 -
at

p1 = palpe(p*), T, p = pe(p*);

Fsing ~ [P - pe(ﬂ*)]dJrl
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at

T = Tc(u*)alfd = ul[pc(,u*)vT];

Faing ~ [ — w1 (pe(p*), T) /0

at
T =Tc(u"), p=pc(p)- (7)

For both the critical states of mixing-stratification
(liquid-vapor) and vapor formation (liquid-vapor), the
choice of independent variables has to take in to take
into account the specific conditions of the experiment.
For example, in studying the critical state of vapor
formation for a spatially unbounded two-component
mixture in the gravitation field, the isomorphic variables
“temperature T' — density p — chemical potential
w*” are the simultaneously independent experimental
variables (see, for example, [7, 16—18]). For a similar
“gravitation experiment”, the condition for the fixation
of a complementary field variable (u* = const) is valid
under natural conditions. That is, the isomorphism
conditions for a binary liquid mixture and a one-
component liquid near the critical state of vapor
formation (liquid-vapor) are realized experimentally
without additional restrictions. These are precisely the
factors which determine the advantages of studying the
critical phenomena in liquid mixtures in the Earth’s
gravitation field without the effects of mixing of liquids
that are frequently used by experimentalists.

3. Scaling Hypothesis for Two-component
Liquid Mixtures with Spatially Bounded
Geometry

Now we consider a two-component mixture near the
liquid-liquid or liquid-vapor critical state in the volume
that is spatially bounded in a number of directions:
(i) one (a plane-parallel layer), (ii) two (a cylindrical
specimen), (iii) three (a specimen of the spherical
or cubic geometry or a parallelepiped). Let typical
linear sizes of the system L in all directions of spatial
boundedness be at most the correlation radius of
fluctuations of the order parameter £(L < £).

The critical liquid-liquid state.In
this case, the expansion of the scaling hypothesis to one-
component systems with spatially bounded geometry
formulated in [1—3] is given by the following results
for the singular part of the thermodynamic potential
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Gsing (Gibbs free energy) per one mole or the chemical
potential of a pure solvent pusing(T, P,)) and for the
correlation radius of concentration fluctuations ¢:

firsing (T, P, ) = L™ f,[ap/?(P)Ly,, bh L"), (8)

&(T, P,x) = L™ felap! /P (P)Ly ;,, bRLPO/Y). (9)

Here d is the spatial dimension of the system, f,(y, z)
and fe¢(y, z) are the corresponding scaling functions. As
was noted in the previous section, the order parameter
of the system under consideration is the deviation of the
concentration from its critical value p(P) = = — z.(P)
that enters into (8), (9). The field conjugated to p(P) is
h=[u* — 1 (we(P), T)|/u* (o (P), T).

The first scaling argument y = apL'/? of the scaling
functions f,, and f¢ in (8), (9) can be obtained from the
following relations:

gNT_v) TNé-l/v: @NT—B) TN<P1/67
1/8
vy~ o @ L=t (10)

Analogously, we can obtain an expression for the
second scaling argument z = bhLP%/? keeping in mind
the relations:

vB6 8

E~T VU mp g~ h T o rf o~ bt

T~ B R~ B ~ hLP/v

~ £-B3/v
(11)

It is necessary to note that the scaling arguments
y = apL'/™ and z = bhLP%/Y contain two nonuniversal
constants a and b. They are different for different
substances and may be connected with the nonuniversal
amplitude of the correlation radius 0 in the relation
¢ = &,-v and with one more nonuniversal constant By
in the formula for the phase coexistence curve ¢ = By, g.
The scaling functions fy(y,2) and fe(y,2) in (8), (9)
satisfy the asymptotic expressions at L — oo:

fuly = 00) ~yPOTD w1~ 12— g,

fu(z N OO) ~ Zl—i—l/d ~ h1+1/6,

fe(y = 00) ~y U~ B~y
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L=E¢.

fe(z = 00) ~ 27V/B8  p=v/B3, (12)
From these relations, we see that, when passing to an
unbounded system, L — oo, the dependence of the
scaling hypothesis (8), (9) on a linear size L disappears
for spatially bounded systems. In fact, the substitution
of asymptote (12) into (8), (9) gives

Gling ~ Hising ~ L™4yP0T) o [=d 0+ [SOHD/v

~ P HCBIN o DT L B0+ | p2a

)

Giing ~ fi1sing ~ L~ 12+D8  [—dpE+13 [BE+1/v

~ h(5+1)5L0h(§+1)§’
§ ~ Ly—v ~ L(p_v/BL_l ~ (p_UBLO ~ SO_U/B ~ T—v’

§~ Lz "0~ Lh7V/POL o PO~ /B0 (13)

Therefore, we have obtained a limiting transition
from the scaling hypothesis for a spatially bounded
two-component liquid mixture to the scaling hypothesis
for a similar system with spatially unbounded
geometry.

The critical liquid-vapor state.
Analogously to the previous case where a spatially
bounded two-component system was in the vicinity of
the critical liquid-liquid state, we can write down the
scaling hypothesis for this system in the vicinity of the
critical liquid-vapor state for the singular part of the
thermodynamic potential, Helmholtz’s free energy per
one mole Fing (T, p, pn*), and for the correlation radius
of fluctuations of the order parameter {(T', p, u*):

Fsing(T: P, /1'*) = L_dfF[a@l/B(/‘*)Ll/va bh(u*)Lﬁé/v]a

(14)
E(T,p,p*) = Lfclag™® (") LY? bh(u*) L7/ (15)
In this case, the order parameter and the

field conjugated to it are the deviations of the
mixture density (u*) = [p — pc(u")]/pe(n*) and
the chemical potential of a solvent h = [u1 —
w1 (pe(*), T/ 1 (pe(p*), T) from their values on the
critical isochore. The scaling functions of Helmholz’s
free energy fr(y,z) and the correlation radius fe(y, 2)
have the asymptotes that are given by formulas (12).
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This ensures the limiting transition to a spatially
unbounded liquid mixture near the critical state of vapor
formation according to formulas completely analogous to
(13).

The order parameter of a bin a-
ry liguid mixture. In conclusion, we obtain
one of the consequences that follows from the scaling
hypothesis (2), (3) for liquid mixtures in media with
bounded geometry and can be verified experimentally.
Let us consider the equilibrium value of the order
parameter @o = o — zc(P), [po — pe(n*)]/pe(p) that
can be obtained by differentiating the singular part
of the thermodynamic potential per one mole (Gibbs
free energy Gsing = phsing(T, P,x) for the liquid-liquid
critical state or Helmholtz’s free energy Fiing (T, p, 1*)
for the critical liquid-vapor state) with respect to the
external field h conjugated to the order parameter. As a
result, we get

Yo = (6Gsing/6h)r = (6Fsing/ah)r =

= L_d+66/vf¢(yaz) = L—B/Uﬁp(y’ Z)7 (16)
where the scaling function f,(y,z) is determined in
terms of the derivatives of the scaling function f, in
formula (8) or the scaling function fr in formula (14)
with respect to another argument z as follows: f, =
bOfu/0z = b0 fr/dz. The combination of critical indices
in exponent (16) equals —d + 8§/v = —f/v, because
there are the following relations between critical indices:
Jv=2-d,a+28+vy=2, [B§=p++.Formula (16)
allows us to propose the following method for obtaining
the dependence of any physical quantity (let it be N)
on the typical size L of a spatially bounded system
[19]:
N1~/ (17)
The relation (17) leads to the following conclusion:
if an arbitrary physical quantity (equilibrium or
nonequilibrium one) in a spatially unbounded system
has the temperature singularity N(r) ~ 77", then,
in view of the relations ¢ ~ 77¢, 7 ~ £/ and
¢ ~ L, the dependence of this quantity on the linear
size L in spatially bounded systems near the critical
points and the points of phase transitions has the form
N(L) ~ L=™". For example, the equilibrium value of
the order parameter in a spatially unbounded system
is o(1) ~ 77. Then, in the spatially bounded system
with linear size L (for example, a cube with side L),
the order parameter depends on L as ¢o(L) ~ L~5/v.
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This is confirmed by formula (17) as well. With the
help of result (17) for the equilibrium value of the
order parameter, we can easily obtain the limiting
transition to a spatially unbounded system. In fact, the
linear size L in the latter system is infinite, and the
correlation radius can unlimitedly grow at 7 — 0 or
at the phase transition point. It follows from (17) that
a value of the equilibrium order parameter g — 0
at 7 —» 0, L — oo in agreement with the physical
argumentation.

1. Fisher M.E. Critical Phenomena. Proc. Intern. School of Phys.
“Enrico Fermi”/ Ed. by M. S. Green.— New York: Academic
Press, 1971.

2. Finite Size Scaling and Numerical Simulation of Statistical
Systems/ Ed.V. Privman.—Singapore: World Scientific, 1990.

3. Binder K. // Ann. Rev. Phys. Chem.— 1992.— 43.— P.33.

4.  Patashinskii A. Z., Pokrovskii V. L. Fluctuation Theory of
Phase Transitions. — Moscow: Nauka, 1987 (in Russian).

5. Fisher M. E. // Phys. Rev.— 1968.—176.— P.257.

6. Anisimov M. A. Critical Phenomena in Liquids and Liquid
Crystals.— Moscow: Nauka, 1987 (in Russian).

7. Bulavin L. A. Properties of Liquids in Critical Domains.—
Kyiv: Kyiv. Univ. Press, 2002 (in Ukrainian).

8. Chalyi K. A., Hamano K. // Repts. Prog. Polym. Phys.
Jpn.— 1998.— 41.— P.103.

9. Chalyi K. A., Hamano K. // Ibid.—1999.— 42.— P.37.

10. Chalyi A. V., Chalyi R. A., Chernenko L. M., Vasil’ev A. N.
// Cond. Matt. Phys.— 2000.— 3.— P.335.

11. Chalyi K. A., Hamano K., Chalyi A. V. // J. Mol. Liquids.—
2001.— 92.— P.153.

12. Chalyi A. V., Chalyi K. A., Chernenko L. M., Vasil’ev A. N.
// Tbid.—2001.— 93.— P.127.

13. Singsaas A., Ahlers G.// Phys.Rev.B.—1984.— 30.— P. 5103.
14. Goldner L. S., Ahlers G. //Ibid.— 1992.— 45.— P. 1312.
15. Lipa J. A. et al. // Phys. Rev. Lett.— 1996.— 76. — P. 944.

16. Krupskii N. P., Shimanskii Yu. I. // Zh. Eksp. Teor. Fiz.—
1972.— 62.— P.1062.

17. Alekhin A. D., Golik A. Z., Krupskii N. P. et al.// Physics
of Liquid State.— Iss. 1.— 1973 (in Russian).

18. Golik A. Z., Shimanskii Yu. I. et al. Equation of State of
Gases and Liquids.— Moscow: Nauka, 1975.— P. 189 (in
Russian).

19. Chalyi O. V.,Tsekhmister Ya. V., Chalyi K. O. Processes of
Ordering and Self-organization in Fluctuation Models of Open
Systems. —Kyiv: Vipol, 2001 (in Ukrainian).

Received 07.05.03.
Translated from Ukrainian by V.N. Mal’nev

653



K.A. CHALYI

T'IIIOTE3A MACIITABHOI'O IEPETBOPEHHS
JIJISI TIPOCTOPOBO OBMEYKEHUX
JIBOKOMIIOHEHTHUX PIJIKNX

CYMIIIEN

K.O.Yanut
PeswowMme

3anpornoHOBaHO rinoTe3y MacHITaOHOTO MEPETBOPEHHS [JIsi MPO-
CTOPOBO OOMEKEHUX JBOKOMIIOHEHTHHUX PIiJKWX CyMimeil B Kpu-
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TUYHUX OOJIACTAX MApOYyTBOPEHHd (piauHa—mapa) Ta po3mIapy-
BaHHs (pimmHa—pinmea). BBemeHO HmOHATTS HTPOCTOPOBOI OOME-
JKEHOCTI CHCTeMH B KPHUTHYHIH ob6sacTi Ta OOGroBOpeHO Trimo-
Te3y MacmTaOHOrO IePeTBOPEHHSI [JIsi [POCTOPOBO HeobMerke-
HHUX JBOKOMIIOHEHTHHX PIiJKMX CyMilmeil 3 BUKOPHUCTAHHSM pi3-
HUX He3aJeXXHUX 3MiHHUX. Po3rimgnyTo nmesaki Hacuainkm cdop-
MynbOBaHOI B po0GOTi rinore3m (30Kkpema, rpaHHYHHE mnepexif
10 TIPOCTOPOBO HEOOMEXKEHOI CHCTEMH, & TAKOXK KDPUTHIHY IIO-
BeJiHKY MapamMerpa IOpsjaKy B cucremi 006MexkeHOT
pii).

reomer-

ISSN 0508-1265. Ukr. J. Phys. 2004. V. 49, N 7



