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The static susceptibility in the superconducting channel is
investigated for the locally anharmonic crystalline systems
with strong electron correlations within the framework of the
pseudospin-electron model with the tunnel splitting of levels, in
the limit of weak pseudospin-electron interaction. In the p =
const regime, when the chemical potential is located near the
band center, the system undergoes a phase transition to the phase
with a modulation of the lattice period. The transition to the
superconducting state is revealed for a non-half filling of the band
and for the case of the nonzero tunnel frequency 2. The influence
of the tunnel splitting on the phase transitions is investigated as
well.

Introduction
Since  the  discovery of  high  temperature
superconductivity (HTSC), this phenomenon has

intensely been studied by means of various experimental
techniques as well as theoretical simulations. In addition
to the pure electron models, the “mixed” ones have also
been employed to go beyond the limit of the former and
consider additional degrees of freedom, such as phonons
in the Holstein model, bosons in the boson-fermion
model, and others. The Holstein model describes the
interaction of fermions with bosons, thereby including
phonons as a particular case. The phonons in the
Holstein model are the Einsteinian ones, i.e. their
frequencies are all equal. It has been shown for this
model that, when the phonon frequency is nonzero
and the electron band filling differs from a half, the
application of the quantum Monte Carlo method in
the infinite-dimensional limit on the one hand, and
Migdal—Eliashberg (ME) approximation (a neglect of
vertex corrections in the susceptibility calculations) on
the other hand, may give rise to the appearance of
the superconducting state (SC) in the system [1-5].
Further, if the electron concentration is close to unit, a
charge-density-wave state (CDW) appears. It has been
revealed that the temperature of the transition to SC
exhibits a maximum at a certain value of the constant
of electron-phonon interaction, and that the maximum
SC transition temperature is bounded from above by the
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maximum CDW transition temperature. A role which is
played by both the vertex corrections [2] and the phonon
oscillation anharmonicity [4] in the transitions to SC and
CDW was also studied. The results obtained with the
use of various approximations [1-5] were compared to
the exact quantum Monte Carlo solution. It has been
demonstrated that the ME approximation gives quite
good results for the weak electron-oscillation interaction
and low phonon frequencies.

One more theoretical model to  describe
superconductivity, namely the boson-fermion one,
considers the interaction of itinerant electrons with the
localized tightly bound electron pairs (bosons). The
studies [6,7] were aimed at the determination of the SC
transition temperature, 7., as well as a temperature 7,
at which a pseudogap in the electron density of states is
opened up. It turned out that, depending on the doping
level, T* might be far greater than T.

To describe HTSC, the t — .J model has also been
employed, which, for a two-sublattice antiferromagnet
with a small level of the hole concentration, is reduced
to the spin-polaron one [8]. It has been shown that the
superconducting spin-polaron pairing may be one of the
mechanisms of HTSC [8].

Furthermore, the anharmonic models of HTSC
have been employed, and studies of the electron-
phonon pairing caused by an interaction between charge
carriers and highly anharmonic oscillations of the lattice
atoms have been carried out [9,10]. To describe such
oscillations, a local double-well potential was utilized.
Work [11] paid attention to a possibility of the increase
of the SC transition temperature by means of a variation
of the height of the barrier between the minima of
this potential. The studies [12] revealed that, for an
asymmetric double-well potential, the system is likely
to turn into SC, and that the SC transition temperature
achieves a maximum at a certain average atom position
within this potential.

A specific feature of superconductors of the YBaCuO
type is that the electron transfer mainly occurs within
the CuO planes. One more peculiarity of such crystals
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is the existence of strongly anharmonic elements of the
structure. For YBaCuO, this manifests itself in the local
anharmonic oscillations of the oxygen atoms both within
the CuO chains and of the apex O atoms in the direction
of the CuO planes’ normal. On the application of the
pseudospin formalism for a case where the variable S7
takes on two values, S7 = £1/2, two oscillation states
lowest in energy should be taken into account. The
standard formulation of the corresponding model [10,
13—16] implies that the electron subsystem is described
by the Hubbard Hamiltonian, and the interaction of
electrons with the anharmonic subsystem is included
in the external field which depends on a pseudospin
orientation. Thus, the Hamiltonian of the pseudospin-
electron model (PEM) is:

H = Z <Uni,Tni,¢ - N(ni,T + ni;¢)+

+9Si(ni+ +n;y) —hS7 — QSf) + Z tijCI’ng,a- (1)

,5,0

Here, t;;-term describes the hopping of the electron with
a spin o from a site ¢ to a site j, U-term — the Coulomb
repulsion, g-term — the pseudospin-electron interaction,
Q-term — the tunnel splitting of levels, and h-term —
the asymmetry of the local anharmonic potential. In
work [15], employing quantum Monte Carlo simulations
to the PEM, the conditions under which the system
underwent a transition to SC were studied in detail.
For a fixed electron concentration and both the s- and
d-symmetries, a relationship was determined between
the Q, g, U theory parameters, which gave rise to the
appearance of SC. In particular, for a weak pseudospin-
electron coupling, SC with the s-symmetry was shown
to be likely to appear.

It should be noted that the PEM is similar to
the known Falicov—Kimball (FK) model [17] which
describes a system whose characteristic feature is the
interaction between itinerant and localized particles
(electrons). The solutions obtained upon application of
the dynamic mean field theory DMFT to this model
contain a homogeneous phase, phases with either double
or incommensurate lattice period modulation, as well as
a phase separation state [18-22]. What differs the FK
model from the PEM one is the absence of the term,
which in the latter is responsible for the tunnel splitting
of the levels. In addition, the former is usually treated
in the regime of a constancy of the concentration of
localized particles (for the PEM, this corresponds to a
fixation of an average pseudospin value), whereas for the
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latter, the regimes of the fixation of either the chemical
potential or the concentration of itinerant particles are
used.

The previous studies of the PEM have been
devoted to the analysis of the electron spectrum [23],
investigation of the behavior of dielectric susceptibility,
examination of phase transitions and appearance of the
phase separation [24-30]. In particular, it was shown in
[25], that the first-order transition between homogeneous
phases and the phase separation are likely to occur in
the PEM with a direct pseudospins interaction, provided
that Q,¢ = 0. Similar results were obtained for Q,¢ # 0
and large g, either in the U — oo limit for the two-
sublattice PEM [26], or for a case where U = 0 [27,28]. In
[28], basing on a thermodynamically consistent scheme
of a generalized random phase approximation (RPA),
the phase with a double lattice period modulation was
revealed to be likely to appear when U = 0 and Q = 0.

When the pseudospin-electron interaction is weak
(9 < W, where W is a half-width of the band
which is not split in a case of the weak interaction)
and U = 0,92 # 0, the application of mean field
approximation (MFA) and RPA has been shown to
may lead to the appearance of CDW. Depending on
the chemical potential value, the system has been
found to undergo the transition to the phase with
the double lattice period modulation (the chemical
potential is near the band center), to the homogeneous
phase (the chemical potential is close to the band
edges), or to the phase with the incommensurate
lattice period modulation (at intermediate values of the
chemical potential). Appearance of the phase separation
phenomenon has also been examined. For the n = const
regime, with n being the electron concentration, the
system may separate either into homogeneous phases
with different values of the average pseudospin and
electron concentrations, or into the homogeneous and
modulated phases [29-31]. However, when the tunnel
frequency (2 is nonzero, the effective interaction between
electrons becomes dynamical, and, as a set of the theory
parameters meets the specific requirements, the system
may go into SC (Anderson theorem [32]). Thus, under
these conditions, the transition to CDW will compete
with that to SC. Among others, the close attention
to this problem was paid in [33]. It was shown that,
when there is no electron correlation, the transition
temperature to CDW, T}, is higher than that to SC, T¢.
The authors, however, considered only the case where
the local potential is symmetric and the electron filling
is close to a half. The question concerning the appearance
of the superconductivity for a wider range of the model
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parameters and electron concentrations has not been
examined yet. Just this point is the subject of the given
work.

1. Susceptibility in a Superconducting Channel

To examine the possibility of the appearance of CDW,
the previous papers [30,31] were aimed at studying the
PEM dielectric susceptibility

CDW(Q: wn) —

B
aﬂnM@Mvmwwm—Mmem (2)

in the weak interaction limit (¢ < W). Here, M; =
den; + dsS; is a cell’s dipole moment, and, for the
layered structures like YBaCuO, it includes only a
transverse component. Within the frames of the RPA,
which accounts for the contributions having a structure
of the serial loop connections in a diagram representation
(this will be discussed in more details below), the
static dielectric susceptibility was shown to diverge
(this means that the system undergoes the transition
to CDW) under the following conditions:

A2+ g2 sin® ON (07 )01, (0) + A2g*Bb' cos® AT1,(0) = 0, (3)
where
2 n(ty) — n(te—q)
I —
Q(w) NXk: CU"‘tk_t]»fq )
1 2

A=+V(gn—h)2+Q2, (0%) = %tanh(%). (4)

For the homogeneous ordering and s-symmetry,
the static susceptibility in a superconducting (Cooper)
channel can be expressed as

X% = NZ/Tm>quwh¢wwm 6

k.q o

with operators being in the Heisenberg representation:
A(r) = e Ae=™H. Consider the U = 0 case and,
similarly to [30], rewrite the Hamiltonian as

H = Hy + Hiyg,
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H, :—/\Za —gNm)+Z (gn — p+ te) ko,

i k,o

Hin = gz Z ei(k_k,)Ri c]jack’a - n)(slz - 77)' (6)

N
Here, a rotational transformation [30],
Si =07 cosf + o] sind,

T T Z o3
Sy = 0§ cosf — o7 sinb,

Q
inf = — 7
sinf = 5, (7)
has been used. Further, to build a zero-approximation
Hamiltonian, we carry out the MFA as follows:

gniS; — gni(S7) + g(ni)S; — g(na)(S7). (8)

Application of the similar schema to the Hubbard model
in the limit of a weak electron correlation, U, makes
it possible to describe its magnetic properties, when
there is no correlation splitting of the electron band.
It was shown in [27] that, for the PEM in the DMFT,
the band is also not split when the pseudospin-electron
interaction, g, which is an analog of the Coulomb
repulsion U in the Hubbard model, is sufficiently weak
(9 < W). Thus, a choice of the MFA as a zero
approximation is well grounded for the weak interaction
limit.
With the use of the representation

B
e PH = ¢=PHoG(B), o(B) = Texp(— /Hmt (9)
0

we may write the mean value of the expression:
(Treg(T)ep-—r(r)el_yel,) =

= (U(é))o (TTcik(T)cT,k(T)chch

a(B))o =

= (Trepk(r)erw(r)el_ el ,o(8))6, (10)

where the operators are in the interaction representation
A(r) = e™HoAe~™Ho and the symbol (...)§ implies
accounting for the coupled diagrams when averaging
over the Hy distribution.

Employ the perturbation theory to calculate the
average value of the above expression:

(Treyi(r)er—i(r)el_ el ,o(B)G =
= (Trepe(T)er—r(r)el_ el Vo
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—/dTl(TTch(T)cT_k(T)ch I Hing (1))

2' /dT1X

X /dTQ(TTCJ’]@(T)CT_k(T)C$7QCIqunt(T1)Hint(7'2)>8 — ..

(11)

To calculate the average values of the T-products, we
utilize the diagram technique and Wick’s theorem for
both the spin- and fermi-operators (see, for example,
[34]), performing, at the same time, a cumulant
expansion to calculate the average of the product of
operators o®. We introduce the designations for the
unperturbed Green functions,

(Tro7 (T)oy, (7))o = —2(c*)o Kjy (1 — 7'),
(Trero (T)e8 (7))o = Skt Gy (T — T'), (12)
and cumulants
(Tro7 (7)o (7))o = b + b'éur,
. 1 B)\. ;L ob
SHEN = (o =y T V= gTs

After proceeding to the w, k-presentations in the form

1 —iw T1—T2 1 i —nIn;
g e T D T K ) =
n k

= Kp(n —m), (14)
the unperturbed Green functions become:
1
G, (wn) = ,
ko () = iwn — te — gn + p
KO(wn) = ——. (15)
e fwp — A

It is worth noting that the diagrams containing the
“single-tail” inclusions in both the Green functions and
cumulants are compensated, because it is the MFA that
is chosen as a zero-approximation and, thus, the zero-
field corrections are already included in the unperturbed
Green functions and cumulants.

Let us introduce the following diagram designations:

[O O] ;
GR(w) ,

Y(w):
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where

K°w) + K%(-w)
2

Y(w) = sin? 4 —V'Bcos?B5(w). (16)

For the susceptibility x“PW, in a zeroth-order of
perturbation theory, we obtain the expression

3 GG, (17)

First-order contributions are mutually canceled. To each
inner diagram vertex, we assign a multiplier g. In the
second order in g, we have the diagram

or, in the analytical form,

2
g°’T
- Z le(wnl)G

k1,k2,n1,n2

(_wn1 ) X

Xz(wnl - wnz)ng (wn2)G0—k2(_wn2)' (18)

In the higher orders, we should take account of the
diagrams, which correspond to a ladder approximation
for an “anomalous” scattering channel (with the
parallel directions of the arrows of the Green Fermi-
functions) and to a chain one for a “normal” scattering
channel (with the antiparallel directions of the arrows
of the Green Fermi-functions in loops), the latter
approximation dealing with a summation of the series
of the loop diagrams.

In particular, in the fourth-order of perturbation
theory, these are the diagrams

and
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with the analytical contributions

4T2
S

k1,k2,k3,n1,n2,n3

le (wnl )Go—kl (_wnl ) X

X (wn, — Wiy )GR, (Wng )G, (—wny) X
XX (wng — wnz)Gg2 (wn2)G(1k2 (—Wns) (19)
and
if,—f Z le(wm)G+ y (—Wny ) X
k1,k2,n1,n2
XX (wny — Wng ) Hps—y (Wny — Wiy ) X
X D(Wny — Wng )G, (Wng) G2, (—wna), (20)
correspondingly.

Accounting for the above scattering channels, we can
express the susceptibility x5 either in the diagram form

D
or in the analytical form

=3 "X0(k)
w,k

+Tx

X Z XB}l (kl)le,wz (klv k2)XB}2 (k2)7 (21)
k1,k2,w1,wa
where
1
Xoy, (k1) = NG% (wi)G2, (—wr). (22)

For the Ty, ., (k1,k2) vertex part, to which a shaded
rectangle in the diagram corresponds, we obtain the
Bethe—Salpeter equation:

Il

or, in the analytical form

le,wz (k17k2) klakQ)

wl wz(

+T Z le w3 k‘l,k3)X2,3 (k‘3)Fw37w2 (k‘3,k2). (23)
ks3,ws

Here, within the approximation accepted, the

ro ws(k1,k3) unperturbed vertex is formed by
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the “normal” scattering channel. In the diagram
representation, it corresponds to the series
© o + [ Ql\{/@ O] + eee, (24)
or, in the analytical form,
wl wa (kh k2)
22 _
=— g S = ws) . (25)

1-— gQsz—kl (wl — wg)E(wl — WQ)

Series (24) is similar to what has been obtained in the
limits of the generalized RPA at the calculation of the
paired “normal” correlation functions (susceptibilities)
for the highly correlated electron systems, making
use of the basis account for direct interactions, in
particular, magnetic susceptibility of the ¢t — J model
[35], dielectric susceptibility of the PEM for both the
strong [24] and weak [30, 31] interactions. In our case,
provided that U = 0, a connection between the loops
is accomplished with the help of the cumulants and
Green Bose-functions. In this case, expression (25) for
the “zeroth” TO,  (ki,ks) vertex part has a structure
similar to that obtained for the Holstein model in the
ME approximation employed in [1], although this model
contains no cumulant contributions, only the phonon
propagators (analog of the Green Bose-functions K°(w)
in our model).

Introducing a variable x5, (k1, k2) associated with

Y5 as

S = Z

wi,w2,k1,k2

le,wz (klv kz) (26)

we can write the equation which is equivalent to the
Larkin equation for the systems with direct interactions:

XUSJ? wso (kh k2):XUOJl (k1)6k17k26w1,w2 +TXUOJl (kl) X

x Z L0 o (Bi, k) XS0 . (ks ko).

k3,ws3

(27)

It should be noted that the structure of Eq. (27) is similar
to that obtained in the Holstein model [1-4].

The use of both the approximations, the ladder
one for the Ty, ., (k1,k2) vertex construction and the
chain one for the construction of TY wZ(k1,k2), was
employed by analogy with what was done in the ¢t — J
model for the SC description [36]. The approximations
mentioned correspond to the known ME one, which is
usually used for the consideration of electron-phonon
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systems, particularly in the Holstein model. As was
shown in [2], when, in the latter model, the limit
was taken where the phonon frequencies were small
enough in comparison with the transfer integral, such
an approximation made it possible to achieve the results,
which were in qualitative resemblance to those obtained
on the basis of quantum Monte Carlo simulations.
In addition, in the aforementioned paper, the effect
of the corrections to the vertex part, which were
neglected in the ME approximation, on the SC transition
temperature was studied. It was shown that, for a case
of non-half filling, this means that if the electron or
hole concentration is sufficiently small, the role of such
corrections is negligible at small phonon frequencies.
Since the PEM is similar to the Holstein model, and
may be considered as a double-level approximation of
the latter one, the ME approximation is expected to
be satisfactory in the limits of non-half filling, low
temperatures, and small Q. It is worth noting that
we have made the zero-approximation for the Green
Fermi-functions G by analogy with what was done in
[37], where the possibility of the SC appearance in the
Hubbard model was examined in the U — oo limit.

2. Phase Transitions to SC and CDW

In [30], taking the weak interaction limit, we considered
the thermodynamics of the simplified (U = 0) PEM in
the normal phase, and constructed the phase diagrams
for both the zero and non-zero . We showed that,
depending on the chemical potential position, the system
might undergo a transition to either a modulated or
another homogeneous phase, with the latter having the
different average values of S* or electron concentration,
and, in what follows, being referred to as the low-
temperature homogeneous phase (LTHP). Now, our aim
is to construct the phase diagrams for various values of
Q, taking into account that the SC transition may occur.
In what follows, we will consider the 1 = const regime.

A way to find the SC transition temperature is to
determine a temperature, at which the susceptibility in
the superconducting channel diverges. The condition,
this temperature can be found from, implies that the
scattering matrix

Twlwz (kl ) k2) = _TXUOJl (kl)rglwz (kl ) k2)

has a single eigenvalue [1,38]. A specific feature of this
procedure is that we are dealing with the imaginary
discrete Matsubara’s frequencies iw, = i(2n + 1)7T,
that enables us to specialize to the T, ., (k1, k2) matrix
discrete in frequencies. To simplify the calculations,

(28)

612

we will neglect the renormalization of the unperturbed
vertex part performed according to Eq. (25), assuming
that T ~ —¢?%. Such an approximation is similar to
the non-renormalized ME approximation in the Holstein
model [1]. It should be noted that the requirement
that the denominator in Eq. (25) equals zero at
wy = wp coincides with condition (3), under which
the static dielectric susceptibility diverges, implying the
transition to CDW [29-31]. For this reason, we may
neglect the I'? vertex renormalization only in the high-
temperature phase, when the system still not underwent
a transition to CDW. Thereby, we confine ourselves to
the consideration of a possibility of the transition to SC
only from the high temperature phase. To go beyond this
limit, i.e. to consider a transition from CDW to SC, we
should use the complete expression for the T'), . (k1, k2)
vertex part.

As results from our simplification, the unperturbed
vertex part doesn’t depend on the wave vector, and thus,
we can sum over the wave vectors ki, k2, k3 in the Larkin
equation (27). In this case, to determine the transition
temperature, a unit eigenvalue of the matrix

T‘JJlUJZ = _TZXB)Q (kl)Fglwg (29)
k1

should be found at first. Then, of all the temperatures
within the (T, h) plane which provide a unit eigenvalue
for the T,,,, matrix, the highest one should be
chosen as the critical SC transition temperature. It is
this phenomenon that can be called as the absolute
instability of the high-temperature phase with respect
to the SC ordering. For the CDW case, the critical
temperature can be determined from Eq. (3). Using the
equations obtained in the MFA [29], we can calculate
the mean values of both the electron concentration n
and pseudospin n = cosf{c*)¢:

1 1
n = ~ Z(eﬁ(gn-i-tk—u) + 1)—1 = ¥ Zf(Ek — ) (30)
ko ko

h—gn BA

7”:

In our calculations, we take the direct sum over the
two-dimensional square lattice. As the units of distance
and energy, we choose a lattice constant a and a half-
width of the electron band W, respectively. In the MFA,
the band energy reads E(k) = gn + ty, where &, =
W (cosk, + cosky) [29,30].

Fig. 1 shows the dependences of the wave vector of
the CDW-modulation ¢= (¢,q), the CDW transition
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Fig. 1. The wave vector of the CDW-modulation ¢ = (g, ¢), the temperature of the absolute instability of the high-temperature phase
with respect to the transitions to CDW (solid line) and SC (bold dashed line) as functions of the chemical potential, for Q@ = 0.06 and

g=0.5
temperature (solid line), and the SC transition
temperature (bold dashed line) on the chemical

potential, for Q = 0.06. Since the picture is symmetric
with respect to u = 0, only positive values of the
chemical potential are presented. As is seen, the ¢ =
m case is realized for small absolute values of the
chemical potential |u| , i.e. for p located near the band
center. As |u| grows, the system undergoes the transition
to the CDW with the incommensurate lattice period
modulation. Further increase in p gives rise to the
transition to the LTHP, and finally, when the chemical
potential is located near the band edges (ju| < W +g/2
in an ordered state of pseudospins), the transition to
SC occurs (bold dashed line). The transition to SC
marked by the thin dashed line is not realized in reality.
This line denotes a multitude of the points of the
high-temperature phase instability with respect to the
SC appearance, when there is no CDW transition, i.e.
when a renormalization of the unperturbed I'° vertex
part is neglected. It should be noted, that for Q = 0,
the transition to SC doesn’t onset, since the effective
interaction between electrons becomes static and hence,
according to the Anderson theorem, SC ordering can’t
appear [32]. In this case, the transition to the LTHP
persists up to the values of the chemical potential which
are located near the band edges, |u| = W + ¢g/2. When
Q # 0, the range of pu, for which CDW appears, gets
narrowed and the transition to SC becomes feasible.
It is difficult to find the limit value of |u|, at which
the SC transition still persists, because the transition
temperature is low. The transition to SC is thought to
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may occur up to |u| = W + g/2, independent of the
value, provided that Q # 0.

Fig. 2 presents the dependences of the wave vector of
the CDW modulation, the CDW transition temperature
(solid line), and the SC transition temperature (bold
dashed line) on the chemical potential, for Q = 0.2. It is
seen that, upon an increase in €, there is no transition
to the LHTP, and the CDW transition temperature is
reduced in comparison with Fig. 1. Dotted line shows
the temperature of the transition to the phase with
qg = m, i.e. to that with the double lattice period
modulation (the so-called chess-board phase). In [1-4],
the appearance of the incommensurate phase wasn’t
observed for the Holstein model, and the phase transition
was concluded only to be either to the chess-board phase
or to the SC one. As is seen from Fig. 2, there is a region
of the phase space where the transition to the CDW
with the incommensurate lattice period modulation is
possible, and this region is rather large for the small
values of ().

Fig. 3 shows the dependences of the temperature of
the transition to CDW with the modulation wave vector
¢ = (m,m) (solid line) and SC transition temperature
(bold dashed line) on the chemical potential for Q = 0.4.
For such large values of (2, there is no transition to the
LTHP or the phase with the incommensurate lattice
period modulation. In other words, the system may
undergo only the transition either to the chess-board
phase or to the SC one.

Let us estimate the SC transition temperature. Given
W 0.5 eV and g = 0.25 eV, the maximum value of
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Fig. 2. The wave vector of the CDW-modulation ¢ = (g, ¢), the temperature of the absolute instability of the high-temperature phase
with respect to the transitions to CDW (solid line) and SC (bold dashed line) as functions of the chemical potential, for @ = 0.2 and
g = 0.5. Dotted line shows the temperature of the transition to the phase with the modulation wave vector ¢ = (m, )

0.08

0.04

0.00
0.00

0.30

Fig. 3. Dependence of the temperature of the absolute instability
of the high-temperature phase with respect to the transitions to
CDW (solid line) and SC (bold dashed line) on the chemical
potential, for 2 =0.4 and ¢ =0.5. The wave vector of the

modulation is § = (7, )

the SC transition temperature is found to be T3¢, =~
10 + 40 K. Making this estimation, we have taken
into account that the SC transition occurs at non-half
filling, because the system turns into CDW at p = 0.
It is seen from Figs. 1—3 that, if there wasn’t the
CDW transition, the SC transition temperature would
be several times greater than the obtained values of
T3¢ | at which the SC transition may actually occur.

This agrees with the conclusions obtained for PEM in
[33], where calculations were performed by analogy with
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the scheme used for the Eliashberg equations in the
limit of the weak electron-phonon interaction, provided
that the renormalization of the pseudospin excitement
energy is neglected. According to the estimations carried
out in [10], if there was no CDW, the SC transition
temperature would be T5¢ ~ 40 K at the band filling
close to a half.

The question as to what occurs in the system as
the tunnel splitting frequency grows further is also of
great interest. It was shown in [29] that, at 4 = 0, the
critical temperature of the transition to the phase with
the double lattice period modulation, T°PW | decreases
with the increase in 2 according to the exponential law:
TEPW ~ exp (- W;/—\Qf?) It follows from the analysis

of the behavior of the T, .,, matrix elements (Eq. (29))
that the SC transition temperature, T3¢, changes with
Q in a similar way. In this case, for u = 0, T5¢(Q —
o0) & TPW(Q — o). As is seen from Figs. 1 — 3,
with the increase in |u|, the CDW transition temperature
falls more rapidly than the SC one. Thus, for the non-
zero values of the chemical potential, provided that
is sufficiently large, the SC transition temperature is
expected to be higher than the CDW one, and there
will only be the transition to SC. However, as was noted
above, to make the correct analysis of the competition
between these transitions, the renormalized I vertex
should be used when solving Eq. (28) and determining
Tsc. In addition, when ) values are sufficiently large,
the applicability of the approximation used to derive this
equation becomes unjustified.
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Conclusions

In this work, the possibility of the appearance of the SC
ordering has been studied in the PEM with the tunnel
splitting of levels in the limit of the weak pseudospin-
electron interaction. The phase diagrams in the (T, u)
and (q,p) planes have been constructed. When the
chemical potential is located near the band center (the
case of half-filling, u ~ 0), the transition to the phase
with the modulation of the lattice period is found to
occur. For the non-half filling case, the SC transition
may appear, provided that the tunnel frequency 2 is
nonzero.

The results obtained for the two-dimensional PEM
are similar to those obtained for the infinite-dimensional
Holstein model, although the phonon coordinates are
continuous in the latter, whereas, in the former, the
pseudospin variable takes on only two values. Contrary
to the studies [1-4], we have revealed that the transitions
to either the incommensurate phase or LTHP is possible
too. Though the authors of [1] admitted that the
incommensurate phase might exist within a very narrow
region of the phase diagram, we have shown that, in
our case, this area is rather extensive, when ) is not
large. In addition, the papers mentioned did not study
the influence of the change in the phonon frequency on
the phase diagram shape. It was only noted that, at small
frequencies, the SC transition temperature went to zero.
As has been shown by us, in the case of the PEM, the
range of the chemical potential values, within which the
SC transition may occur, becomes gradually narrowed
as  decreases, and finally, disappears at = 0.

It should be noted that the conditions for the SC to
appear, which are found by us for PEM, supplement the
results of the analysis made both within the scheme of
the Eliashberg equations [33], where the consideration
was confined to the case with the electron band filling
close to a half, and on the basis of the quantum Monte
Carlo simulations [15]. In [15], it was only established
that SC might appear at low temperatures, but the
transition to CDW was not studied. As follows from our
study, the presence of the CDW phase gives rise to the
fact that, for the PEM, the transition to SC occurs at
the non-half filling beyond the region of the existence of
CDW.

The mechanism that leads to SC, which we have
considered in this paper, as also the traditional
phonon one, does not result in the high values of T,
and apparently thus, it does not explain the HTSC
phenomenon.
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HAJITTPOBUIHICTD ¥ [ICEBIOCIIH-EJIEK TPOHHII
MOJIEJII

T.C. Mucaxosuy, I.B. Cmaciox
Peswowme

JIoCmimKyeThCsl CTAaTHYHA COPUAHATIUBICTG y HAJIPOBiTHOMY
KaHaJi IS JIOKAJIbHO AHTapMOHIYHOI KPHCTAJIYHOI CHCTEMH 3
CUJILHUMY €JIEKTPOHHUMH KODEJISIisIMA B PAMKAX ICEBIOCITiH-
enextporoi momeni (IIEM) 3 TyHesbHEM pO3IIEIUIEHHSM DiBHIB
npu ciabKiil mceBAOCIiH-eIeKTPOHHIM B3aeMmomil. B pexumi p =
const € MOXKJIMBICTH (DA30BOro mepexomy A0 (a3u 3 MOLYJISIIEI0
mepiogy IpaTKH y BHIAJKY, KOJIU XiMIOTEHI[iaJl 3HAXOAUTHCS IIO-
61u3y neHTpa 30HU. [Ipu BiAMiHHOMY BiJ MOJIOBHHHOTO 3aII0BHEHHI
30HM Ta HEHYJILOBii 1acToTi TyHe oBaHHS () BHSBJIEHO Iepexizm a0
HaAnpoBigHOT daszu. /ocmiaKeHo BIUIUB TYHEJIBHOTO PO3MIEIIeH-
e Ha (Pa30Bi mepexogu.
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