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Explicit expression for optical conductivity of a metallic nanotube
as a function of its inner and outer radii and the ratio between
the photon energy and the Fermi energy is obtained. A correction
to the expression of optical conductivity caused by quantization
of electrons’ energy inside a metallic nanotube is obtained in an
explicit form; the oscillation of the correction as a function of the
light frequency is established.

Introduction

In recent years, physics of small clusters has been
separated as a promising direction of physical science. As
is known, small clusters of a substance possess properties
essentially different from those of a bulk substance. For
example, island films emit electrons and photons under
a relatively low pumping power [1] (bulk metals do not
exhibit such effects under the same level of power).

A distinct place among the fine clusters occupy
structures of about 1-nm size, but only in two dimensions
— the thin metallic wires (see, for instance, [2]), whose
optical properties were theoretically investigated in [3].

If one considers the thin metallic wires, quantization
of the electron spectrum becomes topical. The electron
spectrum discreteness can manifest itself in a variety of
effects.

In [4], the manifestation of the electron energy
quantization in thin metallic wires is investigated
experimentally in the phenomena of electroluminescence
and conductivity. In that work, hot electrons generated

598

due to a potential difference caused the light emission
applied. Theoretical study of quantization effects in
such cylindrical metallic conductors is done in [3, 5.
In particular, it was shown in [5] that oscillations can
occur on the graph of conductivity as a function of the
frequency of the current-inducing electric field.

In works [3, 5], the asymptotic form of radial electron
functions was used to find the electron spectrum. Such
an approach put certain limitations on the radius of the
cylindrical conductor and did not allow a wide-range
changing of a gap between the electron energy levels.
Consideration of the metallic nanotubes undertaken in
this work is free of such limitations. In the case of the
nanotubes, one can change the tube’s inner radius and
thickness of the cylindrical cover independently of each
other, so the interlevel gap can be varied in a wide range
within the limits of applicability of the asymptotics of
the electron wave functions.

A technology of fabrication of metallic nanotubes is
described, for example, in [6, 7].

This work is devoted to study of optical (high-
frequency) conductivity and its oscillations caused by
the electron spectrum quantization in thin-wall metallic
nanotubes.

1. Setting of the Problem. Electron Wave
Functions

Let us consider a metallic nanotube (hereinafter metallic
nanotube is considered as a cylindrical metallic envelope
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only, without the carbon nanotube) as a potential
axisymmetric well for electrons; here we introduce the
cylindrical coordinate system. The electron potential
depends on the radial variable, as shown in Fig. 1.

Let an electromagnetic wave be incident
perpendicularly to a tube represented by such a model
potential. (The perpendicular incidence is presumed to
avoid the Drude absorption connected with movement
of electrons along a nanotube.) We consider a light
absorption in such a tube and calculate the optical
conductivity of a nanotube.

To obtain this value, first let us find the electron
wave functions for a model nanotube.

After the separation of variables in the Schrodinger
equation written in cylindrical coordinates (p, ¢, and
z), we obtain, for an electron inside the nanotube, the
following expression for the electron wave function:

exp (ik.z) exp (imyp)

VL  Vor

(here, n is a principal quantum number, k, — wave-vector
component connected with electron’s motion along the
0z axis, m — integer, L — length of the cylinder; the
cylinder occupies [0, L] section of the 0z axis), in which
the radial part R,,, satisfies the equation

Y= Ryn (p), (1)

d’Rpp 1 dRp 2mE 2 _
dp2 + ( L — m_) Rmn - 07

p dp 2 0>
P2€ (av b]: (2)
Thize e 4 (PR, 20) R =0,
p ¢ (a,b],

here, E, is the energy connected with a transverse
(relative to the 0z axis) motion:

K2k2 K2k2
E, = L — E - =

(3)

2m, 2m,’

k1 — wave vector component associated with transversal
motion of the electron, E — total electron energy, m, —
effective mass of the electron.

Solution of this equation is a linear combination of
the Bessel and Neumann functions

R, (p) = B (sinady, (kL p) + cosaN,, (k1p)), (4)

with « being some (constant) phase, B — constant factor
27,2
(determined by the initial conditions), % =E, Jn
— Bessel function of order m, N,;, — Neumann function
of order m.
We consider the electron to be localized in the

potential well: £, < Uy. Then we can apply, under the
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Fig. 1. Dependence of potential on the radial coordinate for model
potential of a nanotube. Up — dielectric barrier height — is
supposed to be equal in both the outside and the inside of a tube;
a and b are inner and outer radii, respectively, of a nanotube; p is
the radial coordinate of the cylindrical coordinate system

approximation of k;a > 1, the Bessel functions’
asymptotics on the interval (a,b] as follows:

2 1
Ryom ~ B (sin oy / i (lcnmp - (m + 5) g) +
2 sin [ & + 1\ m
in - -3z —
Tknmp mmP = \MT ) 2

:%sin <knmp— <m+%>g+a>, (5)

where B = \/ 72— B. Beyond the range of the (a, b

interval, the asymptotics of Bessel functions is expressed
as

+ cos

c A
R~ —exp(—=Kip), p>b; R~ -—exp(Kip),

N N
p<a, Kip>>1, (6)
where
K2

=U, - E 7

o 0o—EL, (7)

with K| > k,. We proceed using the Kawabata and
Kubo method [8]: since we suppose the barrier to be
very high, at first we shall find a solution of Eq. (2) for
an infinitely deep well (Uy — oo) (unperturbed wave
function), and then we shall calculate small corrections
for the wave function parameters connected with the
barrier finiteness.
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Let us find, using the sewing condition, the spectrum
of wave numbers (now we seek k; only) of the
unperturbed wave function R°. Since the barrier is
considered to be infinitely high, we have

R°(a) = R°(b) =0 (8)
and, hence,
ki (b—a)=mn, n € Z, (9)

from which we obtain the value of
T

b—a

which is dependent on n only.

Let us find the normalization coefficient B. The
normalization condition is

L 21 b
/dZ/dsO/ 1Y (ps 0, 2)|*pdp = 1,
0 0 a

ky =k, =

n (10)

(11)

and, since the co-factors %\)%Z) and % are
already normalized on unity, we obtain
b
/ (RO,.(r))* rdr =1, (12)
a
from where we get
b 2 .
/(Rgm(r)> rdr = B? (g 1 sin <2knmp—
o nm
1 ' b
—<m+§>ﬂ'+2a>> = B? _a—l, (13)
a
i.e.
-~ 2
B = . 14
T a (14)

Previously we have found, in accordance with
formula (10), the wave vector component k,, transversal
to the cylinder’s longitudinal axis; this component rather
exactly determines the electron spectrum, provided
that the criterion k,a > 1 is met. But this is not
sufficient for us since we want to employ the method
of Kawabata and Kubo [8] for the calculation of optical
conductivity. In their approach, matrix elements of an
optical transition are determined through the values
of electron’s radial functions on the boundary of the
barrier. In approximation (10), these functions are equal
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to zero on the barrier’s boundary. This is connected with
the fact of taking the barrier’s height to be infinite. If one
considers the barrier of a limited height, a sewing should
be done between the intra-well and intra-barrier values
of the logarithmic derivative of the electron function. In
this case, the boundary values of the wave function are
nonzero and it becomes possible to find matrix elements
of the optical transition. Thus, according to method [§],
we proceed with the perturbed function. To do this, we
introduce small corrections to k, and «

k‘J_—)k‘J_-FAk‘J_, CM—)CK'FACK, (15)

which can be found from the condition of logarithmic
derivatives’ sewing:

rm(0+0) Ry (b—0)
nm(b +0)  Rum(b—0)’
rm(@+0) R (a—0)

an(a 10) " Rum(a—0) (16)

For the wave function outside the (a,b] interval, we have
R, (b+0)

p—>b+0 R (0 0) ~ —K,m, since K,;;b > 1,
!

p—a—0 % ~ Knm, since Kya > 1;
and for that inside the (a,b] interval,
R),..(b—0) Epm cos Tmy
Rom(b—0)  (Aknmb + Aa) cosmmy

knm
" Akpmb+ Aa’
because of equality to zero of the unperturbed wave
function on the well boundaries k,b — % (m + ) +a=
mmy with m; being some integer; analogously,
R, .(a+0) kn
Rym(a+0)  Akya+ Aa’
hence

{ ARG (17)

Ak,a+ Aa = I’”(—z

Thus, now we have an explicit form of the electron
functions and the energy spectrum. We have not found
an explicit form of «, but we need only a fact that “alpha”
may be of a value that makes the unperturbed wave
function vanish on the boundary of the potential well
[we use this in Eq. (13)]. Now we can begin finding the
optical conductivity proper; to calculate it, we need only
linear combinations of Ak, and A« given in Eq. (17)
instead of the properly Ak, and A« values, since there
is no need to solve system (17).

ISSN 0503-1265. Ukr. J. Phys. 2004. V. 49, N 6



OPTICAL CONDUCTIVITY OF METALLIC NANOTUBES

2. Calculation of Optical Conductivity
of a Nanotube

Now we are able to calculate nanotube’s optical
conductivity proper basing on the formula of Kawabata
and Kubo [8]:

2

we? .oV
01 = m (zf:) <l|§|f>

Xf(Ei)(1 = f(Ey))o(Ep — Ei — hw), (18)
here, o1 is the conductivity sought, w — frequency of
an incident photon, m, — electron mass, vy — volume of
the nanotube, f(F) — the energy distribution electron
function with the sum being taken over the initial ¢
and final f states. (Note that hereinafter f(E) denotes
the energy distribution function, and index f — the
final state; they are denoted by the same symbol.)
The initial state (i| = (k,nm|, |f) = |kln'm'); note
that the expression under the summation sign does not
depend in reality on m and m/, in particular, the energy
of the initial and the final states is, correspondingly,
E; = Eu,, Ef = Ey . Potential V' is described by
the formula

V=U(x(p—b)—x(p—a), (19)

in which x(p) is the Heaviside function. Then

ov

o = Uo(6(p — b) — 6(p — a)) cos ,

and a transition matrix element is

L
e e

0

2w +o0

X/exp(i(ﬂ;r—ml)@) COS(pdap/p((s(p—b)—

0 0

(21)
Since we consider L to be of sufficiently large value,
L . I

Ofwdz =6 (k, — k), or, in a discrete form,
k. k5 the factor

27

/ exp (i (TZW—

0

m') ¢)

cos pdp =
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27 . .

_ / exp (i (m —m') p) ¥ +e ¥ dp =
27 2

0

1
= 5 (6m,m’+1 + 6m,m’—1) y (22)
and the integral over the radial variable
+oo
[ 9060 =) = 86 = @) Ri(0) B () =
0
= bR, (0) Ryt (b) = ARy, (@) Ry (@) (23)

By calculating the RHS part of this expression using Eq.
(17), we obtain a final expression for the squared matrix
element:

2 4
‘<i|6a—‘2/|f> :%(1—(—1)%’%
xdman 1 O g, (24)
correspondingly, the conductivity
=4 3 (1 - (—1)"+"’) x
n,n’,m,m’,k. ,k’,
X Ok fo Om,m' 1+ Omm 41 k2 k2, x
=kl 2

X f (Enm)(1 = f(Enim))0(Epm — Eprmy — hw) (25)
where

I 2ht _ 2re?h? (26)

m2wdvg m2(b—a)?  miwdvy (b — a)?

Since k does not depend on m, we can accomplish a
summation over m. Issuing from general considerations
(see, for instance, [5]), we have

(27)

Mmax = 2N.
Therefore, the summation over m gives us
2n

1

m=0

(28)

Analogously, for m', we obtain
2n’

Z %:n'.

m’=0
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Let us draw our attention to the delta-indices dp,,m 41
and 0y, —1. They bind the limits of summation over m
and m/': let an absorption take place (as in the case of

our consideration)
Ef = F; + hw, (30)

then (since k., = k. because of the presence of the factor
O,k )

(')’ =n®+n2, (31)
where
2 2
_ _ 2,
- (1) (52 e
b—a 22me

It follows from (31) that n < n'. Then the summation
over m has to be performed from 0 to 2n, and over m' —
from 1 to 2n+1, because of the presence of delta-index
Opm,m/—1 in the co-factor M. Supposing that
the addends with n=1 and n=2 contribute inessentially
into the optical conductivity (i.e. n > 1), we can guess
that the summation over m and m' is accomplished from
0 to 2n, and the sum can be substituted as follows:

6m m/— 6m m' b—

PR R IIIES NG AP Ly (33)

, 2 T
m,m

Therefore, the optical-conductivity sum will be
written as

b
=4 Y w2’k (1 _(—1)nn ) kK22, x
n,n' k. ,k,

Xf(En kz)(]' — f(En’,k’z))(S(En,kz — En’,k’z — hCU) (34)

While passing from summation to integration, the
factor 1 + (—1)"“" may be replaced with its average
value — unity. Then, for simplicity, we denote k, = k,
kn =k, E; = E, E; = E'. Replacing the sum with an
integral,

T
= n,

b—a
k.L =2mn,

(35)

(36)

(from the boundary conditions at the cylinder’s ends),
from where

L
;%%/dkz,
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(37)

we obtain the sought optical conductivity in the zero
approximation (we denote it as o):

50 — 4re’ht 1 b—a 2£ b—a y
omth—a T —a)L\ ® ) 7\ 7

xg[dkzo/o/k3 (k')? dkdk'x f(E)(1 — f(E'))x

2204 1 T
0(E - E' —hw) = dk.
x( ) 7r4m4w3b+a/ /X
0

x/ K (6)2 dkdk' f(E)(1 — F(E)O(E — E' — hw). (38)

The integral used in this expression is known from
the calculation procedure of optical conductivity for a
metallic cylinder [3]. We can write

o 3B 1

oy = ﬁﬁb_'_—agc(y)a (39)
here, Er is the Fermi energy, v = f“" , and

16 | I 3

2

gc(u):—/w2dm/ <1—y+ ) dy =

TV Y

1—v 0
2
- 2
_ (M%# 2 (oo 40
3 3 1
2 2

x arcsin | — += (2 2?4+ vz+v? (40)

T+v 3n\v 3 .

Thus, formulae (39) and (40) give us the optical
conductivity of a nanotube in the supposition of
continuous spectrum (in our transition from sum (34)
to integral (38), we have replaced the discrete spectrum
of wave numbers with the continuous one). This
approximation is admissible in the case of a non-thin-
wall nanotube, otherwise, in the RHS of expression (39),
one has to add a component connected with discreteness
of the electron spectrum (it will be calculated in the next
section).
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3. Optical Conductivity Oscillations as a
Manifestation of Electron Spectrum
Quantization

In this section, we consider the effects associated with
discreteness of the electron spectrum; they become
noticeable in a thin-wall nanotube: bTTa << L.

We deal with the expression

b—a

™

o1 =24 S 1= ()™ RE (B x

n,n' k-

X (1 — f(En’m’))(S(Enm — En’m’ — hw), (41)
in which

234
e 2me*h (42)

miwdvg(b — a)?’

and, in the term E,,,,,, of Eq. (41), it is considered that
ky =k,.

Instead of the sum-to-integral replacement, Egs.
(35)—(37), we will use an exact summation formula,
namely the Poisson formula:

Z y(n) = /dn (y(n) + 22 y(n) cos(27rsn)> . (43)
n=1 0 s=1

This procedure is used in the construction of the de Haas
— van Alfven theory of oscillations (see, for example,
9]).

As regards to the summation over n with the Poisson
formula, no difficulties arise. But, for the n’ summation,
some clarity and precautions need to be introduced.

So, we should calculate the sum

o0
GEMm) +hw) =Y (1 - (_1)n+n’)x

n/=1
x§ (E(n') — E(n) — Tw). (44)
The first notice is reduced to a statement that the
delta function of discrete indices (n and n') makes no
mathematical sense. To give a necessary sense to it,
we have to recall that, in physics, the delta function
represents some limit transition from a “normal” classical
function (for example, of the C'*° class’ function or the
one presented below). In the limit transition, the area
bounded by the classical function remains to be equal to
unity when its width (for example, at the half maximum)
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approaches zero and its height tends to infinity. As such
a “normal” function, we take the function

0, =< —%,
* AFE AFE
6 (CU): ﬁ, —T<Z’<T, (45)
A
0, r > TE
with AE —0.
The second notice concerns the function

(1 - (_l)n'Jrn) which takes a value of 0 or 2 depending

on the evenness or oddness of n’ + n. In the previous
section, we have replaced this function with its
average value (unity). If one accounts for the spectrum
discreteness, this approximation becomes doubtful. But
justification of this approximation can be proved strictly
if, in Eq. (44), one separately considers the situations of
even and odd values of n. Let us suppose, for example,
that n takes only odd values in Eq. (44). Then only even
values of n' = 2p’ (with p' = 1,2,3,...) remain in the
sum. Therefore, in this case,

G (E(n)+hw) =2 6" (E2p)) — E(n) — hw).  (46)

Now let us apply Eq. (43) to the summation in (46):

G (E(n) + hw) = /dp' 20 (E (2p') — E(n) — hw) x

X (1 + Qi cos (27s - 2p’)> =

s=1

= /dn'&* (E(n') — E(n) — hw) (1 + 2§: cos (27rsn’)> .

0 s=1

We can see that the obtained result coincides
with the initial one obtained after the replacement of
(1 — (=™t ) by unity. A similar substantiation may
be done for even values of n; in this case, only odd values

of n' (that is n’ = 2m' — 1) contribute to the sum.
Thus, in Eq. (44), we replace the discrete function

(1 - (—1)n+nl) by its average value, unity, and the
delta function — by §*, and apply the Poisson formula to
the obtained sum. We get

G (E + hw) = % Vf:Zw v
X (1 + Qi cos <s@ 2m. (E + hw))) .47
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For simplicity, we omit the dependence of E on n in
Eq. (47). Besides this, in obtaining Eq. (47), we already
have accomplished the passage to the limit AE —0
(here, AFE is the same as in Eq. (45)). Let us substitute
G (E + hw) into expression (41) and apply once more
Eq. (43) for taking the sum over n. We obtain

4me?ht 1 <b—a>2 L
= — X

o1 =

mi(b—a)Yw3T(®—a®) L\ T 27
x (b a) /dkz//dkdk’k3 (k')*
0 0 0
2e2hY b—a

xf(E)(1 = f(E")))(E - E' - hw) =

mimiw3 b? — a?
o0

xO/dkzo/O/dkdk’k3(k’)2f(E)(1 — f(E + hw))s (E—

@ 2mE(k, kz)>> X
)

(it follows from k. = k. that (k') = 22 (E1 + hw); we
execute the integration of the delta function)

225% 1 [2m.\?
:7r4m3w3b+a<h2> ( > /dk‘ /dELELX
XVE| +hwf(E)1— f(E+ hw))x

X <1+2i::c0s (s@ 2meE>> X

<1+22cos< 2b-a) 2me(E+hw)>>. (48)

s'=1

w) (1 +2i cos (s
X <1+2§: cos(

s'=1

\/Qme

Estimations show that, for b —a > 2107 cm and
with the energy values of about the order of magnitude
of the Fermi energy, the cosine arguments in Eq. (48)
are far more than unity. This implies that the cosines in
Eq. (48) are fast oscillating functions of energy. Hence,
only components with s = s’ and those including a
difference between the arguments of two cosines make
a considerable contribution:

vs (E) = s@ﬂ?me (\/E + hw — \/E) . (49)
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These are the components
minimal frequency of oscillations
their contribution to the integral Eq.
dominating.

Retaining in Eq. (48) only the terms of Eq. (49) type,

we obtain

xf(EY(1 — f(E + hw)) (1 + Qi cos @S(E)> =00+

s=1

that possess a
and, therefore,
(48) becomes

8e?

T w3h3\/2m b+a

d =
b /dELEM/EL + hwx

g1 =

—+o0 [e%e]

162 b—a
dpz dELEL\/EL-f‘hoJX

+7r4w3h4\/2me b? —a?
0 0

X f(E)(L — f(E +hw))y_ cos ps(E)

s=1

(50)

(p. = hk., 0¥ is given by expression (39)).
So we came to the known integral (see the analogous
calculation in [5]):

+oo o]
/ dpz/EM/EL + hwdE, f(E)(1 — f(E + hw))x
0

[=}

o0
X Z cosps(F) =
s=1

) s

here, Ep — Fermi energy, 6 — temperature; from this, we
obtain for optical conductivity as

SF%EFQTLW\/ 2Mme (1—

cos(ps(Er) — )
1V Er|¢,(Er)|sh(rf¢} (Er))

(51)

o1 =

04 16¢* 1 §71'%E Ohwv2m, | 1—
L MR Am. b+a 2 " e

()

ISSN 0503-1265. Ukr. J. Phys. 2004. V. 49, N 6

EF) 1)

cos (
1V Er|¢,(Er)|sh (m0¢}(EF))




OPTICAL CONDUCTIVITY OF METALLIC NANOTUBES

b,

o]

0.24

L st e
Py

-0.24

&

0.4+

-0.64

Fig. 2. Dependence of d on v for Er = 5.53 eV, T' = 300 K,
b—a =10 nm

24e? 1 Aw\\ *
=a) Erf 1- ==
Ul+7r%h3w2 " b+a< exp( ¢ >> *

E o
Z cos (Er) — ) — o0 + Aoy, (52)
\/EF|cps )|sh (m0¢. (ER))
where
24¢? 1 Ao\ !
Aoy = Erf 1-— -
T

Z cos ( EF) )
1V Er|¢,(Er)|sh (8¢} (EF))

If we take room temperature 7" = 300 K, then it can be
seen that the factor (1 — exp (—%"))Adoes not affect
noticeably the result obtained for practical fiw values
(say, for a CO, laser, the fw value is about 0.1 eV, then

= 5.31 and (1 —exp (—%))71 ~ 0.995). So, this
factor can be neglected and, with accounting for (39),
we can write

o, e’ L1
oL=o0
! ! W%h3w2 ¥ b+ a
Z cos (ps(Bp) — T)
1V Er|¢,(Er)|sh (8¢} (EF))
e cos(p. (Bw)— %)
0 =, VErleL(Er)lsh(r0¢,(Er))
0 s=1
=0, | 14+8Vmr— 53
! \/_EF 9e (V) ( )
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0024

Fig. 3. Dependence of d on v for Er = 5.53 eV, T' = 300 K,
b—a =100 nm

or, if we introduce

() = 2= o By (Vv - 1) = 25 (5
and
n(v) = b;a 2£e <\/11+—,, _ 1) _ s (SEF)’ (55)

then, finally, we can write

o = o (1 8V F( >) (56)
where
OO cos(sqo(u)f%)
Fly) = = V/5Er|q1(v)[sh(n041 (v)) (57)
ge (V)

Our calculations show that, for b — a > 10 nm,
there is enough to take three terms in the sum over s.
In Fig. 2, the curve shows the ratio of the oscillating
correction (with retaining the three terms) to the optical
conductivity of zero approximation, expressed by the
function d(v) = i—‘él = 16\/7711%17(1/), for parameters
Ep = 5.53 eV (Fermi energy of Au), T' = 300 K, and
b—a =10 nm.

The analogous curve for b —a = 100 nm is presented
in Fig. 3.

Thus, we have obtained the optical conductivity of a
metallic nanotube without limitations on its thickness,
i.e. without applying the condition k,(b—a) > 1; it was
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sufficient to use the inequality k,a > 1. This gives us
grounds for the calculation of the optical conductivity
of a nanotube with a wider variety of its parameters.
We can see that the discrete-electronic-spectrum addend
in the optical-conductivity expression is an oscillating
function of the energy of a photon incident onto the
nanotube; in this case, as is seen from a comparison
between Fig. 1 and Fig. 2, the dependence of the
oscillating addend on nanotube’s thickness is essential.

Summary and Remarks

Thus, we have obtained an expression for the optical
conductivity of a metallic nanotube without taking
the electron energy spectrum quantization into account
(we can see that the expression transforms, when the
inner radius tends to zero, into the known formula
for a solid metallic cylinder [3]); we also have found
an approximate expression for the small addend to
optical conductivity connected with quantization of
the electron energy spectrum (the effect manifests
itself in thin nanotubes). The dependence of this
addend on the energy of an incident electromagnetic
wave shows oscillations; moreover, a change of the
nanotube’s thickness essentially affects the shape of
these oscillations. The obtained result transforms into
the known expression for the optical conductivity of thin
metallic wires [3,8] if the inner diameter of a tube tends
to zero. As was expected, we can see that, with fixing any
of the nanotube’s radii (say, the inner one) and varying
the other (outer), we can employ the asymptotics of
radial wave functions by varying the interlevel electron-
energy gaps in a wide range.
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OIITUYHA MMPOBIJHICTH METAJIEBUX HAHOTPYBOK

II.M. Tomwuyx, Bosa.B. Kyatus
Peszowme

OTpuMaHO SABHHI BHUPA3 [JId 3aJIE2KHOCTI ONTHYHOI MPOBiTHOCTI
MeTasieBol HAHOTPYOKH Bij BHyTPIimHBOro i 30BHIMHLOrO pajiycis
HaHOTPYOKHU i BimHOIEeHHs eHepril ¢poToHa 10 eHeprii Pepmi. 3Hal-
JIEHO SIBHUIl BHUIJIS] HONPABKH JO ONTHYHOI HpOBigHOCTI, 3ymMOB-
JIeHOT KBAHTYBAHHSIM €Heprii eJIeKTpOHA B MeTaseBiil HaHOTPyOIIi;
BH3HAYEHO OCHUIAIIAHIN XapaKkTep 3aJIeKHOCT] i€l mompaBKu Bi
9aCTOTH CBiTJIA.
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