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The process of generation, evolution, and annihilation of optical
vortices when a vortical laser beam interacts with a nonlinear
medium is analyzed. The study is based on the parabolic wave
equation allowing for the refractive index as a function of the
light field intensity. Regularities of the vortex spatial evolution,
intensity, phase, Umov—Poynting vector, and also the system of
singular points for the phase gradient vector field in the beam
cross section as functions of the longitudinal coordinate, medium
parameters, and acting radiation have been discovered.

Introduction

Development of the controlled optical systems operating
in the atmosphere, in particular, adaptive control
systems, stimulates an exhaustive study of the fine
structure of an optical field. A presence of the wave-front
screw dislocations or optical vortices is the governing
factor for the field structure.

The fundamental properties of the dislocation
systems generated in light beams propagated through
the vacuum, inhomogeneous, linear, and nonlinear media
have been investigated in detail (see [1—7] and references
therein). However, the development of adaptive optical
systems with nonlinear feedback urges to study the
regularities of interaction of a vortical optical beam with
the nonlinear medium [8].

The present paper is devoted to a process of
generation of the vortical structures in an optical
wave propagating in the Kerr nonlinear medium
[9]. The singular light field was investigated on
the base of numerical solutions to the parabolic
wave equation for the complex amplitude of a
monochromatic wave field in the nonlinear medium.
The theoretical models and approaches proposed before
in [10, 11] were used for analyzing the field of
directions of the energy flux density vector, constructing
the energy stream-lines, and investigating the set
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of critical points of the corresponding dynamical
system.

1. Basic Equations

The slow complex amplitude U (p, z) of a monochromatic
wave V(p,z) = U(p, z) exp(ikz) in a half-space z > 0 is
assumed to obey the parabolic wave equation [7, 12—14]

2zk(n)6a—g + AL U +k*E(p, 2)U(p, 2) = 0, (1)
where k = 27/ is the wave number, A is the wavelength,
A, =V, V.,V :la% +m8%;p:{a:,y} is a vector
in the pane perpendicuar to the radiation propagation
direction, £(p,z) = [e(p,z) —&o] is the field of medium
permittivity inhomogeneities, g = (n)2, (n) is the
refractive index mean value, e(p,z) = eo + e21(p, 2)
is the permittivity for the nonlinear medium with the
nonlinearity parameter €5 in the presence of an optical
field with intensity I = |U(p, 2)|?.

If the complex wave amplitude is represented via
the intensity I(p,z) and phase S(p,z) as U(p,z)
= {I(p,2)}"/?expliS(p,z)], a system of equations
equivalent to Eq.(1) that consists of the eikonal equation

2s 1 s 1 [AT 1(VLI)?
5z TRtV =k )+ T 5T

(2)
and the transport equation

Vi {I(p,z)VLS} = —k%, (3)

can be written. In Eq.(3), a value

Pi(p,2) =1(p,2)V.LS(p,2) (4)

is the transversal component of the Umov—Poynting
vector P(p,z); and P, = kI is the longitudinal
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component of P(p, z). These vector components allow
the energy stream-lines or diffraction rays [11, 14, 16] for
the light field U (p, z) to be constructed in the space. The
diffraction rays are the integral curves of the differential
equation [11,14,16] for the current transversal coordinate
of the diffraction ray p = p(2) = {z(z),y(z) }:

%:%:%VLS(@Z) (5)

A family of rays presents a pattern of the spatial
energy distribution in the optical field. The stream-
lines coincide with the phase trajectories which are the
tangent lines for the phase gradient [see Eq.(4)].

It is practical to rewrite the differential equation (5)
as the system

dzx 10

a4z E%S(xayaz): (6)
@_135( )

dZ - ka ‘T7y7z )

and to consider Eq.(6) as a model of the reduced
dynamical system [11] with a single degree of freedom
and two dynamic variables x and y. The coordinate z
plays the role of an evolutional parameter. To study
the vortical spatial dynamics for an optical field in the
Kerr nonlinear medium, a structure of the phase space
of system (6) should be investigated in detail.

2. Singular Wave Field Structure

The spatial dynamics of the singular field in a Gauss—
Laguerre optical beam and a Gaussian beam passed
through an astigmatic plate was considered in detail
in [10, 11]. The investigation of the full set of critical
points in the dynamic system corresponding to Egs.
(6) had shown that the energy redistribution in the
beam and the appearance of optical vortices occurred
in accordance with the transformation of singularities.
The local focusing of a stream-line in the vicinity of a
knot was a precursor of a generated pair of vortices, and
the stream-line took on a helix shape near an unstable
focus.

In the present paper, a laser operating in Gauss—
Laguerre modes is considered as a source of the wave
field [11]. In this case, a situation can be realized when
three modes are excited and, as was shown in [11],
the optical vortices appeared and disappeared in the
beam at a certain distance from the radiating aperture
in a homogeneous medium. Zero-intensity positions
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significantly depended on the longitudinal coordinate.
The complex field amplitude had the form [11]

Ulz,y, 2) = (1+ 2%)*x

(2?2 +y2)(iZ - 1)
2(1 + 22)

where U, = —32%2 +2Z — 1+ 2(z —y)%, U; = 32%+
+2Z +1-2(x +y)?, Z = %z is the wave parameter
[17], a is the effective beam radius.

Two pairs of the conjugate optical vortices are the
peculiar properties of field (7) which can be observed
at the distance Z = 0.11 from the radiating aperture
in a homogeneous medium [11]. When Z = 0.33, these
vortices annihilate and then appear again at Z = 1.

Let now the Gauss—Laguerre beam (7) enters
into the Kerr nonlinear (the parameter e5 in Eq.(1)
takes nonzero values) medium at Z = 0.5, where
the field has no vortices but contains preconditions
of dislocation generation when increasing in the
longitudinal coordinate. In such a case, field (7) can
be considered as the initial condition for a solution
to the parabolic equation (1). Under these conditions,
Eq.(1) and the ray differential equations (6) were
solved numerically. To solve Eq.(1), the phase screen
technique [18] as a version of the splitting methods [19
— 21] was used. Our computer programs provided for
solving the stiff ordinary differential equation (1) in
the approximation of medium steady-state response [18].
This allowed us to calculate the distributions of the real
and imaginary parts of the optical field, its intensity,
and phase. In order to study the spatial ray dynamics of
the resulting light field, Eqs.(6) were solved by the Euler
method with automatic step selection to determine the
trajectory of a ray passing through an arbitrary given
point (zo, Yo, 20) playing a role of the initial point.

Let us first study a structure of the phase space
of system (6) by considering the spatial characteristic,
which is described by Eq.(5) using the construction of
the field of ray directions. We take into account the fact
that the evolution of stream-lines for the diffracted laser
beam has a unidirectional character. The vector field is
mapped in Figs.1—3 by the segments of the tangents to
phase trajectories with a point in the segment beginning.
Such a field represents the propagation directions of light
rays in the cross-sectional plane or the field of phase
gradient projections on the zOy plane at a given value
of the longitudinal coordinate z =const.

Analyzing the vector field of phase-gradient
projections shows that the two-dimensional phase space
of our dynamic system (the Oy plane) has a center of

(U +iU:)(Z +4)?, (7)

X exp
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Fig. 1. Intensity (a), phase principal value (b), and field of the
phase-gradient projections (c¢) for the Gauss—Laguerre beam at
Z = 0.5. The positions of some singular points are marked with
symbols: x (saddle) and * (knot)

symmetry (x = 0,y = 0) and two symmetry planes
running through the Oz axis and separatrices = y and
x = —y. Therefore, it is sufficient to represent a fragment
of the phase plane: -2 < z < 2 and -0 < y < 2.
The intensity, phase, and structure of the vector field
determined by the relative position of singular points,
is presented in Fig. 1 for Z = 0.5. For clarity, the
field of directions is represented against the laser-beam
intensity background: darker areas correspond to higher
intensities. In the description of the propagation of an
optical wave along the z-axis, the wave parameter Z was
taken as an evolutional parameter, and it was assumed
that A = 0.63 4 and a = 0.05 m.

It was established in [11] that the energy in the
beam was spatially redistributed in accordance with the
relative position of singular points of the field of phase-
gradient projections. The appearance of optical vortices
was associated with transformations of singular points,
i.e., with bifurcations of the corresponding dynamical
system. The key bifurcation was the generation of a pair
of unstable focuses from the unstable and stable knots.
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This bifurcation was an event of generation of a pair of
vortices, and the reverse bifurcation was an annihilation
of vortices.

Under the conditions of light propagation through
the Kerr nonlinear medium the scenarios of the
generation, evolution, and disappearance of optical
vortices change depending on the value e,.

To regulate and formalize a description of the
singularities and bifurcations, we introduce the following
designations: K, S, F are the knot, saddle, and
focus, respectively; s, u are the stable and unstable
singularities; B; is the bifurcation transforming a group
of singularities Ic into a group [I'¢’, where [ is the
quantity of singularities, c is the singularity type; B; !
is the bifurcation reverse to B;. Under the considered
propagation conditions, the following bifurcations take
place: Bi: (uK,sK) — 2F; Ba: S — (2S5,uK); Bs:
S — (3S5,2uK); Ba: (S,2ul) — ull; Bs: (S,uk) — @
Bg: (S, F) = @; Br: (2sK,S) — sK; Bs: uk — (S, 2F);
By: @ — (sK,S); Bio: sK = F; Bi1: (25,2F) —» 2. A
symbol @ means the empty set of singularities. When &
appears as a result of bifurcation, it is an annihilation
of singularities. When some singularities appear ez nihil
(from nothing @), then it is a birth of singularities. The
revealed bifurcations are presented in Table 1, where
the focus, saddle, stable knot, and unstable knot are

designated by the following symbols, respectively: @,

%, >I<, and >1<

Simulation shows that the scenario of the light field
evolution can be described pro forma for the nonlinear

Bifurcation Group of singularities

Before the bifurcation| After the bifurcation

Rk (00

Bi: (uk,sK) — 2F

By: 8§ — (28, uK) % % %
KA K

Bs: S — (38, 2uk) % % %

By

Bs S,uIC)—)Q >—$_<

:(

s ( *
B&(S,f)*)@ X@

¢

Br: (2sK,8) — sK

%
%
S %
:
%

ok
oK

Bg: uk — (S,2F)

By: @ — (sK,S) 5]

Bio: sSK -+ F >I<

IOk >

Bi1: (25,2.7:) — g

ISSN 0503-1265. Ukr. J. Phys. 2004. V. 49, N 5



SPATIAL DYNAMICS OF OPTICAL VORTICES

SRR b5,
= SRR R e
N T T Y L34
. 3
S SRR x
SN ST Trevesall
o W
T i
: \\ Ly iﬂ
RS sk §
< \g@g@\\; SRR i
R v LR LELRL O
AR 3\"% 125 R R R AR
St el AR SN Y
] T A sk e b
ST s
ReRggLs brisovs e s ZAgtteinay:
Rl i HisE
s i
sé 2 \%:‘CWI) sk ;
e ) 3 hh 0
| R o i s
i \.k QQ \\\: iz b
=
i 4 i &
T T T T T T T T
=20 {5 -10 a5 00 05 10 14 X
a
e ; trze
DR R
NN T
S8 SRS ld
Lol S 53 i aa
= v \ 3
AR
RO S e
RARRNAAN LT o
TSN STy 2T
2?*‘;"“Il\::: v es. /@ﬁfﬁf/é‘(’”c‘%%%ﬁ%ﬁ%& e
i 1 i T =
eweys Z e
rg (f:;‘é&g& ; gl cerers 3
prSRwRiSS & 2P0y
pnn il 7
él M""%Es J,’f;% o e
b o
EEsRi i 7 ¥
EEE Zaa
feserea) ;,% :; &
Q| [reaasi % o 2 %
| [eatds ""'“;ss &2 g 5
EEEN G
T T T T T T T T
-20 —f5H —-10 a5 00 05 10 1a

(¢4

=
4

o i
b i

=1

|

=

=1

>

-5 —f0 045 dg 04 10 fta ¥
e tee
= ) \\k\‘%%% \E%S i\zx«\ﬁ«\v\«\ i é\ @z
RN SR
e e,
ol R o
~| R
LAY WYy 5
N -
\{‘;\ S w/?/;/;f WA Y AEBEDIR
[} 3R 3 e # 55 5 A SOOI
iy Sk e e
1 i
ety prrEs
Eeety v e
préovnas e el
B i e
LeBheev vy 7 it stes
| [easans 7 ey ety
R s
eREERb 4 3
R s
e Lz e
#ban g ERRIER Crrr &
S [asiaasiiteatees RN
< Si1pte L reriiaatadas
e s
sy 72 f \\Q.RW
T T T T T T T T
=20 -15 —f0 05 0g 03 10 ta ¥

Fig. 2. Field of phase-gradient projections for the self-defocusing medium, ea = —5-10712. 2: 0.787 (a), 1.109 (b), 1.258 (c), 1.309 (d).
The positions of some singular points are marked with symbols: x (saddle), * (knot), and o (focus)

(e2 = 0) and self-defocusing (g2 = —5 - 107!?) media
as follows (Fig. 2): [2B1; Ba; 2Bs; 2B5; 4Bg| and [2By;
Bs; 2Bs; 2B4; 2Bj; 4Bg|, respectively. When ey =
—7.5-10712, the second scenario transforms into [2Bs;
2B, '; 2B;; 2By; Bs; 2Bs; 4Bg]. The appearance of
vortices through the bifurcation By (a pair of the stable
and unstable knots — a pair of the unstable focuses)
and the sequent disappearance of vortices through the
bifurcation Bg (annihilation of the saddle and focus) are
the peculiarities of these scenarios.

The evolutional scenario changes essentially when
the light propagates in the nonlinear medium, €2 =
5-107'2, (Fig. 3): [Br; 2Bs; (4Bo; By'; 2B3Y); 4B,
(Bs; 2B;"; 2B '); (2By; 2B4); 4Bio; 2Bo; 2Bi1; 4Bs;
4B9_1; 2B2_1; 2By]. The bifurcations in the parentheses
occur simultaneously. Along with the bifurcation B
revealed before [11], when the vortices appear from the
stable and unstable knots, a situation is realized when a
pair of the vortices appears because of the bifurcations
Bg (the unstable knot — the saddle and two
focuses) and Bjo (the stable knot — focus). At that,
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the bifurcations 2Bg occur instead of 2B, since two
stable knots taking part before in the bifurcation 2B; are
“indrawn” into the beam center due to the self-focusing
effect and then create a stable knot together with a
saddle after the bifurcation B7. Note that the stable knot
is a symbol of self-focusing.

The beam energy is concentrated in the areas
corresponding with the dark spots in Fig. 3. One
can see that the beam first is self-focused, then the
stable knot transforms into the saddle and two stable
knots (Fig. 3,c,d) and the dark area increases (Fig.
3,d,e,f). Tt is due to the nonlinear focus [17], where
the beam cross-section is minimum. In the nonlinear
medium, the bifurcation B; occurs in the same = and y
coordinates of the beam cross-section as in vacuum [11],
but subsequently far, at Z = 1.74 instead of Z = 1. Note
that much more complex evolutional scenarios with the
other bifurcations, for example, Bl_ll, are realized when
g9 > 5-10712.

Simulation shows that new evolutional scenarios are
realized for the Gauss—Laguerre beam in the nonlinear
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Fig. 3. Field of phase-gradient projections for the self-focusing medium, e2 = 5-10712. 2: 0.523 (a), 1.350 (b), 1.563 (c), 1.572 (d), 1.585
(e), 1.608 (f), 1.739 (g), 2.179 (h). The positions of some singular points are marked with symbols: x (saddle), * (knot), and o (focus)
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medium with increase in the modulus of the nonlinear
parameter €. In this connection, the variation in e,
changes a scenario in a larger degree when e > 0.
For the self- defocusing medium, 2 < 0, the vortex-
generation scenario is changed on the whole, but the
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conditions for vortex appearance are the same as those
in the linear medium [11]. Both in this case and in the
linear medium (e = 0), there is no annihilation of the
vortices in the beam far zone. The scenarios are changed
sufficiently for the self-focusing medium (g2 > 0) due to



V.P. AKSENOV, I.V. IZMAILOV, B.N. POIZNER, O.V. TIKHOMIROV A

the other bifurcations and the annihilation mentioned
above is possible (Bg '; Bip).

The diffraction ray projections on the xQOy plane
for various propagation conditions over the region
0.5 < Z < 203.3 are presented in Fig. 4. The ray
shapes are due to focusing the rays in the vicinities
of stable knots and defocusing in the vicinities of
unstable knots, approximately 90-degree turn near
saddles, and curl along the helix trajectory around
unstable focuses. At the same time, one ray can
move along various trajectories by turns owing to
a limited lifetime of the singularities. For example,
the helix rays are focused at the stable knots after
the vortices disappear and then these rays become
rectilinear.

Conclusion

The wave and ray dynamics of a singular light field in
the process of generation, evolution, and disappearance
of optical vortices are studied with the use of the model
of a laser-generated Gauss—Laguerre beam propagated
in the nonlinear medium.

An analysis of the structure of the vector field of the
phase gradient made it possible to expose the tendencies
in the behavior of singular points of this field, which
lead to the generation and annihilation of vortices, and
to the determination of their spatial localization. The
descriptive formalizm for the evolutional scenarios as a
sequence of bifurcations is proposed. The bifurcations
are the functions mapping one group of singularities into
another group. The singular points discovered satisfy the
theorem from [22] on the algebraic number of singular
points of a vector field on a plane.

The projections of energy stream-lines onto the
plane perpendicular to the beam propagation direction
are plotted. An energy stream-line modifies its shape
depending on the evolutional variable and the distance
to singular points. In the vicinity of an unstable focus,
this line takes form of a helix.

The results obtained indicate a diversity of the
bifurcations of appearance and annihilation of optical
vortices in dependence on a light beam model
and medium properties. Problems of the bifurcation
completeness and construction of the model for an
optical field evolution can be formulated and solved on
the base of these results. A conjecture can be frame on
the creation of a system of local anti-vortical wave-front
distortions by the facilities of adaptive optics. Such a
structure is assumed to provide or promote the vortex
annihilation at specified points.
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MMPOCTOPOBA JUHAMIKA OIITUYHUX BUXOPIB
IMTPU TTOIIMPEHHI TAYCC-JIATEPPIBCHKOI'O ITYYKA
B CEPEIOBHIII 3 KEPPIBCHLKOIO HEJIHINHICTIO

B.II.Axcvonos, I.B.Ismatinos, B.H.Ilotisnep, O.B.Tizomiposa
Pesmowme

JIocimKeHo reHepariiio, IepeTBOPEHHS Ta AHICIIAII0 ONTHUIHUX
BHXODIB [pK IOIIMPEHHI JIa3€PHOrO IydYKa 3 BHUXOPAMH Kpi3b
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HesiHiline cepemoBuiie. AHaji3 6a3yeThCsl HA PO3B’SI3aHHI Mapa-
6O0JIiIHOrO0 XBHJIBOBOIO DIiBHSIHHSI, B IKOMY IIOKA3HHUK 3aJIOMJICHHS
3aJIeKUTh Bif mory>kuOCTI cBitsa. Becramossieno 3axkoHoMipHOCTI
[IEPeTBOPEHHS BUXOPIB Ta CUCTEM CHHIYJISADHUX TOYOK y IOIEeped-
HOMY Iepepis3i IIydka, a TaKOXK IHTEHCHUBHOCTei, ¢da3 Ta BEKTOPa
Yuosa—IlofiHTiHra IpH HOMIKPEHH] IyYKa I PI3HUX IHapaMeTpiB

HeJIIHIHHOrO CepeloBHINa Ta IHTEHCUBHOCTEH CBiTiIA.
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