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We present a method for the generation of optical vortices nested
in a singular beam that propagates along a uniaxial crystal and
a polarized filter. The theoretical analysis based on solving the
paraxial wave equation showed that the paraxial fundamental
Gaussian beam can transform into a singular beam bearing the
double charged optical vortex: the left-hand circularly polarized
beam converts into the right-hand polarized beam with a positive
topological charge whereas the right-hand one generates the left-
hand polarized beam with a negative charged vortex. Moreover,
the device can transform high-order singular beams in such a way
that the negative topological charge of the vortex in the right-
hand polarized beam raises by two units, but the positive vortex
charge in the same beam diminishes by two units. The computer
simulation of the process is accompanied by the numerous
experimental results.

Introduction

The problem of phase singularities or optical vortices is
not something new, suddenly arisen, in optics after M.
Berry has drawn attention to the surprising properties
of wavefront dislocations [1] in 1974. As far back as at
the end of the 19th and at the beginning of the 20th
centuries, many investigators noticed a strange behavior
of the energy flow near a focal plane of a microscope
in the vicinity of anomalous Airy’s rings. Lines of the
energy flow encircled the rings forming circles and loops
even in free space (see, for example, works [2—4]).
Moreover, the typical behavior of phase singularities
due to light diffraction and interference is elucidated
by the excellent illustrations in the fundamental works
[5, 6].

Nevertheless, at the end of the 20th century, the
interest in phase singularities broke out with a new
force. Its source was the most quoted works [7, 8] (see
also [2]) by M. Soskin and others on the simple and
reliable technique to generate optical vortices nested in
singular beams. A computer-generated hologram being
the corner stone of the technique made it possible
to form singular beams bearing an arbitrary pattern
of optical vortices. This work stimulated a flow of
publications. Further, these were transformed into a
new branch of modern optics that has come at the

moment to be called (following M. Soskin) singular
optics [9].

At the same time, the computer-generated hologram
technique has one drawback — the energy effectiveness
of thin holograms is rather low (about 10 —15% at best).
In addition, static holograms generally do not permit to
control and to tune a vortex position in the beam.

Here I will concentrate on the problem of the
vortex generation with an anisotropic medium. This
problem has been partially discussed at the moment
in a number of publications [10—20]. For instance, in
works [10—13], the authors used biaxial and uniaxial
crystals to generate and convert Bessel beams, whereas
transformation and focusing processes of Gaussian
beams in those crystals were regarded in works [15—
18]. The generation of a singular beam in liquid crystal
cells is illustrated by works [14, 19], and the work [20]
presents the eigenmodes of axisymmetric inhomogeneous
anisotropic media. At the same time, the authors laid
special stress on experimental results, while theoretical
aspects of transformations of Gaussian singular beams
in anisotropic media were minor questions.

The main purpose of the given paper is to examine
the theoretical base of transmitting the paraxial
Gaussian beams through a uniaxial crystal along its
optical axis so to emphasize the variety of new ways
of the transforming and generating of optical vortices.

Beams with Eigen Polarization and Optical
Vortices

Consider, at first, the propagation of a paraxial Gaussian
beam through the crystal without transformation of its
structure, that is, the beam with an eigen polarization.

A monochromatic wave can be described in terms of
Maxwell’s equations as

VxE=-i"H,
C

VXH:ﬁ;E V(E) =0, VH = 0. (1)

IThis article is dedicated to Professor Marat Soskin on the occasion of his 75th birthday.
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Fig. 1. Structure of the main birefringent axes n, and n. in the uniaxial crystal corresponding to the propagation of a light beam along

the optical axis and the structure of the eigen TM and TE polarizations of the paraxial Gaussian beam

Consider the coordinate system (z, y, z) in which the
permittivity tensor has the form: é = diag(e;;) so that
€11 = €22 = € and e33 = 3. The wave equation can be
written as

. A
(V24 k%) E = -V (fvtEt) , 2)
3

where Vy = X0, + § 0y, with X and § unit coordinate
vectors of = and y axes,

0py =0/02,0/0y, By =% E, +3 E,,

k* =pew?/c?, Ae=¢e3 —¢.

We are interested in the propagation of a paraxial
Gaussian beam along the optical axis z. To find the
paraxial equation we write

E = E (z,y,2) exp (ikz) (3)

9..E

and assume:

< k‘azﬁ

, k‘f)‘ whence
(V2 +2ikd,) By = —%vt (Vi) (4)

As far as the longitudinal electric component FE. is
assumed small, the analysis can be restricted with
transverse electric components E;.
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In the ray approximation, the main axes of the
crystal anisotropy lay in the plane (and perpendicularly
to it) made by the given ray and the crystal optical
axis [3]. It is natural to suppose that the structure of
the eigen polarization of the beam has to be in keeping
with that of the crystal anisotropy presented by Fig.1.
Mathematically, it looks like

Em =r(Xsing — §cos¢) Ge (r,0,2)/Z , (5

ETM =T ()A(COS 90_'_ ySin (P) GTM (7"7% Z) /Za (6)

where G = exp (ZﬂTE%) /Z, G = exp (zﬂTMg) /Z,
. 2

Z = ke Bre = kovE, Brm =

Bre 1+ %), p is the beam waist radius.

z — 129, 20 =

The first field (5) is a solution of the equation:
(V7 +2ikd.) Erg = 0 (7)

because the z-component of the transverse electric mode
Erg is zero (E, = 0 and, consequently, V; E; = 0 on
the right side of Eq. (4)).

As can be shown by the direct substitution,
expression (6) is the solution of the paraxial wave
equation (4).

Using the rule @172 = Epy + iErg [21],
we can form the singular beam bearing optical
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vortices:

= L P r’ . .
U, = E{c+z sin (ABE> exp (—ip) + &7 x

r2 =72
X COS (ABE> exp (ip) p exp (l5ﬁ> ) (8)
Ty = —{&* cos A,Bi exp(—ig) + & ix
2= 7 17) PITY
. r? . s
x sin <A,Bﬁ> exp (i) p exp <z Bﬁ) , 9)
where ¢t = &+ iy, & = % — iy are the orts of

the circularly polarized basis, 8 = Brg + %, AB =
ko%.

We can see from Eqgs. (8) and (9) that the singular
beam contains two local optical vortices with opposite
topological charges: | +1 —1) and | —1 +1 ),
where the first term in the vector | o 1 >, o = =1,
is the direction of the polarization circularity or the
spin, whereas the second term [ = %1 is the topological
charge of the partial vortex. Moreover, the spin and the
topological charge of the beam in the crystal are strongly
connected with each other. This is a universal property
of partial optical vortices in crystals similar to that of
guided vortices in optical fibers [26]. As the mode beam
propagates along the crystal, the “weight” coefficients of
the partial vortices change. However, only at the plane
z = 0, the beam can contain the single local vortex
| =1 +1 ) in the ¥, field (or | +1 —1 ) in the ¥,
field), while there is a pair of these vortices in the beam
in other cross-sections of the crystal. This means that,
for example, the initial singular beam | -1 +1 > in
free space at the input of the crystal can be transformed
into two partial vortices | -1 +1 > and | +1 -1 >
in the crystal. We can select a single partial vortex after
the crystal with a polarized filter consisting of a quarter-
wave plate and a polarizer.

Generation of Optical Vortices

Consider now the propagation of a left-hand circularly
polarized fundamental Gaussian beam

1 17
Gyg=¢ - exp <zkﬁ>
through the crystal. The field of this beam cannot be

presented as a superposition of the TM and TE modes.
However, in real optical crystals, |Ae /e| <« 1 and we
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can use the perturbation theory for solving Eq. (4). By
writing

E; =E® + o EW + o*E®) 4+ | (10)
where E(©) satisfies the equation
(Vi+2ikd.) E® =0, (11)

where @« = Ae /e, we find for the first order of the
perturbation theory:

(V}+2ik0.) BY = -V, (V,EO) . (12)
The solution of (12) can be found by putting

EY =V, & (z,y,2), (13)

which gives

(V?+2ikd,) &= — V,E©. (14)

Having in mind the incidence of a fundamental
Gaussian beam on the crystal from the isotropic
medium, we consider the left-hand circular polarization
E" = Gy, B = iG,.

Then we come to the equation:

(Vi+2ik0.) @ = — (0,Go +i0,Go) . (15)
Let us make use of the evident identity:
(Vi +2ikd.) (zGo) = 8,Go,
(Vi+2ik0.) (yGo) = 9,Go, (16)
whence the potential ® in Eq. (14) is
1

and the first correction ED) is

EY =V, d =

. 2 2
- —{ éﬂk% + e (1 +iki—Z> } Go.  (18)

The total field in the crystal found from Eqgs.(10) and
(18) is

~ ) 2
E = {—é+ika % +

[ (i)
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Fig.2. Generation of a singular beam in LiNbOg crystal: a — the experimentally obtained map of the beam polarization state against a

background of the beam intensity distribution after the crystal; b — the same map calculated on the base of Eq. (19); ¢ — the intensity

distribution of the singular beam bearing the double charged optical vortex after the polarized filter and d — its interference pattern

Similarly, we can find the wave function of a right-
hand circularly polarized beam:

o= {e e (o)

—é&ika M}GO. (20)

4Z

Thus, as a paraxial circularly polarized Gaussian
beam transmits through the uniaxial crystal along
its optical axis, a part of energy converts into a
singular beam with the orthogonal circular polarization
bearing an optical vortex with a double topological
charge. Namely, the right-hand circularly polarized
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beam generates the optical vortex with a negative
topological charge, whereas the left-hand one generates a
positively charged vortex nested in the induced singular
beam.

A physical mechanism of this process elucidates the
map of polarization states of the beam after LiNbOj
crystal shown by Fig. 2,a. This map was experimentally
obtained by means of a differential polarimeter. The
beam at the crystal input is right-hand circularly
polarized. A set of ellipses on the picture forms a typical
pattern of a degenerate umbilic point [23] with spiral-
like branches. The central point corresponds to the
circular polarization of the initial beam. One round
of the point is accompanied by twisting of ellipses
axes by an angle of 2w. This means that the major
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beam contains two coherent local beams with orthogonal
circular polarizations, one of the beams having a phase
singularity with double topological index at the axis. The
recondite singular beam can be selected by suppressing
the first beam. A quarter-wave plate and a polarizer can
perform it. The quarter-wave plate transforms the initial
circular polarization into a linear one, while the polarizer
crushes down the first beam, as is demonstrated in Fig
2,b. The double interference spiral shown by Fig.2,d
points out the double topological charge of the vortex.

It should also be added that the degenerate umbilic is
a very unstable one. Experimentally, we can split it into
two elementary ones by placing a lop-sided quarter-wave
plate just after the crystal. This process is illustrated by
Fig. 3,a. Instead of the degenerate spiral umbilic, we
now observe two spatially parted patterns in the form
of “lemon” umbilics [23] positioned near the beam axis
(Fig.3,b,c). Far from the axis there is the “star” umbilic
(Fig.3,d). The polarized filter cuts out the combined
singular beam carrying over two optical vortices with
the same charges.

We can easily theoretically obtain the result being
in good agreement with the experiment by acting the
matrix of the polarized-wave plate, whose axis is parallel
to the laboratory z-axis, while its phase difference is
A <1 [24]):

A 1 is
“(@1)

on the field vector of Eq. (18). The pattern depicted
in Fig.4,d is a result of the computer simulation of this
destructive process.

For estimating the field structure near the single
umbilic, we make use of Eq. (18) in the form:

(21a)

Etm~—iA(z+iy)®, E =1, (21b)

where we consider the crystal length z = d to be much
larger than zp and A ~ ak/4d. By operating matrix
(21a) on vector (21b), we find

A
Ejon = (~iA @410 415 ) Go . Eyua % G
(21c)

The phase perturbation displaces a position of the
field zero E,,, = 0 so that

per

A(zd—y5) +A/2 =0, 2zoyo =0,

whence the coordinates of the field zero are

A

o = 0, Yo = + 2A (21(21)

404

Let us displace the origin in Eq. (21c¢) to the point
given by Eq. (21d):

—V2AA (2" +iy")Go, Ejoy ~ Go.

[+
Epert ~

(21e)

(Eq. (21e) corresponds to (+) sign in Eq. (21d).)
By using Eq. (21e), one can write Stokes’ parameters
in the circularly polarized basic [24]:

Sy = 2Re{E;ert (E;m)*} = —2V2AAX|Gof,

53 = 2Im{E:)_ert (E;ert)*} = —2v 2AA y’|G0|2)

where the star (*) stands for a complex conjugation.
The axis of a polarized ellipse is inclined at the angle

Sz _ Y
g2y = — = = = tgop.
g2y 5, " o 8%
where ¢ is an azimuth angle in the polar coordinates.

Thus, the ellipse axis is directed along the line

_¥
v= 2
at each point of the observation plane.

On the other hand, the set of envelopes in the field
of directions is defined by the equation:

dr
rdy

RS

so that the integral curve is

= _C (21f)

cos? £’
where C' = const.

The last equation presents the polarized “lemon”
umbilic shown in Fig.4. A similar equation can be found
for the point zg = 0, yo = —y/A/2A. The distance
between the two “lemon” umbilics associated with two
optical vortices is h = 2/A/2A.

The “star” umbilic positioned farther from the center
than the “lemon” on the experimental pattern of Fig.3,d,
can not be found in the network of our approximate
theory.

Since the vortex displacement in the perturbed field
is proportional to VA, we can operate the radial position
of the singularity by changing the external perturbation.
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Fig.3. Splitting of the degenerate umbilic: a — the experimentally obtained map of the polarization state against the background of a
beam perturbed by the lop-sided quarter-wave plate; b — the same map calculated on the base of Eq. (21c) in which the circlet cuts
down the vicinity of the “lemon” umbilic (¢) while the small square points out the “star” umbilic (d); the theoretically calculated current

lines near the “lemon” umbilic

An angular vortex position can be shown to depend filter [17]. These enable to uniquely perform a
linearly on the orientation angle ¢ of the quarter-wave vortex displacement over all the beam cross-
plate axis or the polarizer axis in the polarized section.
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Fig. 4. Conversion of the singular beam: a — the intensity distribution of the right-hand circular polarization bearing a positive

double topological charge after the polarized filter; b — unfolding of the phase singularities manifesting itself in the form of the

concentric interference rings; ¢ — changing of the handedness of the initial circular polarization causes the transformation of the

intensity distribution, and d — the interference pattern in which the number of the spiral branches becomes equal to four

When the phase perturbation is vanished, A = 0, the
equation for the envelopes is written as

r=Cexp(—¢).

This expression describes the set of logarithmic
spirals depicted by Fig. 2,b that illustrate the spiral
degenerate umbilic. Thus, we can regard the degenerate
umbilic in the beam emitted from the crystal as a critical
point [28] of the vector field after the crystal.

Conversion of Optical Vortices in Crystal

The analysis mentioned above is not restricted with a
description of only the singular beam generation, but
can be extended to the processes of conversion of a high-
order singular beam. Indeed, identities (16) also take

406

place for high-order paraxial Gaussian beams with the
wave function

(22)

Kk = =£1.

However, the final result is very sensitive to picking
out of an initial polarization state and the sign of the
topological charge.

Let us take again an initial beam in the form of the
left-hand circular polarization with a positive topological
charge k = +1, i.e. | -1, +I > state. In this case, the
potential ® has the same form as that in Eq. (17), and
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solution (10) is written as

L (etiy)'t?
_ Et —azk%
E: E_ = ] r2 m+iyl G0:
I+1—-aiky, (—Z )

_ i (atiy)?
:< a ik =57y (23)

A ) G
l+1—-aiky,

Thus, the topological charge of the E*component
raises by two units: [ = [ + 2.

Much the same result we can obtain is subjected to
changing the signs at both the topological charge and
the polarization circularity (or the spin) of the initial
beam, i.e. | +1, —I > state:

[+1—aikly (244

E= Go. (24)

—a iki(m;;?flim

However, now the optical vortex is generated by
a left-hand polarized component, while its topological
charge is negative.

Conversion of the singular beams with the same signs
of the topological charge and the spin in the initial beam
(|[+1,+1) and |1, 1)) obeys a little different rule. So,
the beam field for the initial state |—1, 1) is

e (2=iy)' 72
—a ik

E= et | GO (25)
l+1—-aiky, ( - )
and, for the state |41, +1}, this is
2 i\ L
_ l+1—aikd, (2L
E= — Go. (26)
— ka

Thus, the topological charge is reduced by two
units in the ETcomponent of Eq. (25) and in the E~
component of Eq. (26). The conversion rule for these
statesis [ = [ — 2.

The last rule has one interesting consequence: the
fields with states |+1,+2) and |—1,—2) are subjected
to the unfolding of phase singularities [23]. A typical
experimental pattern is demonstrated by Fig. 4,a,b for
the initial beam in the state |+1,+2). Although there
is a strongly pronounced intensity minimum of the
E~component in Fig.4,a, the distinctive “fork” in the
interference pattern in Fig. 4,b is lacking. This is a
graphic evidence for the annihilating of two opposite
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charged optical vortices in the singular beam. Moreover,
a simple rotation of birefringence axes of the quarter-
wave plate placed in front of the crystal transforms the
initial beam state |+1,+2) into the state |—1,+2). But
now the topological charge raising by two units, becomes
equal to [ = +4. Tt is this effect that is illustrated by Fig.
4,c,d. The number of the spiral branches indicates the
value of the topological charge, while the spiral winding
gives the sign of the vortex charge.

The considered above mode beam transformations
underlie the base of action of a new-type mode converter.
Indeed, well-known mode converters on the base of
astigmatic lenses [25] transform only a vortex topological
charge not touching upon a polarization state of the
beam. Fiber-optical converters [26, 27| can transform
both the topological charge and the polarization state
of the guided modes. However, they cannot transform
high-order modes, because the conversion process in
a multimode fiber is not strongly a determinate one
due to a mutual mode conversion caused by random
external perturbations. At the same time, the crystal
mode converter can easily perform a polarization and a
topological charge transformation of both low-order and
high-order mode beams.

Conclusions

We have worked out the theory of a paraxial singular
beam in the uniaxial crystal and have showed the
following.

Propagation of the paraxial Gaussian beam through
the crystal along its optical axis is accorded with its
transformation into a complicatedly polarized singular
beam. However, the beam will preserve its initial
polarization provided that its field structure corresponds
to that of TM and TM modes.

At the same time, an initial circularly polarized
fundamental Gaussian beam can be transformed into
a singular beam with double topological charge in one
of its components. The sign of the topological charge
depends on a polarized circularity of the initial beam.
So, a left-hand circularly polarized beam generates
the positively charged optical vortex in the right-hand
component, while the vortex nested in the left-hand
component of the beam after the crystal corresponds
to the right-hand circular polarization of the initial
beam.

High-order singular beams in the crystal perform a
vortex conversion in accordance with the following rule:
the states of the initial beam |+1, —I) and |—-1, +I)
enlarge the topological charge of the vortex by two units
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in the E~ and ET components, respectively, while the
states |[+1, +I) and |1, —I) stimulate the diminution
of the charge by two units.

This technique of a vortex generation and
conversion can find a wide application in microparticle
manipulation systems not only as simple vortex
generator units but also as those for operating both
radial and angular vortex positions.

I am indebted to M. Soskin for bringing the
key problems of singular optics to my attention and
encouraging my work. I also wish to express my sincere
thanks to A. P. Kiselev, V. G. Shvedov and C.N.
Aleksiev for their helpful discussions, T. A. Fadeyeva
and Yu. A. Egorov for the kindly given experimental
results.
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CUHI'VJIAPHI ITYYKHM B OJJHOBICHUX KPUCTAJIAX

A.B. Boasp
PesmowMme

PosrngryTo cnoci6 reneparliii CHHIYJISpHAX IMY4KiB, IO IEPEHO-
CATH OLNTHYHI BHXOPH, B ONTHYHIA CHCTEMI 3 OJHOBICHUM KpHCTA-
JIOM Ta MOJISIPU3AMIHHIM (DiTBTPOM. AHAII3 PO3B’sA3KY MapaKCiaIb-
HOI'0 XBUJILOBOTO DiBHSIHHSI BKa3y€ HA Te, IO JIiBOUUPKYJISPHO I10-
JISPU30BAHUI TayCCiB My4YOK 3MIHIOETHCSA HA HEOTHOPITHO IOJS-
PHU30BaHM My4YOK, B AKOMY IPABOIUPKYJISIPHA KOMIOHEHTA MOJI-
pu3alii MiCTUTh ONTHYHHI BUXOP i3 MOABIMHUM MO3UTHUBHUM TO-
[TOJIOTIYHUM 3apsiioM. B TON 9ac gK MPaBOMUPKYJISIPHO IMOJISPH-
30BAHUN IIyIOK IEHEDPYE BUXOD 3 HETATHBHUM TOIOJIOTiIHHM 3a-
PAIOM B JIiBOIUPKYJISIPHO MOJNSPU30BaHiil KommoHeHTi. Kpim TO-
ro, JaHa CHCTEMA 3JaTHA TPAHC(HOPMYBATH 3aPsi] BXiZHOIO CHH-
CYJISIDHOTO IIy9YKa: BHUXOP, II0 MEPEHOCUTHCS CUHTYIAPHUM IIyd-
KOM 3 JIiBOIO IUPKYJISIIII€I0, 3 HO3UTUBHUM TOIIOJIOTIIHUM 3aPsiIOM
30inbmIye cBiit 3apsm Ha OBI OmWHUIN, a B pa3i OJHAKOBUX 3HAKIB
3apsiy BUXOPY Ta MOJsipU3allii my9ka BigOyBa€TbCs 3MEHINEHHSI
TOIOJIOTIYHOrO 3apsiy BUXOpPY Ha ABi omwHuni. /o pesysbraris
KOMII’'FOTEPHOT'0 MOJETIOBAHHS MHigiOpaHO eKCIIepUMEeHTAJIbHI 1JI0-
crparii.

To be continued in the next issue
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