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Polarization singularities are studied in simulated elliptically
polarized, three dimensional random wave fields. The coherency
matrix is shown to provide a highly useful tool for the study of
singular points of circular polarization, C' points, and singular
points of linear polarization, L points. Both types of points are
organized into continuous lines, C' lines and L lines, respectively,
that meander throughout the field. These lines were traced out by
tracking zeros of appropriate discriminants of the characteristic
equation of the coherency matrix. The ellipse winding number of
a singularity (C or L point) was defined in terms of the rotation
of the polarization figures surrounding the singularity. Using
the eigenvalues and eigenvectors of this matrix, together with
a complex Stokes field representation of the singularities, sign
inversions of the ellipse winding number of C' points were found
on C lines, and switches in ellipse winding number of L points were
found on L lines. The former finding is in accord with the current
theory, the latter is not encompassed by any current theory. A
qualitative explanation of these findings is presented.

Introduction

Although the basic theory of polarization singularities
was developed some two decades ago [1—6], and
important aspects confirmed experimentally using
microwaves [7, 8], it is only very recently that a practical
method for the study of such singularities in the optical
region was developed under the leadership of Prof. Marat
Soskin [9, 10], to whom this paper is dedicated.

There are two basic types of polarization
singularities: C' points, which are points of circular
polarization, and L points, which are points of linear
polarization. In general, C' points and L points are
embedded in a field of elliptical polarization, and exert
a remarkable influence on the surrounding polarization
ellipses. In two dimensional (2D), or paraxial, fields,
C points are isolated points in the plane, here the zy-
plane, whereas L points are organized into continuous
lines in the plane that separate regions of right and
left handed elliptical polarization. The presence of a
C point forces the surrounding ellipses to rotate about
the point with a topological winding number that is
generically +1/2. As the zy-plane is translated along
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the propagation direction, here the Z-axis, C' points
trace out a line of circular polarization, whereas L points
trace out a surface of linear polarization, an L surface.
In addition to these singularities, it has very recently
been found that paraxial fields exhibit polarization
stationary points, extrema (maxima and minima), and
saddle points [11]. Collectively, polarization singularities
and stationary points are called polarization critical
points, and the experimental challenge was to find a
practical method for the measurement of these critical
points. This task was undertaken by Prof. Soskin
and his students who, building on recent theoretical
calculations [12, 13|, initiated the development of,
and brought to perfection, a method that offers
unprecedented resolution and accuracy, a method they
called Singular Stokes Polarimetry (SSP). Applying
their new experimental method to different systems,
Prof. Soskin and his students discovered an astounding
variety of polarization structures [10], structures whose
complexity and richness far surpass anything considered
previously by theory [1—6], or seen in computer
simulations [11] or microwave experiments [7, 8].

SSP opens the door to the study of polarization
singularities in 2D fields, and will undoubtedly lead
to many additional important scientific discoveries, as
well as practical applications. With the theoretical
and experimental basis for the study of 2D fields
now well in hand, the next frontier, both theoretically
and experimentally, becomes the study of polarization
singularities in 3D fields.

In 3D, C points are organized into continuous lines,
C lines. Similarly, and unlike the case of 2D, in 3D, L
points form lines, not surfaces. In the transition from 3D
to 2D, an L line grows into a surface as the ellipses in the
vicinity of the line become ever narrower, asymptotically
collapsing to lines (linear polarization). In this process,
regions of right and left handed polarization become
segregated and bounded by L surfaces. The details of
this transformation, the growth of 2D stationary points,
the detailed properties of C' and L lines, and many other
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properties of 3D fields, still remain to be elucidated.
Random fields provide a useful test ground for study
of the above phenomena, because anything that can
happen most likely will happen in such fields. Random
fields, however, are too complex for the most part to be
studied in detail analytically, although certain statistical
properties of the field may be calculated [14, 15].

There is at present no practical, general method
described in the literature for tracing out C' lines and
L lines in complex 3D fields, let alone for examining the
detailed properties of these lines. Here we describe such
a method, and use it to examine C' lines and L lines in
computer simulations of random 3D fields. In addition
to verifying, for the first time, important predictions of
the current theory [1, 5], we find new phenomena not
encompassed by any theory.

1. The 3D Coherency Matrix and the
Complex 2D Stokes Field

The elements F;; of the symmetric 3 x 3 real coherency
matrix M of a 3D optical field are here defined by

E;j = Re(E;Ej),i,j = z,y, 2, (1)

where the F; are components of the electric field vector
E along the orthogonal coordinates axes z,y,Z. The
eigenvalues A\g, £ = 1,2,3 of M are solutions of its
characteristic equation,

\° + a1>\2 + as\ + a3z = 0. (2)

These eigenvalues are positive definite, are here ordered
by increasing value, are normalized by the largest, A; <
A2 < A3 = 1, and the corresponding eigenvectors are
here labeled V1, Vs, V3.

In the monochromatic optical fields of interest
here, the polarization ellipses are planar [16], and \;
= 0, which makes a3 = A A2A3 = 0. Under these
circumstances, Eq. (2) reduces to a quadratic one. At
a C point, Ay = A3, and such points may be located
using zeros of the discriminant

Dc = a? — 4as. (3)

At an L point, Ay = 0, and such points may be located
using zeros of the discriminant

DL = as. (4)

For each singular point, there is a proper line of sight
(LOS). For C points, the LOS is normal to the plane of
the C' point. This direction corresponds to V;. When
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viewed down this LOS, the polarization figure is seen as
a circle, and theory predicts that the surrounding ellipses
rotate should about this circle with generic winding
number +1/2 [1,5]. For L points, the proper LOS is
down the line of oscillation of E, i.e. along V3. When
viewed down this direction, the polarization figure of
an L point is seen as a point, and here theory predicts
that the surrounding (thin) ellipses rotate about this
point with generic winding number +1 [1,5]. For both
types of polarization singularity, these predictions are,
for a plane, oriented normal to the proper line of sight,
the proper plane. For C' points, the proper plane is the
plane of the circle; for L points, the proper plane contains
the point and is oriented normal to the proper LOS. In
what follows, we examine the polarization ellipses in the
proper plane when viewed down the proper LOS: we call
the field that is seen in this way the proper field.

The circular polarization figures on an C' line, and
the linear figures on an L line, can make arbitrary
angles with respect to the line. The same is true for
the surrounding ellipses. Thus, the proper field is a
projection down the proper LOS onto the proper plane
of the central singularity and its surrounding ellipses.
Because the projection of an ellipse is also an ellipse, the
proper field is a field of planar ellipses, i.e. a 2D field.

We label orthogonal axes in the plane of the proper
field by 2’,3', and the corresponding field components
by E;,E;. The azimuthal angle o that the long axis of
an ellipse makes with the z'-axis is given by [16]

20 = atan2(52, Sl), (5)

where atan2 is the two argument (four quadrant)
arctangent, and the Stokes parameters are defined by

Sy =|E,|* — |E,|*, Sy = 2Re(E, * E,)). (6)
It is useful to form the complex Stokes field [12,13]
Sio = S1 +1Sy = Ao exp(i‘bm), (7&)

@12 = atan2(52, Sl) = QCK, (7b)

because then the C' points and L points of the proper
field are vortices of the Stokes phase ®i5. Because of
the factor of 2 in the R.H.S. of Eq. (7b), these Stokes
vortices have generic winding numbers that are twice
those of the corresponding polarization singularity, i.e.
+1 for C points, £2 for L points.

The Stokes vortices lie at the intersections of the zero
crossings Z; of S1 and Zs of S;. From the rules of the
phase ratchet [17], a single Z; and a single Z» intersect
at a C point, whereas at an L point a pair of Z; and a
pair of Zs intersect with cardinal ordering ZyZ2Z;Zs.
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(a) {b) {c)
Fig. 1. Simulated random field. Shown is the zy-plane at Z = 0
over the region (Az,Ay) = (£10,410). Increasing amplitudes
are coded black to white. a — speckle intensity (the low contrast
matches that expected for a randomly polarized ellipse field). b — C
line discriminant D¢, Eq. (3). ¢ — L line discriminant Dy, Eq. (4).
The black areas in Fig. b, (¢) correspond to the intersection of C
lines (L lines) with the zy-plane. At these points, here emphasized
for clarity, the amplitude of the discriminant vanishes

From the phase ratchet rules, it also follows that if the
ordering of zero crossings at an L point is ZyZs 7271,
or ZsZ»7Z1Zy, etc., i.e. the ordering differs from the
cardinal ordering or a cyclic permutation thereof, then
the winding number of the vortex, and therefore of the
L point, is zero.

2. Random Field Simulation

The simulated random wave field studied here consists
of a large number of linearly polarized waves whose
wavevectors k all have unit length, and have random
directions such that the half space Z > 0 is
approximately filled over the region —1/ V3 < ke, ky <
< +1/\/§. The limiting values ﬁ:l/\/g were used for
simplicity to keep kz = (1 — k2 — k;)l/2 pure real. The
projections F, and E, of E were randomly distributed
in the zy-plane, and the divergence condition was used
to fix By via E, k, + Eyky + Ezky; =0.

With the above scaling, the spread in propagation
directions is approximately 70°, and the characteristic
distance over which changes in the transverse wave field
occur, i.e. the transverse coherence length, is of order 2.
The speckle pattern of a typical realization is shown in
Fig. 1,a: its low contrast is in accord with expectation for
a randomly polarized ellipse field. The corresponding C
point discriminant D¢ is shown in Fig. 1,b, the L point
discriminant Dy, in Fig. 1,c.

3. C Lines
C lines were traced out in 3D using zeros of D¢.

Using double precision, 64 bit arithmetic, the program
employed calculates D¢ within a small area surrounding
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some preselected point in the xy-plane at some initial
value of Z, and finds the near zero minimum of D¢
within this area. The field is then recalculated on
an expanded scale about this initial minimum, and
a better estimate of its location is obtained. This
process is repeated until the coordinates of the minimum
are stationary to +£107° (typically 3—10 iterations).
Attempts at further refinement failed due to rounding
errors that were induced by the large number of
steps needed to calculate the field at a given point.
After storing the coordinates of the C' point, Z was
incremented and the procedure repeated until either a
predetermined range in Z was covered, or the C line
curved back on itself. Every C' line studied ultimately
did this, implying that C lines form closed loops rather
than endless lines that meander throughout the wave
field. Fig. 2,a displays a segment of a typical
C' line. After obtaining the coordinates of typically
some 3,000—10,000 closely spaced C points on the
line, the eigenvalues and eigenvectors of M were then
calculated. With the largest eigenvalue, A3, normalized
to 1, typically the smallest eigenvalue, A1, was of order
10717 (i.e. essentially zero), and A3 — Ay ~ 107° (i.e.
effectively degenerate).

An important theoretical prediction not previously
tested involves the location of points on a C line at
which inversion of the sign of the C' point winding
number occurs. The theoretical prediction is that such
an inversion takes place at a point where the proper
line of sight, Vi, is perpendicular to the C' line, and
in generic fields only at such a point. Fig. 2,b shows a
plot of the angle 8 between V; and the tangent to the
C line shown in Fig. 2,a. As may be seen, there is a
point in this figure where 8 = 90°. Fig. 3 shows the field
in the vicinity of this point. Figs. 3,a,b show the Stokes
phase and zero crossings, just before this point, and Figs.
3,c,d show the field right after. Sign inversion of the
Stokes (ellipse) winding number from —1 to +1 (—1/2
to +1/2) upon passing through § = 90° is clearly evident,
in full accord with theory [1, 5]. At # = 90° (not shown),
the sign inversion point itself, Z; and Zy overlap, and
the winding number becomes indeterminate, in accord
with theory. These observations appear to be the first
confirmation of the theoretical predictions regarding sign
inversion.

We close this section by noting that we find sign
inversion at every point where 8§ = 90° on a every C
line studied, and do not find sign inversion at any other
points on C' lines, so that our simulation fully confirms
the current theory of C' lines [1, 5]. The situation is quite
different, however, for L lines.
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Fig. 2. C lines, L lines, and ellipse winding number switchovers. a — C line. b — angle 6 between the proper line of sight and the tangent

to the C line in Fig.a as a function of distance (arc length) along the line (the winding number of the C' point switches from —1/2 to

+1/2 at the point on the line where = 90°). ¢ — L line. d — 6 vs. arc length for the L line in Fig.c. The vertical arrows show three

points on the line at which § = 90°. The winding number does not switch at these points, but rather switches from —1 to 0 at an arc

length approximately equal to 3

4. L lines

L lines were traced out in the same manner as C' lines,
except that here the discriminant was Dy, Eq. (4). Also
these lines were found to form closed loops. Fig. 2,c
displays a segment of a typical L line. On the line, the
normalized eigenvalues A1 and Ay are typically of order
10’17()\3 =1).

Here we define the winding number of an L point in
terms of the rotation of the (thin) ellipses surrounding
the point (the ellipse winding number). This definition
is the same as that used in [1, 5] for C points, but differs
from the definition used in [1, 5] for L points, where the L
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point winding number is defined in terms of the rotation
of ellipse normals (the normal winding number).

The current theory of the normal winding number
for L lines [1, 5] predicts the following: (i) At all points
on the line where V3, the direction of linear polarization,
is not perpendicular to the line, the winding number of
the ellipses surrounding the L point should be +1 in
generic fields (the winding number of the corresponding
Stokes vortex is then +2). (ii) At points where V3
is perpendicular to the line, and only at these points,
the winding number becomes indeterminate. (iii) Upon
passing through these points of indeterminate winding
number, the sign of the winding number, inverts.
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Fig. 3. C point sign inversion. Stokes field corresponding to the
C line in Figs. 2,a,b at points in the immediate vicinity of the
switchover point at # = 90°. Here, the Stokes phase is coded —m
to +7 black to white (a,c), zero crossing Z1 (Z2) is shown by a
thick line (thin line) (b, d), field just before the switchover (a,b),
field after the switchover (¢,d). a — starting at the black sector,
along a path that encircles the vortex, the phase may be seen
to circulate (increase) uniformly by 27 in the negative, clockwise,
direction, and the Stokes vortex (ellipse field C point) has winding
number —1 (—1/2). ¢ — the phase circulates uniformly by 27 in the
positive, counterclockwise, direction, and the Stokes vortex (ellipse
field C point) has winding number 41 (41/2). The inversion in
the ordering of Z; and Z3 in going from b to c reflects the change
in sign of the winding number. At the switchover point itself,
# = 90° (not shown), Z; and Z» overlap and the winding number

is indeterminate

For the ellipse winding number, however, our
simulations differ from the predictions given above for
the normal winding number, and we find: (i) Every L
line examined is divided into long segments on which
the winding number alternates between 0 and £1 for the
ellipse field (0 and 2 for the Stokes field). (ii) At the
boundary between these regions, the winding number
becomes indeterminate, and the angle between V3 and
the L line is arbitrary at these boundary points. (iii)
The sign of the winding number does not necessarily
invert upon passing through a region with zero winding
number.

Fig. 2,d shows the angle 6 between V3 and the L line
in Fig. 2,c. The winding number of each line segment is
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also shown. As may be seen, there is a point on the L line
at which the winding number switches from —1 to zero.
Figs. 4,a,b shows the Stokes phase field, and S; and S,
zero crossings (Z1, Zs), just before the winding number
switches, Figs. 4,¢, d show the field just after the switch.
The change in the ordering of zero crossings that causes
the switchover to occur is clearly evident, in accord with
the rules of the phase ratchet discussed above [17]. At the
switchover point itself (not shown), Z; and Z, overlap,
and the winding number is indeterminate.

5. Discussion

Although a detailed theory of the above phenomena will
be reported on separately, we give here a qualitative
discussion of the results obtained using the very different
properties of the Stokes vortices corresponding to C'
points and to L points.

At a C point, the corresponding Stokes vortex has
unit charge and is located where a single Z; intersects
a single Z,. Moving, say, clockwise on a path that
surrounds the vortex, let the zero crossing sequence be
Z1 Zy. As an inversion point on a C' line is approached,
the angle between these zero crossings decreases towards
zero, say because Z; rotates towards Z». At the inversion
point itself, the zero crossings overlap. The winding
number becomes indeterminate at this point because,
on every path that intersects these overlapping zero
crossings, the winding number jumps discontinuously
by £7/2 with indeterminate sign [18]. Such a point is
obviously unstable, and Z; continues to rotate as one
moves along the C line. The zero crossing sequence
therefore becomes Z5 77, and inversion of the vortex sign
occurs. Thus, for stable C' points, there are only two
choices available to the winding number, £1.

The situation is very different, however, for an L
point which has Stokes winding number +2. Here the
initial zero crossing sequence is say ZyZ271Z, [17]. Let
the winding number be +2. As one moves along the L
line, also let Z; rotate towards Zs. At the boundary
between a zero and nonzero index, the two zero crossings
overlap, and after moving past this boundary, the
sequence becomes Z» 7 Z1 Z>. This sequence corresponds
to zero winding number [17]. The winding number
remains zero until either Z; rotates past the last
Z,, establishing the sequence Z» 77,7, with winding
number —2, i.e. sign inversion occurs, or else, Z; reverses
its rotation direction and returns to its starting position,
in which case the winding number is once again +2. A
stable winding number of +1 is not possible with four
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zero crossings [17], and so never occurs in the above
sequence.

Assuming all zero crossing configurations are equally
probable, there are twice as many ways of obtaining
zero winding number as there are ways of obtaining a
non zero winding number. Starting with say Zi, only
one sequence, Z1Z271Z>, yields a non zero winding
number (+2), whereas the sequence Z;Z; Z>Z5 and the
sequence 71723757, both yield zero winding number
[17]. The observation that L line segments with zero
winding number are substantially more likely than those
with nonzero winding number is in accord with these
considerations.

In 3D fields, the sign o of a singularity is given by
o = sign(V - J), where V is a unit vector along the line
of sight, and J is an appropriately defined topological
current [14, 15]. An indeterminate winding number
requires ¢ = 0. Now, a generic C' point corresponds to
a first order vortex in one of the circularly polarized
components of the field [1, 2]. For such a point, J
= 0 requires an unstable, and therefore nongeneric,
osculation of the zero surfaces of the real and imaginary
parts of the wave function of this component (in a
plane, the overlap of real and imaginary zero crossings).
Because generically J does not vanish, o = 0 requires V
be perpendicular to J. This is the generic condition for an
inversion point on a C line [1, 5]. As V rotates through
the inversion point, V-J and therefore o, change sign.
But for an L point, the region of the parameter space
corresponding to J = 0 (i.e. a zero crossing ordering
that produces zero winding number) exceeds the region
of nonzero J. Thus, on L lines, the winding number
switches due to a change in J itself, and not because V
is perpendicular to J. Our simulations show that such
changes in J can occur anywhere along an L line.

Summary

Both the coherency matrix M, Eq. (1), and the complex
Stokes field Si2, Egs. (7), were shown to be extremely
useful theoretical tools for the study of 3D ellipse fields.
Using zeros of the discriminants of M, Egs. (3, 4) and
Fig. 1,c lines, Fig. 2,a, and L lines, Fig. 2,¢, were traced
out in simulated generic random fields. The eigenvalues
and eigenvectors of M were calculated along the lines,
and one eigenvalue was found to be essentially zero
in all cases, in accord with theoretical expectation for
an ellipse field [16]. For all points on a C line, two
nonzero eigenvalues were always found to be effectively
degenerate, also in accord with theory. For all points on
an L line, two zero eigenvalues, and one nonzero
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Fig. 4. L point ellipse winding number switchover. Stokes field
corresponding to the L line in Figs. 2,c,d at points in the
immediate vicinity of the switchover point at an arc length of ~3.
Here, the Stokes phase is coded — to 4+ black to white (a, ¢), and
zero crossings Z1 (Z2) are shown by thick (thin) lines (b, d), field
just before the switchover (a,b). a — starting at a black sector,
along a path that encircles the vortex the phase, which is folded
back into the region — to 4+, may be seen to circulate (increase)
uniformly in the negative, clockwise, direction by 4w, and the
Stokes vortex (ellipse field L point) has winding number —2 (—1).
b — in the upper half plane the zero crossings Zijand Z» have
ordering 71 Z2Z1Z>, corresponding to Stokes winding number —2
in Fig. a (¢,d — field after the switchover). ¢ — starting at the
darkest sector of the figure, the phase may be seen to circulate in
both the positive, counterclockwise, direction, and the negative,
clockwise, direction, indicating a net winding number of zero. d —
in the upper half plane the zero crossings Z; and Z> have ordering
71717272, corresponding to the Stokes winding number 0 in Fig.c.
At the switchover point itself (not shown), Z; and Z» overlap and

the winding number is indeterminate

eigenvalue, were always found, again in accord with
theory. On C lines, the winding number was found to
be £1/2, in accord with theory [1, 5]. On L lines, the
ellipse winding number was found to be either £2, or
zero, the former (£2) being in accord with the theory
of the normal winding number [1, 5], the latter (0)
not encompassed by any previous theory. The angle
between the proper line of sight and the C' or L line
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was calculated, Figs. 2, b,d. Sign inversion was observed
on C lines at points where this angle is 90°, in accord
with theory [1, 5]. In contrast, on L lines, the winding
number was found to switch between £2 and zero at
arbitrary points on the line, a behavior not encompassed
by any available theory. A qualitative theory of the
above differences between C' and L lines was described,
a quantitative theory will be presented elsewhere.

The ball, as it were, is now passed to the court of the
experimentalists. The experimental problems associated
with measurements in 3D optical fields are undoubtedly
severe, but considering the rapid pace of past successes,
one can anticipate that these problems will be solved in
time for the next special issue of this journal.
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useful suggestion by Prof. David Kessler, and email
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and Dr. Mark Dennis.
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MOJIAPUSALINHI CUHTYJIAPHOCTI
B TPUBUMIPHUX ONTUYHUX IIOJIAX: HOBUI PYBIXK

1. ®potind
PesmowMme

BuBwarorbca mnongpusarniiiHi CHHTYJAPHOCTI B MOJEIbOBAHUX
e.TIil'[TI/I‘IHO MTOJIAPU30BAHAX TpI/IBI/IMipHI/IX BUIIA/JIKOBUX XBUJIBOBUX
mostsix. [Tokazamo, [0 MATPHUI KOTEPEHTHOCTI € JyKe KOPUCHUM
IHCTPYMEHTOM [JIs1 ZOC/IiA2KEHHSI CHHTYJISIPDHAX TOYOK IHPKYJISP-
HOI mosigpu3alii, C-TO40K, Ta CUHTYJISAPHUX TOYOK JiHIMHOI IMOIs-
pu3anii, L-Togok. O6uBa THIH TOYOK OPraHi3yIOTHCSI B HEIIEPEPB-
Hi minii, C- ta L-niHii BignoBigHo, gki npoHu3yooTs nome. [1i mimii
OyJi0 3HAMIEHO 33 JOMOMOTOK BiC/IiKOBYBAaHHS HYJIIB BiImoBij-
HHAX BH3HAYHUKIB XaPAKTEPUCTUIHUX PIBHAHDb MATPHI KOT€PEHT-
HOCTi. 3a JOMOMOTOI0 BJIACHWX 3HAYMEHb Ta BJIACHUX BEKTOPIB i€l
MaTpulli pa3oM 3 300parKeHHsIM CHHTYJISIDHOCTEH y BUIJISIII KOM-
IJIEKCHOTO CTOKCOBA IOJIs OyJsiu 3HAaieHi 3HAKOBI iHBepcil iHgeKcy
kpydenas C-rouok na C-iinii, a Takox Oysu BCTaHOBJEHI 3MiHE B
ingekci kpy4deHHsa L-to4dok Ha L-minii. [lepmii po3B’a3Ku y3romxKy-
FOTHCSI 3 CYy4YaCHOI TEOPI€r0, Apyri — He 3a6e31evYyThCsi KOIHOI
3 cy4JacHHUX Teopiil. /IaHO fAKicHe MOSCHEHHS WX PO3B’A3KiB.
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