THE COVALENT-BAND DESCRIPTION OF γ -RESONANCE IN 3*d*-AND 4*f*-FERROMETALS

A. I. Mitsek

Institute for Metal Physics, Nat. Acad. Sci. of Ukraine (36, Academician Vernadsky Blvd., Kyiv 03142, Ukraine)

Summary

The hybridization of ns-shells with covalent and band electrons is calculated in the multielectronic operator spinors (MEOS) representation. The density of *ns*-electrons on a nucleus $\rho(0)$ is dependent on covalent bonds. The hyperfine field (HF) B_{HF} is expressed through the spin polarization of ns-electrons. The Hund exchange of an ion Fe^{57} gives $B_{\text{HF}} \sim S_T$, where S_T is the mean spin. In heavy rare earth metals (REM), the spinorbital ns^-4 f-contribution is added. It causes a large $B_{\rm HF}$ and the dependence on temperature T as $B_{\rm HF}(T) \sim J_T$, where J_T – angular moment of an RE ion. (covalent) bond fluctuations Chemical (CBF). responsible for Fe polymorphism, define a linear dependence on T for the chemical shift of a line of γ -resonance in α -Fe and iron compounds. The large energy gap in CBF spectra stabilizes the hcp lattice of heavy REM. The received results interpret experimental data.