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The hybridization of ns -shells with covalent and band electrons is
calculated in the multielectronic operator spinors (MEOS) repre-
sentation. The density of ns -electrons on a nucleus ρ (0) is depend-

ent on covalent bonds. The hyperfine field (HF) BHF is expressed

through the spin polarization of ns -electrons. The Hund exchange

of an ion Fe5 7  gives BHF ~  S T , where S T  is the mean spin. In heavy

rare earth metals (REM), the spin-orbital ns ¯4 f-contribution is
added. It causes a large BHF and the dependence on temperature

T  as BHF (T ) ~  JT , where JT  ¯ angular moment of an RE ion.

Chemical (covalent) bond fluctuations (CBF), responsible for Fe
polymorphism, define a linear dependence on T  for the chemical
shift of a line of γ-resonance in α-Fe and iron compounds. The

large energy gap in CBF spectra stabilizes the hcp lattice of heavy
REM. The received results interpret experimental data.

1. Spin Polarization of Hybridized ns-Shells of the
Mossbauer Ions

The densities of electrons and their spins functionally
define properties of ferromagnetic (FM) materials [1,
2]. Their experimental local indicator is a γ-resonance
[1¯3]. Inhomogeneities of a spin lattice create local
(hyperfine) fields BHF on the nuclei of Mossbauer ions

(for example, Fe57). The local bonds of an atomic
lattice change the density of ns -electrons on nucleus
ρ (0). It is measured as the chemical shift of a γ-
resonance line. The weak spin polarization of band
electrons and their practical homogeneity in good metal
(alloy) allow one to neglect their influence on the de-
pendence of BHF (T ) and ρ (0, T ) on temperature T
in zero approximation.

However, experimental γ-resonance lines were
interpreted up to now on the basis of one-electron
theories. The temperature dependence of ρ (0) (which
is sometimes strongly enough) was interpreted
differently (on the basis of the phonon Debye theory).
The theory of hyperfine fields stood by inself. Their
values were formed from the own field of a radioactive
magnetic ion and fields of surrounding ions at sites
r in the Heisenberg model of localized electrons. These
contributions are defined by their moments  (spins
Sr). Spin decompensation of electron desities on a
nucleus was taken into account phenomenologically.
The combination of these points of view and the united

theory of γ-resonance in magnetics is not created up
to now.

In our opinion, it is connected with the fact that
covalent bonds were not taken into account. The
interaction of ns -electrons with covalent electrons is
no less important than the bond with band electrons.
The CBF role is also more important in many cases
than the phonons’ role, especially for alloys of
transition metals, where CBF define the phase
diagrams of both atomic and spin lattices [5]. So the
calculation of covalent bonds and CBF, proposed here,
allows one to take into account the dependence not
only of hyperfine fields but also of ρ (0) (line chemical
shift) on phase diagrams (on temperature T , admixture
concentration, etc.).

The theory of covalent bonds and their fluctuations,
developed by us earlier [5], alows one to create a
self-consistent theory of phase diagrams of atomic and
spin lattices.The theory gives the crossing of CBF
branches with dispersion curves of band electrons. This
leads to DOS(E) singularities which appear near the
Fermi surfaces as an indicator of lattice instability.
The singularities, which are formed on CBF branches,
give visible contributions to the  thermodynamical
potential (t. d. p.). These contributions depend on T
strongly. The concrete MEOS correlators strongly
depend on T  as well. They are contained in the
expressions for different physical quantities, in
particular in the expressions for the amplitudes of
atomic wave functions.

Such is the calculated Fe diagram. Destabilization
of the α-Fe lattice appear, when the density of the
CBF singular part increases [5].

Hybridization of ns - and 3d-states on a Fe57 ion
results in the dependence of ρ (0) on the phase
diagram. Amplitudes of 3d-contributions into ns -
electrons wave functions are expressed through MEOS
correlators as a result of variation calculations. So the
theory interprets the observed linear temperature de-
pendence (above some temperature T m  ~  102K) of
chemical shift as the influence of the CBF singular
part. Naturally, the quantization axis of ns -electrons
in a magnetic field B (or in a hyperfine field BHF)
also appears. The theory expresses the contributions
into BHF not only through spin Sr (angular JR for
lanthanides or actinoids) moments, but also through
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MEOS correlators. So the proposed many-electron
theory allows one to solve all problems of γ-resonance
interpretation in magnetics.

In a magnetic field B,  the decompensation of
electronic spins σ→+ ,  −  arises for each ns -shell, see Fig.1
for 1s-shell. The Hund exchange with magnetic (3d¯
t2g in Fe57) electrons acts similarly. Two quantization
axes are introduced by analogy with the quantum
theory of antiferromagnetism [1, 4]. Along a
longitudinal axis, spins are compensated (for example,
at B = 0). The transverse axis (along B ≠  0) is
necessary for the quantization of the observable spin
polarization

s =  σ→⊥  +  +  σ→⊥  − ,    s → snr (1.1)

for each ns -shell. The one-electronic theory does not
allow one to consider adequately this situation. On
the contrary, the local model (Heisenberg and others)
of two-sublattice antiferromagnet introduces naturally
the operator snr [4] in the form (1.1). For it, the
representation of multielectronic operator spinors
(MEOS) [5] is used as

D̂ r
ns =  {dnsr,  cnrσ}, cnrσ

2  =

=  (1 +  σ→ s→nr) ⁄ 2,  dnsr =    ∏ 
σ =  ±

 ansrσ
+   , (1.2)

where σ ¯ operators of spin 1/2, a+  ¯ the Fermi-
operators for localized ns - and other electrons. The
condition of localization

drd
__

r =  1,    d
__

 =  d+ ,   [ dnr,  d
__

n′R ] −  =  δnn′ δrR (1.3)

defines the MEOC coordinate factor (1.2) in the
symmetric Fock spaces.

The hybridized wave function of ns -shell is

ψ r
ns =  ξsD̂ r

ns +  ξd D̂dr +  ξf D̂fr ,    ∑ 
j

 ξj
2 =  1. (1.4)

The expressions for MEOS of covalent electrons D̂jr
are similar to (1.2). We assume three covalent 3d¯
t2g magnetic electrons, one electon of 5d-state, and
one electron of 6s-state. Here ξd ¯ amplitude of 3d-
(for 3d-ions) or 5d-electrons (for 4f-ions). ξf ¯
amplitude of (partially magnetic) 4f-electrons of rare
earth (RE) Mossbauer ions. We remain within the
hydrogen-like model of atom [6¯8]. The calculation
[9] is carried out within the Thomas¯Fermi model.

We assume at first that ns -3(5) d-hybridization (as
well as with 4f-electrons) does not influence covalent
(magnetic) and band electrons. Then the interaction

of ns -electrons with md-  and 4f-electrons is described
by the intraionic Hamiltonian

Hr
i  =  Us ξs

4 (1 +  bsr
2) ⁄ 2 −  A sd(f)srSr −  λsf srLr +

+  gsd ξs ξdD̂ r
nsfr (f r

+ ) D
__̂

dr +  gsf D̂ r
nsfrD

__̂
fr ξs ξf +  h.c.,

(1.5)

where index n  of a concrete shell is omitted. The pure
metal with the own Mossbauer ion, for example
Fe57 in α-Fe, is considered here. To (1.5), we add

the covalalent interaction (for example, Fe57) with
neighbours

H  r
c =  −    ∑ 

R
 Γ ( | r −  R | ) D̂drD

__̂
dR ξd −

−  ξf   ∑ 
R

 Θ ( | r −  R) D̂dRD
__̂

fr ξf +  h.c. (1.6)

The second term in (1.6) is necessary for RE ions.
Only 4f¯5 d-excitations are taken into account[6, 7].
Direct 4f¯4 f-covalent bond is neglected. The heavy
4f-metals are considered and the effects of
'intermediate valency“ (see [8]) are not taken into
account. The sum of (1.5) and (1.6) is quantized and
the t.d.p. Φ (ξj) is received. We vary Φ (ξj) and receive

ρ (0, T  ) =  ρ0 ξs
2 (T  ) ,    R s ~  ρ0∆  ξ s

2 , (1.7)

i. e. the change of the density of states (DOS) on a
nucleus and the chemical shift R s (T  ). The change
at increasing T  is equal to

∆R s ~  ρ0 [ ξs
2 (0) −  ξs

2 (T  ) ] . (1.8)

The similar formula is received at other changes in
a ferrometal lattice.

We vary (1.5) in sr and determine the spin
polarization of ns -shell (Section 2). Accounts of the
chemical shifts of a γ-resonance line for α-Fe (Section
3) and REM (Section 4) differ. The stability of the
hcp lattice of REM is discussed in Section 5 on the
basis of the CBF account. Comparison with experiment
and conclusions are given in Section 6.

2. Spin Polarization of ns-Shells and Hyperfine Field

We proceed from the contact interaction of the nucleus
spin Ir with the spins of ns -electrons in the form
proposed by Fermi (see [1¯3]):

H  r
F =  −  ∑ 

n

 A F (n) Ir snr ρn (0) =  −  µNBHFIr .
(2.1)
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The large value of 'internal“ hyperfine field
BHF ~  102 ÷  103 T  in FM metals is caused by a small

value of nuclear magneton µN  ~  10−  23 CGSM.
Hybridization of ns -shells with valent electrons is small
(ξs

2 → 1). Therefore, ρ (0) ≈  ρ0 is supposed in (2.1).
Then all dependences BHF (T  ) on structure are defined
by sr polarization, i.e. by the spin lattice.

We vary (1.5) omitting index n:

sr =  (Asd (f)Sr +  λsf Lr) ⁄ U
~

s ,    U
~

s =  bUs ,    0 < b < 1.

(2.2)

The orbital moment Lr of a FM 3d-metal is frozen,
and only the first term in the parentheses in (2.2)
plays a role. For 4f-metal [6], we have

Lr =  (2 −  g) Jr ,    Sr =  (g −  1) Jr. (2.3)

It follows from experimental data that

| λsf |  >> | Asd | , (2.4)

which  defines,  apparently,  a  large BHF ~  103 T
[1, 2].

From (2.1)¯(2.3) for a FM 3d-metal, we get

BHF (3d) ≈  ∑ 
n

 [ A F (n) Asd (n) ⁄ U
~

s (n) ]  ( ρ0 ⁄ µN  ) Sr.

(2.5)

In the FM phase, the hyperfine field

BHF
d  (T  ) =  BHF

d  (0) ST  ⁄ S ,    ST  =  〈 Sr 〉 (2.6)

is defined by the mean spin ST .

Like this, for a 4f-ion in the FM phase of REM,
we obtain

BHF (4f ) =    ∑ 
n

 { [ A sf (n) (g −  1) +

+  λsf (n) (2 −  g)]  A F (n) ⁄ U
~

s (n) } (ρ0 ⁄ µN) Jr . (2.7)

The temperature dependence (2.7) is

B HF
f  (T  ) =  B HF

f  (0) JT   ⁄ J ,    JT  =  〈 Jr 〉. (2.8)

The change of a REM phase changes a set A sf (n)
owing to 5d¯4 f-hybridization, and  also owing to the
delocalization of these electrons. The latter is displayed
as the effect of variable ("intermediate") valency [8].

The quantum calculations of 3d-metals [9] can be
used for the estimation of the parameters A sd (n) in
(2.5). However, unclear initial assumptions [9]
complicate the separation of specific energy parameters.
It is connected, in particular, with unsufficient
development of the theory of hydrogen-like atomic
shells in a magnetic field.

The somewhat more complex situation for heavy ions
(4 f- and others) does not allow even such calculations
as those in [9]. The behaviour of 4f-electrons requires
a more careful research of the problem of their
delocalization. It complicates the calculation of ρ (0).
Probably, a specification of the contact Fermi
interaction is required.

3. Chemical Shift of the γ-Resonance Line of 3d-Ions by
the Example of Fe57

A wide use of iron alloys (and Fe57 in them) allows
us to compare details of the theory with experiment.
The shell model of atoms allows the finite density of
ns -electrons on a nucleus. Their wave function in the
MEOS representation simply connects ρ (0) with atomic
structure. We suppose ξf =  0. For α-Fe, only the
interaction with 3d  −  t2g-electrons is taken into
account. Their local (covalent) bonds with neighbours
add

Hcov =  −   ∑ 
rR

 Γ ( | r −  R |  ) D̂dr D
__̂

dR (3.1)

into (1.6). The interaction with band electrons of the
4s- and 3d¯  eg-types is partially taken into account
by ns ¯ d-hybridization (1.5) and by the correlator

Knsd =  〈 D̂ r
ns f r

+  D
__̂

dr 〉. (3.2)

Other interactions with collective electrons are
considered as the effects of higher orders.

Fig. 1. The model of two quantization axes for the calculation of spin
polarization of ns -shell (by the example n =  1) in magnetic field B.
Magnetic (covalent) 3d− t2 g-electrons responsible for a hyperfine field
BHF are also noted
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The account of each ns -shell is carried out
separately. Then  the received expressions (1.7)  are
summarized. Index is omitted as before. (The
additivity of the shell model allows it.) The influence
of spin polarization on ρ (0) is usually (and here too)
neglected. Averaging the sum (1.5) and (3.1) gives
the t. d. p.

Φ (ξj) =  Us ξs
4  ⁄ 2 +  gKsd ξs ξd −  Γ (0) Kdd (T  ) ξd ,

y =  ξd
2 << 1. (3.3)

The t. d. p. is varied taking into account the inequality
in (3.3), and the sum is received:

y =  y0 +  y1 (T  ),  y0 =  (g  ⁄ 2Us)
2, (3.4)

when 〈 KsdKsd
+  〉 ≈  1.

The constant term y0 is derived from intraionic
correlations. Its dependence on changes in the lattice
of a given crystal phase is neglected. Thermal
excitation (CBF, phonons, etc.) are taken into account
by the second term (3.4):

y1 =  (gΓ ⁄ 2U s
2) Kdd (T  ) =  〈 drsd

__
RS  〉 ≈  

≈  1 −  Qd exp (−  βE0) T . (3.5)

The correlator Kdd (T  ) was calculated in [10] for the
singular CBF part. Function (3.5) gives the dependence
of chemical shift (1.8) on T , see Fig. 2,

∆R s (T  ) ~  ρ0 y1 (T  ),    β =  1 ⁄ kBT ,    Qd < 1. (3.6)

Result (3.5) interprets experimental data [3, 11¯
14] (points in Fig. 2). Weak (almost a horizontal line)
dependence on T  for T  ≤  102 K is caused by a gap
E0 in the CBF spectrum in α-Fe (see [10]). The
linearity of ∆R s (T  ) at T  > E0  ⁄ k B is universal. It is
observed in α-Fe [3], in stainless steel (and does not
change under solving hydrogen in it) [11], and in
chemical compound R2Fe17 [12]. Function (3.5) is
universal for all positions of Fe atoms in a lattice. Its
form is not changed under solving deuterium
(Ho2Fe17D3.8) [12].

The unsufficiency of popular interpretations [3] of
∆R s (T  ) on the basis of the Debye theory was noted
in [11]. Result (3.6) proposed by the given theory
reflects the strong dependence of ρ (0) on covalent
bonds and CBF.

4. Calculation of Chemical Shift of the γ-Resonance Line
of 4f-ions

The participation of 5d- and 4f-electrons in covalent
bonds of RE ions complicates the calculation. The
additional detailed elaboration is required for such
REE as Ce, Pr, Yb. Their 'intermediate“ valency
means the instability of atomic shells. Highly active
participation of a variable number of 4f-electrons in
covalent bonds [6¯8] is typical of them. The state
of band electrons DOS (E) is also unstable, see Section
5. So (1.4) is used in the complete form (ξf ≠  0).
Similarly to (3.1), the covalent Hamiltonian is
introduced (Θ ≈  Γf) as

Hcov =  −  ξd  ∑ 
rR

 Γd ( |  r −  R | ) D̂drD
__̂

dR −

−  ξf  ∑ 
rR

  Γf ( |  r −  R | ) D̂frD
__̂

dR +  h. c. (4.1)

For heavy REE, the f¯ f-interaction is neglected. It
is possible at J  ≈  const. Formula (4.1) is averaged,
and the t. d. p. of Mossbauer ions is obtained as

Φ [ 4f ]  =  U ξs
4 ⁄ 2 +  gsd ξs ξd +  gsf ξs ξf −  Γ~d ξd −  Γ~f ξf,

(4.2)

where the shell index n  is omitted, i. e.

Uns =  U, ...,  Γ~d =  ΓdKdd (T  ) ,  Γ~f (T  ) =  Kdf Γf ,

| ξd,  f |  << 1. (4.3)

Correlators

Kdd =  〈 D̂drD
__̂

dR 〉 ,  Kdf =  〈 D̂frD
__̂

dR 〉 (4.4)

Fig. 2. The dependence of the chemical shift of the γ-resonance line of
Fe5 7  ions in α-Fe on temperature T: the theory (solid line (3.5)) and
experiment (points [14])
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as CBF functionals are estimated in Section 5.
T. d. p. (4.2) is varied taking into account inequality

(4.3) and

y (T  ) =  1 −  ξs
2 (T  ) =  y0 +  y1 (T  ). (4.5)

The observable chemical shift is given by y1 (T  ). The
solutions are

ξj ≈  (gsj −  Γj) ⁄ 2U,  y0 =   ∑ 
j

 (gsj  ⁄ 2U )2,  j =  d ,  f. (4.6)

For the observable chemical shift of the γ-resonance
line of a 4f-ion in the own REM, we get

y1 (T  ) ≈  ∑ 
j

 [ gsj ΓjKdj (T  ) ]  ⁄ 2U 2. (4.7)

The calculation of REE with variable ("intermediate")
valency [8] requires the addition of terms describing
the delocalization of 4f-electrons to (4.1). The
singularities of band spectra DOS (E) and CBF appear.
This distinguishes their BHF and chemical shift from
the stable REM.

5. CBF Spectra and REM Stability

The stability of the hcp lattices of heavy REM is broken
only near the melting temperature T L ≈  103 K [6].
It indicates the domination of a metal bond. The lower
value T L (4f ) < T L (3d) ≈  (1.5÷  2) ×  103 K also
indicates the smaller energy of the covalent bond than
that in 3d-metals. The small value | Γj |  << εF is
supposed. The total Hamiltonian is taken [5, 8, 10]
as

H  ≈  H0  +   ∑  
k

 ε~k f k
+ fk +  N   ∑  

k

 Γdkdkd
__

kξd
2  +

+  N  ξf ξd ∑ 
k

 (Γf kddkd
__

f k +  h. c.) −

−  √N  ∑ 
j k

 ξj [ tj (k) d jk fk +  h.c.] ,    ε~ =  ε −  εF. (5.1)

Spin index σ is omitted. The expression for 4f-MEOS
[10] reads

D̂fr =  {d fr cfrS  νfrL},   cfrS
2  =  (1 +  SSr) ⁄ (2S  +  1),

 νfrL
2  =  (1 +  LLr) ⁄ (2L +  1),  Γk =  Γ (0) −  Γ (k),

dk =   ∑ 
r

 dre
−  ikr ⁄ N ,   Γ (k) =   ∑ 

r
 Γ ( | r |  ) e−  ikr.

(5.2)

The influence of the orbital moment L on CBF is also
neglected.

The anticomutators of two-time Green functions are
introduced [10] as

G k
c,  f,  d =  〈〈 fk (d

__
f k,  d

__
d k) | f k

+  〉〉+  ,   ξij =  ξi  ⁄ ξj . (5.3)

The equations of motion










E  −  ε~k

tf (k)/ ξf

td (k)/ ξd

   

ξft f
∗(k)
E

ξfdΓf k

   

ξdt d
∗(k)

ξdf Γf k
∗

E  −  Γdk

 





















G k
c

G k
f

G k
d












 =  







1
0
0








(5.4)

are solved in the limit of the large Fermi energy εF

εF >> | tj | ,   | Γj | . (5.5)

The CBF spectrum in a crystal phase (hcp) is
interesting for small k << 1. The dispersion equation
is

(E  −  Γdk) E  −  Qdf (k) ⁄ εF ≈  0,    k << 1, (5.6)

where

Qdf =  2Re {t f
∗ (k) td (k) Γf k

∗ } −  | tf (k) | 2 ×

×  (E  −  Γdk) −  | td (k) | 2E (5.7)

is not reduced to zero, when k → 0.
The CBF spectrum (solution of (5.6))

ECBF (k) ≈  Γdk +   ∑ 
j

 | tj (k) | 2 ⁄ εF,   j =  d ,  f, (5.8)

contains a gap created by the delocalization of 5d-
and 4f-electrons. The  gap ECBF (0) ~  10−  2 ÷  10−  1

eV is large enough. It exponentially freezes the CBF
contribution into t. d. p. The first term in (5.7) is
here omitted. Its account does not influence a gap.
But, in the first approximation, it results in the CBF
splitting into two branches. It corresponds to the
interaction of two subsystems (5d- and 4f-) of covalent
electrons.

In a general case, there are also two branches of
band electrons,

Ek
+  ≈  ε~k +   ∑ 

j

 | tj (k) | 2 ⁄ ε~k ,   Ek
−  ≈  −   ∑ 

j

 | tj (k) | 2 /  ε~k ,

(5.9)

separated by a large enough forbidden band. Near
the Fermi surface (ε~k → 0), we get

Ek
+  ≈  ε~k +  | tf (k) | 2 (Γdk ⁄ | Γf k | 2) +  2Re (t f

∗td ⁄ Γf k).
(5.10)
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The singularities of DOS (E) calculated from (5.10)
are fuzzy. The observable sharp peaks of
photoelectronic spectra (see [7]) fairly concern to
intraatomic transitions.

The inhomogeneities of covalent energies Γj (r), and
also tj (r) are responsible for polymorphic deformations
of the hcp lattice [5, 8, 10]. The energies of these
inhomogeneities are small in comparison with

ECBF (0) for heavy REM. It causes the observable [6]
stability of heavy REM lattices. However, the situation
in light REM changes appreciably [6¯8].

6.  Comparison with Experiment and Conclusions

The theory describes the influence of atomic and spin
lattices on electron density on a nucleus ρ(0) by
hybridization of ns -electrons with covalent (magnetic)
electrons. The contact Fermi interactions created by
the spin polarization of ns -electrons which is due to
the Hund exchange Asd with magnetic 3d− t2g-electrons

of an ion Fe57 in α-Fe. The calculated hyperfine field
BHF(T ) ~  ST  and is defined by the local mean spin
ST  of an ion in the FM lattice. This result describes
experimental data on local BFH in different sublattices
of Fe compounds [1¯3, 11¯14]. The large BHF value
on nuclei of 4f-ions [1, 2] is explained by the addition
of spin-orbital bond λsf of ns -shells’ spins with the
orbital moment L of an ion to the Hund exchange.
Here, BHF(T ) ~  JT  is expressed through the mean
angular moment JT  of a 4f-ion.

The chemical (isomeric) shift of a γ-resonance line
is expressed through the covalent parameters Γ̂. The
hybridization of ns -3(5) d-electrons decreases ρ(0).
This decrease contains the interionic covalent part. It
depends on CBF, i.e. on temperature T . The singular
CBF part gives a linear dependence for the chemical
shift in α-Fe and Fe compounds on T . It explains
the classical experimental data on α-Fe [3], stainless
steel [11], and intermetallide Ho2Fe17 [12]. The
theoretical form of this dependence (3.5) is not
practically changed on the addition of H [11] or D
[12] (for Ho2Fe17D3.8), though, at hydrogenation
(deuteration), the value of chemical shift at T  =  0 K
changes strongly.

The interpretation of γ-resonance data in Fe alloys
[11] in the Debye theory leads to a sharp contradiction
with another data [13]. The introduction of
~  1 −  10 at.% of hydrogen leads to a strong isomeric
shift. But the observed temperature dependence of
chemical shift remains in the form (3.5). Interpretation
of these data in the Debye theory requires the increase
of the Debye temperature by more than 50% at
hydrogenation (up to 550 K). The latter contradicts

the well-known data on metal¯hydrogen systems
[13].

Our theory explains the data in [11] by small
changes of wave function amplitudes (1.4). The change
of coefficients (3.5), which interpret the temperature
dependence of chemical shift, is connected with the
H ions’ contribution into covalent bonds. This result
in the deformation of the singular part of CBF
dispersion on the H introduction. So the proposed
theory explains completely all observed characteristics
of γ-resonance lines. This gives the quantitative basis
for the γ-resonance use in the analysis of phase
diagrams and properties of transition metals and their
alloys. 1

The theory proves the stability of hcp lattices of
heavy REM by a large gap in the CBF spectrum. This
gap is created by the delocalization energy of 5d-  and
4f-electrons into the conduction band. The CBF
freezing stabilizes a hcp lattice practically in the whole
interval of the existence of a crystal phase.

Conclusions:
1. The theory connects the dependence of electronic
density on a nucleus ρ(0) on a state of atomic and
spin lattices with hybridization of ns -shells with
covalent electrons.

2. In α-Fe, it is 3d  −  t2g-electrons. The hyperfine
field BHF(T ) ~  ST  and is created by the local spin
ST(T ). The CBF excitation is responsible for the
chemical shift of a γ-resonance line R s(T ) at changing
T . The singular part of CBF is responsible for the
linear R s (T ) dependence in α-Fe and Fe alloys
(compounds) [10].

3. For 4f-ions, it is 5d- and 4f-electrons. The spin-
orbital ns ¯4 f-bond (~  λsf ) gives a large contribution
into their hyperfine  field BHF(T ) ~  JT . It defines a

large value of BHF (4f ) ~  102 ÷  103 T .
The chemical shift (4.7) is proportional to the

parameters of covalent bonds Γd and Γf, multiplied
accordingly by the correlators of 5d- and 4f-electrons.

4. The calculated CBF spectra in heavy REM have
the large energy gap E  (0) (5.8). It is caused by
delocalization of covalent electrons. The relatively weak
dependence of Γj on deformations does not practically
influence E  (0). These factors stabilize the hcp lattice
of heavy REM.

The inhomogeneity of covalent bonds Γj is
responsible for the destabilization of light REM (their
polymorphism). It results in the strong dependence
of Γj and E(0) on lattice deformations [8].
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