APPLICATION OF THE QUASICLASSICAL APPROXIMATION

APPLICATION OF THE QUASICLASSICAL
APPROXIMATION FOR THE ANALYSIS
OF PROPERTIES OF LIGHT ATOMIC
NUCLEI WITH HIGH EXCESS

OF NEUTRONS

V.0. NESTEROV

UDC 530.145

®2004

Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine
(47, Nauky Prosp., Kyiv 03028, Ukraine)

The modified Thomas — Fermi method has been used for the
computation of integral characteristics of the light nuclei with
Z = 4+7 placed near the neutron stability line. The basis of these
calculations is that such nuclei are rather loose and nucleons move
in smooth fields. For N &~ Z, the method leads to poor results,
but it describes integral characteristics of the nuclei with high
excess of neutrons with the same satisfactory precision as those of
medium and heavy nuclei.

Nuclei with high excess of neutrons are S-nonstable
and their life-time is too small, which hampers
significantly their experimental study. However, the
recent development of experimental methods allowed
one to find a number of unusual properties of these nuclei
which require a theoretical explanation.

For the description of lightest neutron-rich
nuclei, the quantum microscopic and semimicroscopic
approaches which are based on the idea of clusterization
are usually used [1 — 11]. In their frame, the properties
of nuclei ®He, 8He, and ''Li were rather fully analyzed.
In this case, especially in the use of semimicroscopic
approaches where clusters are presented as structureless
particles, one tries only to demonstrate the presence
of a neutron halo in such nuclei and takes no care
of the description of the integral characteristics of
nuclei, including the binding energy. In addition, the
calculations within these models are such complicated
that their use is quite difficult for neutron-rich nuclei,
beginning already from Z = 4.

In the region of medium and heavy nuclei, ordinary
and exotic ones, most frequently are used the Hartree —
Fock method, shell model, or Thomas — Fermi method.
These methods are based on the idea of mean fields,
in which the nucleons of a nucleus are moving, and
are mainly realized in practice in the case of spherical
symmetry. The first two approaches are employed
sometimes for relatively light nuclei, whereas the latter
is not practically used for nuclei with A < 40, though
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the number of nucleons does not enter the criterion
of applicability of this quasiclassical method. In recent
specific realizations of the Hartree — Fock and Thomas
— Fermi methods, Skyrme forces are frequently used as
the nucleon-nucleon interaction [12], which significantly
simplifies calculations. Now a lot of parametrizations of
Skyrme forces depending on the density is known [13 —
17]. Some of them were chosen to reproduce the integral
characteristics of not only ordinary, but exotic heavy
and medium nuclei.

In the present work, we use a nonlocal approximation
of the modified Thomas — Fermi method (MTFM)
with Skyrme forces for the description of the integral
characteristics of light neutron-rich nuclei with Z > 4
which are in the vicinity of the neutron stability line.
The comparison of the derived results with experimental
data allows us to conclude on the applicability of such
an approach in the above-indicated sense to the study of
these nuclei and, in particular, the peculiarities of their
structure.

Method

The equations of MTFM [15, 16]

02n(Pns Pp)[0pp = Ap = 0, (1)
02(pns Pp)[0Pn —An =0 (2)

can be deduced by using the variational principle, in
which the total energy of a nucleus is considered as
a functional E(pn,pp) of the neutron p, and proton
pp densities. The possibility of the construction of
such a functional follows from the Hohenberg — Kohn
theorem [18] valid for any many-component system. The
functional of the total energy of a nucleus reads

E(pn, pp) = / di’(T + €pot + Ecout) (3)
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Fig. 1. Binding energies and neutron and proton chemical poten-
tials for the isotopes of Be and C. Blank symbols correspond to the
calculation with SLy4, and filled one are experimental data [19]

where T, €p0t, and eqoul are, respectively, the densities
of kinetic, potential, and Coulomb energies. In Egs. (1)
and (2), A,, and A, are Lagrange multipliers which are, in
essence, the chemical potentials for neutrons and protons
and are related to the conditions of preservation of the
numbers of neutrons N and protons Z in the nucleus:

[ 47 = N(2). @

Given the expressions for the densities of kinetic,
potential, and Coulomb energies in (3) which are
presented, e.g., in works [19, 20], we can solve Egs.
(1) and (2) and find the chemical potentials and the
distributions of the neutron and proton densities.

To within the terms of the second order in 7, the
density of kinetic energy equals 7 = 7pp + 7o, where
T = Tp + Tp is the sum of the densities of the kinetic
energies of protons and neutrons. Here,

= kp)/? (5)

TTF,n(p) n(p)

is the density of kinetic energy of neutrons (protons) in
the Thomas — Fermi approximation, k = %(371'2)2/3, and
Tan(p) 18 the gradient correction in h? with regard for all
possible gradient terms:

(qu) 2 (V fqpq) 2fq
Py +b62V7p, + b3 7, + bapy 7.

T2q = bl
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where b1 = 1/36, b2 = 1/3, b3 = ]./6, b4 = ]./6,
bs = —1/12,bg = 1/2, and Wy are numerical coefficients,

b = 12 /2m, fru(p) = T (B+7) Pu(p) +PmBPp(n), and the
last term in (6) is connected with consideration of the
spin-orbital interaction. Here, tq, t1, to, t3, 2o, 1, T2, T3,
a, and Wy are the parameters of the Skyrme potential, 3
and ~ are their combinations, and the variable ¢ means
n or p, respectively.

We do not give the full formula for the potential
energy density because of its awkwardness and present
only the Coulomb energy density with regard for the
exchange term:

1 o) 3, (3\?
ccom = 3n) [ a2 -3 (2) a0,

As a result, Egs. (1) and (2) transform into a system
of nonlinear integro-differential equations in the case of
spherical symmetry. The system is solved numerically
by the method of successive approximations with the
boundary conditions

[Agl/ (hmbr)r),

pq(r) |HOo = 1/r? exp(—

and p, should be limited at r — 0.

Results

The integral characteristics of the light atomic nuclei
with Z > 4 were calculated with the use of Skyrme forces
depending on the density. We use the parametrizations
Sly4 [17] and SkP [16] which are successfully used for the
analysis of the properties of ordinary and exotic medium
and heavy nuclei.

Fig. 1 presents the results of calculations of the
binding energies and chemical potentials of the isotopes
of Be and C with potential Sly4 (the results derived
with the use of potential SkP are practically identical)
as functions of the mass number. For the dependence of
the binding energies on the mass number, the differences
between the theoretical and experimental values for
nuclei with the approximately identical numbers of
neutrons and protons are very large. But, with increase
in the mass number of isotopes, the theoretical curves
become to reproduce the experimental data rather well.
In this case, it is worth noting that nuclei 8Be and
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12C in the ground state are composed, respectively,
from two a-clusters which do not overlap practically
and three well-separated a-clusters. The differences in
the binding energies which are observed for nuclei with
a great excess of neutrons can be related to not only
the underestimation of shell effects, but also with the
specificity of the determination of parameters of the used
nucleon-nucleon potentials. The latter and the constant
of spin-orbital interaction, in particular, were fitted by
the binding energies of heavier nuclei.

As for chemical potentials, we note that they are
described on the average. Respectively, it is impossible to
exactly determine a position of the neutron stability line
(if this term would be literally applied to light nuclei).
Though the differences are not too high, but we can say
nothing about the position of a specific isotope relative
to the stability line, because this is defined, as usual, by
quantum effects which are not considered to a full extent
in the used approach.

Table 1 presents the results of calculations of the
binding energies, neutron chemical potentials, proton
chemical potentials, and neutron, proton, and mass
mean square radii for the isotopes of nuclei of Be, B,
C, and N which lie in the close vicinity of the neutron
stability line. For the isotopes of the first two nuclei, the
difference of the calculated and experimental energies
can be several percents. But, for the heavier isotopes of
C and N, this value is at most 1%, i.e., such as MTFM
gives usually for medium and heavy nuclei. We note that
the full account of gradient corrections for the kinetic
energy of the nuclei under study plays a more significant
role as compared to that for medium and heavy nuclei

T able 1.Binding energies, neutron chemical potentials,
and neutron, proton, and mass mean square radii

Nucleus| E, | Eexp, | An, |An,exp, | RMSN, | RMSP, | RMS,

MeV | MeV | MeV | MeV fm fm fm
2Be  67.89 68.70 -0.95 -3.17  2.58 2.15  2.45
13Be 69.14 66.64 -0.03 2.01 2.72 217 2.57
158 91.19 88.19 -0.96 -2.77 2.72 2.29  2.58
163 93.13 (88.10) -0.12 (0.10) 2.81 231  2.67
8¢ 115.40 115.67 —0.95 -4.18  2.83 2.41  2.70
9C  116.99 115.83 —0.21 -0.16  2.92 244  2.78
21N 139.66 138.79 -0.94 -4.61 2.94 2.53 2.81
22N 141.45 140.01 -0.27 -1.22  3.02 2.54  2.88

N o t e: the values in parentheses are the results of nuclear
systematics rather that experimental data [19].

T a ble 2. Proton experimental mean square radii of
the isotopes of Be [5]
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Fig. 2. Neutron, proton, and mass mean square radii vs the mass
number for the isotopes of Be, B, C, and N

and can contribute up to several percents to the binding
energy. The experience of calculations in the frame of
MTFM in the region of medium and heavy nuclei shows
that the values of mean square radii can be somewhat
underestimated. This is related to the fact that the
nucleon density distributions obtained in this approach
decrease somewhat more rapidly in the diffusion region
than it occurs in reality. That is, the derived values
of mean square radii should be considered as some
lower bounds of these quantities. Moreover, the large
differences of neutron and proton radii can indicate the
presence of a “neutron coat”.

Fig. 2 displays the mean square radii versus mass
number. The neutron radii increase rather rapidly by
almost a linear law. But the proton radii vary slowly.
Such a behavior of these quantities is characteristic of
the isotopes of most nuclei. Though, for light nuclei near
N = Z, the clearly pronounced clusterization inherent
in them can give contribution. This is demonstrated by
Table 2 containing the available experimental values of
proton mean square radii for the isotopes of ®Be. In
addition, these data can indicate a certain compression
of the substructure of ®Be by excessive neutrons in the
sufficiently heavy isotopes.

As the examples of the distribution of neutron and
proton densities, Fig. 3 shows the plots for nuclei 5B
and 22N. For these nuclei, the large excess of neutrons
yields the longer neutron distributions as compared to
the proton ones, which allows one to say about the
presence of a “neutron coat”.

Conclusions

A certain success of the spherical-symmetry-based
quasiclassical calculations of the integral characteristics
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Fig. 3. Distributions of the densities of neutrons and protons in
the nuclei of 1B and 22N

of light atomic nuclei lying in the close vicinity of
the neutron stability line confirms that the nucleons in
these nuclei move, indeed, in relatively smooth fields.
That is, the clearly pronounced clusterization inherent in
their isotopes with the approximately identical numbers
of protons and neutrons is significantly leveled in the
case where the number of neutrons strongly prevails. In
this case, the nuclei whose basic isotopes are strongly
deformed due to clusterization can take a form close to
the spherical one. As for quantum effects which were
practically neglected in the quasiclassical approximation
used by us, they can be taken into account in the frame
of the Hartree — Fock method whose quasiclassical limit
is MTFM.
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3ACTOCYBAHH{A KBASBIKJIACUYHOI'O HABJIMZKEHHSA
JIJId POBIJIALY BJIACTUBOCTEN JIETKUX ATOMHUX
SJIEP 3 BEJIUKUM HAJIJIMIIKOM HEUTPOHIB

B. O. Hecmepos
PesmowMme

MogudikoBauuit merom Tomaca — Pepmi BUKOPHCTAHO IJis PO-
3paxyHKIiB IHTErpajbHAX XaPAKTEPHCTHK JIETKAX ATOMHUX SIIEp
Z =4+ 7, mo nexath y 6e3nocepeHii 6M1U3bKOCTI Bil MexXi Hell-
TpasabHol cTabisbHOCTi. OOrpyHTYBAHHSM [JIsi IPOBEIEHHS TAKHX
PO3PaxyHKiB MOXKe CJIY>KUTH T€, 0 PO3IVISAYBaHI sipa € IIyXKH-
MH, i BiIIOBIJHO HYKJIOHU B HUX PYXAIOTHCI ¥ JOCUTDH IVIAI€HbKUX
nosistx. SKmo y BkaszaHiii obsacti 3apsgy saep npu N & Z na-
HUN MEeTO € MOTAHUM HAOJIMXKEHHSM, TO DU BEJIUKOMY HAJJIHII-
Ky HeHTpOHIB BiH BigTBOpIOE iHTErpasbHi XaPAKTEPUCTHKH SIIED
NpaKTUIHO TaK caMo J00pe, SK i IpU 3aCTOCYBaHHI #0ro 10 1ocTi-
JIPKEHHSI CepejHIX Ta BaXKKHUX sijiep.
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