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A structure-phenomenological magnetorheological equation for the

dilute suspensions of non-Brownian ellipsoidal microaggregates of

nanoparticles of the dispersed phase of magnetic fluids is obtained.

The magnetorheological characteristics of such suspensions in a

simple shear flow in the presence of a transverse magnetic field

are studied in the case of the formation of a structural anisotropy

in suspensions that appears due to the stationary orientation of

suspended microaggregates under the action of hydrodynamic

forces and forces that act from the side of an external magnetic

field.

Introduction

The aggregation of nanoparticles of the dispersed
phase in magnetic fluids [1, 2] change their physical
and rheological properties. The ability of anisometric
microaggregates formed in this case to orient in
an external magnetic field [3] was used in [4]
for the development of the magnetooptical method
of determination of their geometric and physical
parameters. This method allows one to study only
comparatively small Brownian microaggregates which
loss the acquired orientation due to the action of the
rotational Brownian motion after the termination of the
orienting action of the external magnetic field.

For the study of non-Brownian microaggregates
of nanoparticles of the dispersed phase in magnetic
fluids insensitive to the disorienting action of the
Brownian motion, when the magnetooptical method
becomes useless, we propose the other method, the
magnetorheological one, for the determination of the
parameters of aggregates. As the theoretical basis of this
new method, we take the structure-phenomenological
theory of a stressed state constructed in this work.
Such a theory describes arbitrary gradient flows of
the dilute suspensions of non-Brownian anisometric
microaggregates of nanoparticles of the dispersed phase
in magnetic fluids with regard for the possible influence
of an external magnetic field on their dynamics.

The deduced constitutive equation for stresses in
such suspensions is used to study the influence of a
transverse magnetic field on the rheological behavior of
suspensions in a simple shear flow in the case of the
formation of a structural anisotropy in suspensions upon
the stationary orientation of suspended anisometric
non-Brownian microaggregates under the action of
hydrodynamic forces and forces acting from the side of
an external magnetic field. The use of the structure-
phenomenological method [5, 6] upon the development of
the theory of a stressed state in the dilute suspensions of
non-Brownian aggregates allows us to get the explicit
analytic dependence of the effictive shear viscosity
of suspensions and the first and second differences
of normal stresses on the physical and geometric
parameters of suspended aggregates. This allows us
to propose that the parameters of the non-Brownian
microaggregates of nanoparticles of the dispersed phase
in magnetic fluids can be found upon the comparison of
theoretical and experimental values of the corresponding
magnetorheological characteristics of suspensions.

1. The Structure-Continual Model of the

Dilute Suspensions of non-Brownian

Microaggregates of Nanoparticles of the

Dispersed Phase in Magnetic Fluids

We assume that the suspensions of microaggregates
formed in magnetic fluids have the following properties:
1) suspended microaggregates are nondeformable
particles with the same form and sizes; 2) characteristic
size d of suspended microaggregates is much less than
the characteristic size �l of the suspension macroflow
region, but is much more than the characteristic size l of
molecules of the Newtonian carrier fluid of a suspension:

l << d << �l; (1)

3) on the surface of suspended microaggregates, the
no-slip condition is satisfied; 4) motion of the carrier
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fluid relative to suspended aggregates is slow; 5) volume
concentration of suspended microaggregates is small,
the suspension is assumed to be diluted; 6) suspended
microaggregates have zero buoyancy.

The left part, l << d, of the double inequality (1) and
property 3) allow us to consider the interaction of the
Newtonian carrier fluid of a suspension with suspended
microaggregates as the hydrodynamic interaction. As
a hydrodynamic model of nondeformable suspended
microaggregates, we take an ellipsoid of revolution with
the major axis 2a and the equatorial diameter 2b (a > b).

We assume that suspended microaggregates are
insensitive to the influence of the Brownian motion
on their rotational dynamics in the gradient flows
of suspensions. For convenience, we will name such
microaggregates as non-Brownian, in brief. According
to [7], the effective radius r =

3
p
ab2 of ellipsoidal

non-Brownian microaggregates (particles) satisfies the
condition r > 10�6 m and the condition r << l

according to (1). The cited data [7] on the size of
suspended ellipsoidal particles concern the suspensions,
for which a carrier fluid is water.

We also assume that the suspended non-Brownian
microaggregates of magnetic nanoparticles and their
hydrodynamic model have constant magnetic moment
pi = qni, where q is the constant magnetic moment
of microaggregates; ni is the unit vector directed along
the axis 2a of the ellipsoidal model of microaggregates
characterizing their orientation. We suppose that
the suspension of microaggregates is dilute so that
the interaction of the magnetic fields of suspended
microaggregates and the hydrodynamic interaction
between the latter can be neglected.

It is known that a stressed state in the gradient
flows of the dilute suspensions of axisymmetric particles
depends on the rotational dynamics of suspended
particles and their averaged orientation. According to
the structure-phenomenological theory of a stressed
state in the gradient flows of such suspensions [5,
6], the right part of the double inequality (1) allows
one to simulate a dilute suspension of ellipsoidal non-
Brownian aggregates by the structural continuum with
two internal microparameters, namely the orientation
vector ni of suspended ellipsoidal microaggregates and
the vector Ni = _ni � !iknk; which characterizes their
angular velocity relative to the carrier fluid of the
suspension. Here, the dot over ni means the local
differentiation with respect to time t, !ik is the velocity
vortex tensor, and !ik = (1/2)(vi;k � vk;i), where
vi;k is the velocity gradient tensor. Here, we use the
tensorial designations. In particular, a comma in indices

means the differentiation along the direction of the axis
distinguished by the index after the comma. As usual,
we sum over the identical indices of a term.

2. The General Rheological Equation of

a Dilute Suspension of Ellipsoidal

Microaggregates

Within the framework of the structure-phenomenological
method [5, 6], the rheological equation for stresses Tij in
gradient flows of a dilute suspension, which is modelled
by a structural continuum, is phenomenologically
postulated as the functional dependence of the tensor Tij
on the deformation rate tensor dij , dij = (1/2)(vi;j +

vj;i), and on the internal microparameters ni and Ni

of the structural continuum. By [6], the most general
phenomenological equation for the stress tensor Tij is

Tij = (a0 + a1dkmhnknmi) Æij + a2hninji+

+a3dkmhnknmninji+ a4dij ++a5dikhnknji+

+a6djkhnknii+ a7hniNji+ a8hnjNii; (2)

where Æij is the Kronecker delta; ai (i = 0; 8) are
phenomenological constants.

The transition from the microcharacteristics
ni and Ni for separate suspended particles to
macrocharacteristics of suspensions occurs upon the
execution of the averaging in relation (2) defining the
stress tensor Tij in the phase space of coordinates
of the orientation vector ni of suspended ellipsoidal
microaggregates. Angular brackets hi in (2) mean such
an averaging with the use of the distribution function F

of angular positions of the vector ni which satisfies the
equation

@F

@ t
+

@

@ni
(F _ni) = 0: (3)

Upon the structure-phenomenological study of
the dilute suspensions of ellipsoidal microaggregates,
the phenomenological constants ai

�
i = 0; 8

�
in the

rheological equation (2) can be theoretically derived, as
in [5], with the use of the energetic method of Einstein
[8]. But the results in [6] show that the application of
the dynamical method of Landau [9] and the results
of the Jeffery structural theory of the viscosity of
the dilute suspensions of ellipsoidal particles [10] gives
the advantages allowing the theoretical calculation
of the phenomenological constants ai

�
i = 0; 8

�
in

the rheological equation (2) for stresses in a dilute
suspension of ellipsoidal microaggregates prior to the

1128 ISSN 0503-1265. Ukr. J. Phys. 2004. V. 49, N 11



MAGNETORHEOLOGY OF ANISOTROPIC SUSPENSIONS

study of their dynamics. The last varies depending
on the size of microaggregates, i.e. on the type of
aggregates which can be Brownian or non-Brownian, and
on the system of forces defining the dynamics of such
microaggregates in the carrier fluid of a suspension.

In order to determine the phenomenological
constants ai

�
i = 0; 8

�
in Eq. (2), we use the own

results following from the structural part of the proposed
structure-phenomenological theory. According to [6],
we find firstly the stress tensor �ij in the carrier
fluid of a suspension on the surface of a sphere S,
whose center coincides with the center of an ellipsoidal
microaggregate, and the radius R is much more than its
size. In [10], Jeffery found the perturbation introduced
in the flow of a Newtonian fluid by a nondeformable
ellipsoid suspended in it. By using this result, we
calculate the stress �ij on the surface of a sphere
S in the moving coordinate system Oxi with the
axes x1; x2; x3; coinciding with the major axes of the
ellipsoidal microaggregate, as

�ij = �pÆij + 2� dij + 10��

�
�

5

R2
�Æij +

4xixj

R7
� xi

R5

@�

@xj
� xj

R5

@�

@xi

�
;

� = Akmxkxm;

A11 =
d11

6�000
; A12 =

�0d12 + b2�00 (!12 + !3)

2�00B
;

A13 =
�0d13 + b2�00 (!13 � !2)

2�00B
;

A21 =
�0d21 + a2�00 (!21 � !3)

2�00B
;

A22 =
d22

4b2�00
+
d11 (�

00

0 � �000 )

12b2�000�
0

0

; A23 =
d23

4b2�00
;

A31 =
�0d31 + a2�00 (!31 + !2)

2�00B
;

A32 =
d32

4b2�00
; A33 =

d33

4b2�00
+
d11 (�

00

0 � �000 )

12b2�000�
0

0

;

B = a2�0 + b2�0;

where p is the pressure; � is the dynamical coefficient
of viscosity of the carrier fluid; �0, �0, �

0

0, �
0

0, �
00

0 ,
and �000 are functions defined in [10]; !2 and !3 are
the components of the angular velocity of ellipsoidal
microaggregates.

By the Landau structural theory [9] of the dilute
suspensions of nondeformable particles, the stress
tensor of a suspension of ellipsoidal microaggregates
is the tensor �ij averaged over the volume of the
above-mentioned sphere S surrounding a suspended
microaggregate. By passing from the integration over
the sphere volume to that over its surface, we found the
components of the stress tensor in a dilute suspension of
ellipsoidal microaggregates as

h�11ivol = �p+
�
2�+

4�V

3ab2�000

�
d11;

h�22ivol = �p+
�
2�+

2�V

ab4�00

�
d22+

+
2�V (�000 � �000 )

3ab4�000�
0

0

d11;

h�33ivol = �p+
�
2�+

2�V

ab4�00

�
d33+

+
2�V (�000 � �000 )

3ab4�000�
0

0

d11;

h�12ivol =
�
2�+

4��0V

ab2�00B

�
d12 +

4�V b2 (!12 + !3)

ab2B
;

h�21ivol =
�
2�+

4��0V

ab2�00B

�
d21 +

4�V a2 (!21 � !3)

ab2B
;

h�13ivol =
�
2�+

4��0V

ab2�00B

�
d13 +

4�V b2 (!13 � !2)

ab2B
;

h�31ivol =
�
2�+

4��0V

ab2�00B

�
d31 +

4�V a2 (!31 + !2)

ab2B
;

h�23ivol =
�
2�+

2�V

ab4�00

�
d23;

h�32ivol =
�
2�+

2�V

ab4�00

�
d32; (4)

where V is the volume concentration of suspended
microaggregates; and angular brackets hivol mean the
above-indicated averaging over the volume of the sphere
S.

The coefficients ai
�
i = 0; 8

�
in the

phenomenological rheological equation (2) are
determined upon the comparison of elements of
the stress tensor Tij in the suspension with the
corresponding elements h�ijivol calculated according
to the structural part of the theory. To this end, we
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firstly pass to the moving coordinate system Ox1x2x3;

connected with the suspended ellipsoidal aggregate, in
Eq. (2). For such a transition, n1 = 1, n2 = 0, n3 = 0,
_n1 = 0, _n2 = !3, _n3 = �!2. Therefore, the elements of
the stress tensor Tij , which is defined by relation (2),
take the form

T11 = a0 + a1d11 + a2 + (a3 + a4 + a5 + a6) d11;

T22 = a0 + a1d11 + a4d22; T33 = a0 + a1d11 + a4d33;

T12 = (a4 + a6) d12 + a7 (!3 + !12) ;

T21 = (a4 + a5) d21 + a8 (!3 � !21) ;

T13 = (a4 + a6) d13 + a7 (�!2 + !13) ;

T31 = (a4 + a5) d31 + a8 (�!2 � !31) ;

T23 = a4d23; T32 = a4d32: (5)

The comparison of (4) and (5) allows us to determine
the phenomenological rheological constants ai (i = 0; 8)

in the rheological equation (2) for the stress in a dilute
suspension of ellipsoidal aggregates as

a0 = �p; a1 =
2�V (�000 � �000 )

3ab4�000�
0

0

; a2 = 0;

a3 =
2�V

ab2

�
�000 + �000
b2�00�

00

0

� 2 (�0 + �0)

�00 (a
2�0 + b2�0)

�
;

a4 = 2�

�
1 +

V

ab4�00

�
; a5 =

4�V

ab2

�
�0

�00B
� 1

2b2�00

�
;

a6 =
4�V

ab2

�
�0

�00 (a
2�0 + b2�0)

� 1

2b2�00

�
;

a7 =
4b2�V

ab2 (a2�0 + b2�0)
; a8 = � 4a2�V

ab2 (a2�0 + b2�0)
: (6)

The use of the results of the Jeffery structural theory
[10] allows us to find the functions �0, �0, �

0

0, �
0

0, �
00

0 ,
and �000 and to get

ab2�0 = 2� 2A; ab2�0 = A; ab4�00 =
2p0 � 3A

4 (p20 � 1)
;

ab4�00 =
3A� 2

p20 � 1
; ab2�000 =

�
4p20 � 1

�
A� 2p20

4 (p20 � 1)
;

ab2�000 =
2p20 �

�
2p20 + 1

�
A

p20 � 1
; (7)

where p0 = a/b and

A =
p20

p20 � 1
�
p0 ln

�
p0 +

p
p20 � 1

�

(p20 � 1)
3/2

for p0 > 1.
Formulas (6) and (7) show that the rheological

constants a1, a3, . . . a8 in Eq. (2) depend only on the
dynamical coefficient of viscosity � of the carrier fluid
of a suspension, volume concentration V of suspended
microaggregates, and the ratio p0 of the axes of the
ellipsoid of revolution simulating the microaggregates
suspended in a suspension.

Within the framework of the structure-
phenomenological method employed in the present
work, the constitutive equation for the internal
microparameters ni and Ni of the structural continuum
simulating a real dilute suspension follows from the
equation of the rotational dynamics of suspended
ellipsoidal microaggregates in gradient flows of the
suspension.

3. A Rheological Equation for the Dilute

Suspensions of non-Brownian Ellipsoidal

Microaggregates of Nanoparticles of the

Dispersed Phase in Magnetic Fluids

The constitutive equation for the internal parameters ni
and Ni of the structural continuum simulating a dilute
suspension of non-Brownian ellipsoidal microaggregates
can be derived upon the vector multiplication of the
equation of rotational motion

dLi

dt
= M

(hf)

i +M
(mf)

i ; (8)

of suspended non-Brownian ellipsoidal microaggregates

in the gradient flows of a suspension in the presence
of an external magnetic field Hi by the vector ni.
In (8), Li is the moment of momentum of suspended
microaggregates, Li = I"ikmnk _nm; I is the inertia
moment of an ellipsoidal microaggregate relative to
the axis passing through the microaggregate center
normally to its symmetry axis, I = (m/5)

�
a2 + b2

�
,

m is the microaggregate mass; "ikm is the Levi-Civita

tensor; M
(hf)

i and M
(mf)

i are the angular moments
of the hydrodynamic forces and forces acting from
the side of the external magnetic field on suspended
microaggregates.

Taking into account that

M
(mf)

i = q"ikmnkHm; (9)
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�
dLi

dt
� ni

�
= I (�ni + _nk _nkni) ; (10)

and, according to [6],

h
M

(hf)

i � ni

i
=W (� (diknk � dkmnknmni)�Ni) ;(11)

we get the required constitutive equation for ni and Ni

as

I (�ni + _nk _nkni) =

=W (� (diknk � dkmnknmni)�Ni) + q (Hi � nkHkni) :

(12)

In (11) and (12), � =
�
p20 � 1

�Æ�
p20 + 1

�
; W is

the coefficient of rotational friction of an ellipsoidal
microaggregate in the Newtonian carrier fluid which is
defined by the relation [11]

W = 4� �
p40 � 1

p20

�
2p2

0
�1

2p0
p

p2
0
�1

ln
p0+

p
p2
0
�1

p0�
p

p2
0
�1

� 1

� ;

if p0 > 1. Here, � is the volume of an ellipsoidal
microaggregate and � = 4� ab2

Æ
3.

Without regard for the inertia moment of suspended
microaggregates, as it usually is in the rheology of
suspensions, the constitutive equation (12) becomes

Ni = � (diknk � dkmnknmni) +
q

W
(Hi � nkHkni) :(13)

The substitution of Ni defined by Eq. (13) in Eq. (2)
allows us to get, in view of (6), the rheological equation
for the dilute suspensions of non-Brownian ellipsoidal
microaggregates of nanoparticles of the dispersed phase
in a magnetic fluid flowing in the presence of a magnetic
field Hi as

Tij = �pÆij + 2�

�
1 +

V

ab4�00

�
dij+

+2�
V

ab2

�
�000

b2�00�
00

0

+
1

b2�00
� 4

�00 (a
2 + b2)

�
�

�dkmhnknmninji+ 2�
V

ab2

�
2

�00 (a
2 + b2)

� 1

b2�00

�
�

� (djkhnknii+ dikhnknji) + V

�

q

p20 + 1
�

� �
Hjhnii � p20Hihnji

�
+
V

�
�qHmhnmninji: (14)

In (14), the averaging is realized with the use of the
distribution function F which is defined, according to
(3) and (13), by the equation

@F

@t
+

@

@ni
(F (!iknk + � (diknk � dkmnknmni)+

+
q

W
(Hi � nkHkni))) = 0: (15)

4. Magnetorheological Behavior of the Dilute

Suspensions of non-Brownian Ellipsoidal

Microaggregates

Consider a simple shear flow

vx = 0; vy = Kx; vz = 0 (K � const) (16)

of a dilute suspension of non-Brownian ellipsoidal
microaggregates of nanoparticles of the dispersed phase
in a magnetic fluid in the presence of an external
magnetic field

Hx = H; Hy = Hz = 0 (H � const) (17)

with the use of the constitutive equations (13) and (14).

The study of the rotational motion of non-Brownian
ellipsoidal microaggregates in the simple shear flow (16)
of a suspension in the presence of the external magnetic
field (17) with the use of Eq. (13) shows that such
microaggregates are rotating under the action of the
hydrodynamic forces and forces acting from the side of
the magnetic field with the angular velocity !i = f _'; _�g
so that

_' =
K

2
(1 + � cos 2')� qH

W

sin'

sin �
; (18)

_� =
K

4
� sin 2' sin 2� +

qW

H
cos' cos �; (19)

where ' and � are angles of the spherical coordinate
system, in which

nx = cos' sin �; ny = sin' sin �; nz = cos �: (20)

Here, ' is the angle between the xOz plane and the
plane passing through the coordinate axis Oz and the
unit vector ni; � is the angle between the Oz axis and
the unit vector ni.

Solving Eqs. (18), (19) and analyzing their
solutions show that suspended non-Brownian ellipsoidal
microaggregates can stationarily hover under the action
of the hydrodynamic forces and forces acting from the
side of the external magnetic field in the shear plane Oxy
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Dependences of �, f1, and f2 on ' in the case where non-Brownian

ellipsoidal aggregates hover; p0=10; curves 1, 2, 3 correspond to

�, f1, and f2

at an angle ' with respect to the Ox axis which is defined
by the equation

� (� cos 2'+ 1)� 2 sin' = 0; (21)

where

� =
KW

qH
: (22)

The calculation of the elements Txy, Tyx, Txx, Tyy,
and Tzz of the tensor Tij with the use of (14) and (20)
leads to the following formulas for the characteristic
viscosity of the suspension,

� � �a � �

�V
=

1

ab2
1

�00(a
2 + b2)

+

+
2

ab2

�
�000

b2�00�
00

0

+
1

b2�00
� 4

�00 (a
2 + b2)

�
�

� sin2 ' cos2 '+
2

�

a2 � b2

ab2 (a2�0 + b2�0)
cos 2' sin' (23)

and for the differences of normal stresses �1 and �2,

�1 � Tyy � Tzz = K�V f1; (24)

�2 � Txx � Tzz = K�V f2 (25)

for the dilute suspensions of non-Brownian ellipsoidal
microaggregates which hover under the action of the
hydrodynamic forces in the simple shear flow (16) of a
suspension and forces acting from the side of the external

magnetic field (17) on microaggregates. In (23)�(25),
�a is the effective viscosity of the suspension which is
defined as

�a =
Txy + Tyx

2K
;

and f1 and f2 have the form

f1 =
1

ab2

�
�000

b2�00�
00

0

+
1

b2�00
� 4

�00 (a
2 + b2)

�
�

� sin 2' sin2 '+
1

ab2

�
2

�00 (a
2 + b2)

� 1

b2�00

�
�

� sin 2' +
2

�

a2 � b2

ab2 (a2�0 + b2�0)
sin 2' sin': (26)

f2 =
1

ab2

�
�000

b2�00�
00

0

+
1

b2�00
� 4

�00 (a
2 + b2)

�
�

� sin 2' cos2 '+
1

ab2

�
2

�00 (a
2 + b2)

� 1

b2�00

�
�

� sin 2'� 2

�

a2 � b2

ab2 (a2�0 + b2�0)
sin 2' sin': (27)

According to (23), (26), and (27), �, f1, and f2 are
explicit functions of p0, ', and �. It follows from (21),
(23), (26), and (27) that for every value of � defined by
relation (22) corresponds to a certain hovering angle ' of
microaggregates and, as a consequence, to certain values
of the functions �, f1, and f2 depending only on p0. The
dependence of �, f1, and f2 on the hovering angle ' at
p0 = 10 is shown in the figure.

Conclusions

The magnetorheological equation of the dilute
suspensions of non-Brownian ellipsoidal microaggregates
of nanoparticles of the dispersed phase in magnetic fluids
derived with the use of the structure-phenomenological
method [5,6] ensures the possibility to theoretically
study the behavior of such suspensions in arbitrary
gradient flows in the presence of an external magnetic
field.

The explicit dependence of the effective viscosity �a
of these suspensions and the first and second differences
of the normal stresses �1 and �2 in the simple shear
flow (16) in the presence of a transverse magnetic
field (17) on the geometric characteristics of suspended
non-Brownian ellipsoidal microaggregates and their
magnetic moment allows us to consider the derived
results as a theoretical model for the magnetorheological
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experimental method of determination of the indicated
parameters of suspended non-Brownian microaggregates
upon the comparison of the calculated and experimental
values of the magnetorheological characteristics of
suspensions.
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ÌÀÃÍIÒÎÐÅÎËÎÃIß ÀÍIÇÎÒÐÎÏÍÈÕ ÑÓÑÏÅÍÇIÉ

ÍÅÁÐÎÓÍIÂÑÜÊÈÕ ÀÃÐÅÃÀÒIÂ ÍÀÍÎÄÈÑÏÅÐÑÍÈÕ

×ÀÑÒÈÍÎÊ ÌÀÃÍIÒÍÈÕ ÐIÄÈÍ

�.Þ. Òàðàí, Þ.Â. Ïðèäàò÷åíêî, Î.Î. Ìåëüíèê

Ð å ç þ ì å

Îäåðæàíî ñòðóêòóðíî-ôåíîìåíîëîãi÷íå ìàãíiòîðåîëîãi÷íå ðiâ-

íÿííÿ ðîçâåäåíèõ ñóñïåíçié íåáðîóíiâñüêèõ åëiïñî¨äàëüíèõ ìi-

êðîàãðåãàòiâ íàíî÷àñòèíîê äèñïåðñíî¨ ôàçè ìàãíiòíèõ ðiäèí.

Äîñëiäæóþòüñÿ ìàãíiòîðåîëîãi÷íi õàðàêòåðèñòèêè òàêèõ ñóñ-

ïåíçié ó ïðîñòié çñóâíié òå÷i¨ çà íàÿâíîñòi ïîïåðå÷íîãî ìàã-

íiòíîãî ïîëÿ ó âèïàäêó ôîðìóâàííÿ ó ñóñïåíçiÿõ ñòðóêòóðíî¨

àíiçîòðîïi¨, ùî âèíèêà¹ çàâäÿêè ñòàöiîíàðíié îði¹íòàöi¨ çâà-

æåíèõ ìiêðîàãðåãàòiâ ïiä äi¹þ ãiäðîäèíàìi÷íèõ ñèë i ñèë, ÿêi

äiþòü ç áîêó çîâíiøíüîãî ìàãíiòíîãî ïîëÿ.
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