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A structure-phenomenological magnetorheological equation for the
dilute suspensions of non-Brownian ellipsoidal microaggregates of
nanoparticles of the dispersed phase of magnetic fluids is obtained.
The magnetorheological characteristics of such suspensions in a
simple shear flow in the presence of a transverse magnetic field
are studied in the case of the formation of a structural anisotropy
in suspensions that appears due to the stationary orientation of
suspended microaggregates under the action of hydrodynamic
forces and forces that act from the side of an external magnetic
field.

Introduction

The aggregation of nanoparticles of the dispersed
phase in magnetic fluids [1, 2] change their physical
and rheological properties. The ability of anisometric
microaggregates formed in this case to orient in
an external magnetic field [3] was used in [4]
for the development of the magnetooptical method
of determination of their geometric and physical
parameters. This method allows one to study only
comparatively small Brownian microaggregates which
loss the acquired orientation due to the action of the
rotational Brownian motion after the termination of the
orienting action of the external magnetic field.

For the study of non-Brownian microaggregates
of nanoparticles of the dispersed phase in magnetic
fluids insensitive to the disorienting action of the
Brownian motion, when the magnetooptical method
becomes useless, we propose the other method, the
magnetorheological one, for the determination of the
parameters of aggregates. As the theoretical basis of this
new method, we take the structure-phenomenological
theory of a stressed state constructed in this work.
Such a theory describes arbitrary gradient flows of
the dilute suspensions of non-Brownian anisometric
microaggregates of nanoparticles of the dispersed phase
in magnetic fluids with regard for the possible influence
of an external magnetic field on their dynamics.
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The deduced -constitutive equation for stresses in
such suspensions is used to study the influence of a
transverse magnetic field on the rheological behavior of
suspensions in a simple shear flow in the case of the
formation of a structural anisotropy in suspensions upon
the stationary orientation of suspended anisometric
non-Brownian microaggregates under the action of
hydrodynamic forces and forces acting from the side of
an external magnetic field. The use of the structure-
phenomenological method [5, 6] upon the development of
the theory of a stressed state in the dilute suspensions of
non-Brownian aggregates allows us to get the explicit
analytic dependence of the effictive shear viscosity
of suspensions and the first and second differences
of normal stresses on the physical and geometric
parameters of suspended aggregates. This allows us
to propose that the parameters of the non-Brownian
microaggregates of nanoparticles of the dispersed phase
in magnetic fluids can be found upon the comparison of
theoretical and experimental values of the corresponding
magnetorheological characteristics of suspensions.

1. The Structure-Continual Model of the
Dilute Suspensions of non-Brownian
Microaggregates of Nanoparticles of the
Dispersed Phase in Magnetic Fluids

We assume that the suspensions of microaggregates
formed in magnetic fluids have the following properties:
1) suspended microaggregates are nondeformable
particles with the same form and sizes; 2) characteristic
size d of suspended microaggregates is much less than
the characteristic size [ of the suspension macroflow
region, but is much more than the characteristic size [ of
molecules of the Newtonian carrier fluid of a suspension:

l<<d<<lI; (1)

3) on the surface of suspended microaggregates, the
no-slip condition is satisfied; 4) motion of the carrier
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fluid relative to suspended aggregates is slow; 5) volume
concentration of suspended microaggregates is small,
the suspension is assumed to be diluted; 6) suspended
microaggregates have zero buoyancy.

The left part, | << d, of the double inequality (1) and
property 3) allow us to consider the interaction of the
Newtonian carrier fluid of a suspension with suspended
microaggregates as the hydrodynamic interaction. As
a hydrodynamic model of nondeformable suspended
microaggregates, we take an ellipsoid of revolution with
the major axis 2a and the equatorial diameter 2b (a > b).

We assume that suspended microaggregates are
insensitive to the influence of the Brownian motion
on their rotational dynamics in the gradient flows
of suspensions. For convenience, we will name such
microaggregates as non-Brownian, in brief. According
to [7], the effective radius r = Vab? of ellipsoidal
non-Brownian microaggregates (particles) satisfies the
condition 7 > 107% m and the condition r << [
according to (1). The cited data [7] on the size of
suspended ellipsoidal particles concern the suspensions,
for which a carrier fluid is water.

We also assume that the suspended non-Brownian
microaggregates of magnetic nanoparticles and their
hydrodynamic model have constant magnetic moment
p; = qn;, where ¢ is the constant magnetic moment
of microaggregates; n; is the unit vector directed along
the axis 2a of the ellipsoidal model of microaggregates
characterizing their orientation. We suppose that
the suspension of microaggregates is dilute so that
the interaction of the magnetic fields of suspended
microaggregates and the hydrodynamic interaction
between the latter can be neglected.

It is known that a stressed state in the gradient
flows of the dilute suspensions of axisymmetric particles
depends on the rotational dynamics of suspended
particles and their averaged orientation. According to
the structure-phenomenological theory of a stressed
state in the gradient flows of such suspensions [5,
6], the right part of the double inequality (1) allows
one to simulate a dilute suspension of ellipsoidal non-
Brownian aggregates by the structural continuum with
two internal microparameters, namely the orientation
vector n; of suspended ellipsoidal microaggregates and
the vector N; = n; — wixng, which characterizes their
angular velocity relative to the carrier fluid of the
suspension. Here, the dot over n; means the local
differentiation with respect to time ¢, w; is the velocity
vortex tensor, and wi; = (1/2)(vix — vg,;), where
v;, is the velocity gradient tensor. Here, we use the
tensorial designations. In particular, a comma in indices
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means the differentiation along the direction of the axis
distinguished by the index after the comma. As usual,
we sum over the identical indices of a term.

2. The General Rheological Equation of
a Dilute Suspension of Ellipsoidal
Microaggregates

Within the framework of the structure-phenomenological
method [5, 6], the rheological equation for stresses T;; in
gradient flows of a dilute suspension, which is modelled
by a structural continuum, is phenomenologically
postulated as the functional dependence of the tensor 7;;
on the deformation rate tensor d;;, di; = (1/2)(vs; +
vj,i), and on the internal microparameters n; and N;
of the structural continuum. By [6], the most general
phenomenological equation for the stress tensor T;; is

T;j = (ao + ardgm (ngnm)) 6ij + az(nin;)+

+a3dkm(nknmnin]~) + a4dij + 4asd;k (nknj>+

+agdjr (nrni) + ar(niN;) + ag(n;N;), (2)
where J;; is the Kronecker delta; a; (i = 0,8) are
phenomenological constants.

The transition from the microcharacteristics

n; and N; for separate suspended particles to
macrocharacteristics of suspensions occurs upon the
execution of the averaging in relation (2) defining the
stress tensor 7;; in the phase space of coordinates
of the orientation vector n; of suspended ellipsoidal
microaggregates. Angular brackets () in (2) mean such
an averaging with the use of the distribution function F'
of angular positions of the vector n; which satisfies the
equation

OF 0
Fn)=0.
8t + 8nl( nl) 0 (3)
Upon the structure-phenomenological study of

the dilute suspensions of ellipsoidal microaggregates,
the phenomenological constants a; (z :m) in the
rheological equation (2) can be theoretically derived, as
in [5], with the use of the energetic method of Einstein
[8]. But the results in [6] show that the application of
the dynamical method of Landau [9] and the results
of the Jeffery structural theory of the viscosity of
the dilute suspensions of ellipsoidal particles [10] gives
the advantages allowing the theoretical calculation
of the phenomenological constants a; (i =0,8) in
the rheological equation (2) for stresses in a dilute
suspension of ellipsoidal microaggregates prior to the
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study of their dynamics. The last varies depending
on the size of microaggregates, i.e. on the type of
aggregates which can be Brownian or non-Brownian, and
on the system of forces defining the dynamics of such
microaggregates in the carrier fluid of a suspension.

In order to determine the phenomenological
constants a; (z :m) in Eq. (2), we use the own
results following from the structural part of the proposed
structure-phenomenological theory. According to [6],
we find firstly the stress tensor o;; in the carrier
fluid of a suspension on the surface of a sphere S,
whose center coincides with the center of an ellipsoidal
microaggregate, and the radius R is much more than its
size. In [10], Jeffery found the perturbation introduced
in the flow of a Newtonian fluid by a nondeformable
ellipsoid suspended in it. By using this result, we
calculate the stress o;; on the surface of a sphere
S in the moving coordinate system Oz; with the
axes i, T2,T3, coinciding with the major axes of the
ellipsoidal microaggregate, as

oij = —ptsij +2u dij + 10px

¢ = Akmxkxma

Ay — diy _ aopdiz + b2 By (wi2 + ws)
11_656" 12 = 26,8 )
Ao — aodis + 0?Bf (wis — w»)
13 26,8 ,
Ao = Bodar + a® B (w21 — ws)
21 26,8 ,
Aoy — dao diy (By — ag) Aoe — da3
2T ap2al 1202800, 0 T 4b2al’
Ay = Bods1 + a® By (w31 + w2)
o 26, B ’
Agy = ds2 43 = ds3 diy ( 6’ - 046')

C4b2al’ ~4b2al 12028 oy’

B = a’ag + b*po,

where p is the pressure; p is the dynamical coefficient
of viscosity of the carrier fluid; ag, Bo, g, By, ),
and B{ are functions defined in [10]; w2 and ws are
the components of the angular velocity of ellipsoidal
microaggregates.
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By the Landau structural theory [9] of the dilute
suspensions of nondeformable particles, the stress
tensor of a suspension of ellipsoidal microaggregates
is the tensor o;; averaged over the volume of the
above-mentioned sphere S surrounding a suspended
microaggregate. By passing from the integration over
the sphere volume to that over its surface, we found the
components of the stress tensor in a dilute suspension of
ellipsoidal microaggregates as

4uV
(O11)yoy = —P+ <2H + W) di1,

2uV
(022)yo1 = —P + <2u + a”—

21V (By — ag)
+ 4200 1 11,
3ab* B oy

2uV
(033)yq1 = —P+ <2N + M) d3z+
2uV (By — ap)

_+_
3ab*Blal

4V 4puVb? (wis + w3)
=12 d
(012)101 < e abQB(’)B> 12 a’B
4pboV 4pVa? (way — ws)
=12 d
(021 )01 < M+ abQB(’)B> 21 ab2B )
dpagV 4pVbh? (wiz — wo)
=12 d
(013)v01 ( e ab2ﬂ(’)B> 13 a?B
4ppoV 4uVa? (w31 + wa)
=12 d
(031) 01 < bt ab266B> 3 ab®>B ’
2uV
(023)vo1 = <2N + ab4a6> 23,
2uV
(032) o1 = <2N + M) d3a, (4)

where V is the volume concentration of suspended
microaggregates; and angular brackets (),,, mean the
above-indicated averaging over the volume of the sphere
S.

The  coefficients  a; (i=0,8) in the
phenomenological rheological equation (2) are
determined wupon the comparison of elements of
the stress tensor 7Tj; in the suspension with the
corresponding elements (o0;;),,, calculated according

voO

to the structural part of the theory. To this end, we
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firstly pass to the moving coordinate system Ox;zsz3,
connected with the suspended ellipsoidal aggregate, in
Eq. (2). For such a tramsition, ny = 1, no =0, ng = 0,
ni1 = 0, ny = w3, ng = —ws. Therefore, the elements of
the stress tensor Tj;, which is defined by relation (2),
take the form

T = aop + ardi1 +as + (az + a4 + a5 + ag) din,
Tys = ag + aydyy + agdzz, T3z = ag + ardiy + agdss,
T2 = (as + ag) di2 + a7 (w3 +wi2),

To1 = (aq + as) do1 + ag (w3 —w21),

T3 = (ag + ag) diz + a7 (—w2 + wi3),

T31 = (aq +as) dz1 + ag (—w2 — wa1),

T3 = asdss. (5)

Th3 = aadss,

The comparison of (4) and (5) allows us to determine
the phenomenological rheological constants a; (i = 0, 8)
in the rheological equation (2) for the stress in a dilute
suspension of ellipsoidal aggregates as

_ 2pV (85 — ap)

W= P W= g o 127 0,
o 2uV [ag + 87 2 (ag + Bo)
T b | 02l By B (a%ao + b2Bo) |

- % 4wV (B 1
a4 = 20 <1 * ab4a6> BT <B(’)B 2b2a6> ’

4V
9% = 2

ap 1
B (a2ap + b26o) 202y )’

4b* vV
ab? (a2ag + b25y)’

da®uV
ab? (a?ap + b%Bo)

a7 = ag = - (6)
The use of the results of the Jeffery structural theory
[10] allows us to find the functions ag, 8o, af, Bf, g,

and B{ and to get

2p0 —34
VPag=2-24, ab’By=A, abla)="""""
adv” oy ) a BO 9 a aO 4(p(2)_1)7
3A—2 (4p3 — 1) A—2p}
abpl = =—=, ab’all = ,
| 0 4 (p3—1)
203 — (2p3+1) A
b2 "o _ 0 0
a /BO p% -1 ) (7)
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where pp = a/b and

p:  boln (Po +V/ps — 1)

P —1 (v~ 1)*?

A=

for pg > 1.

Formulas (6) and (7) show that the rheological
constants aj, as, ...as in Eq. (2) depend only on the
dynamical coefficient of viscosity u of the carrier fluid
of a suspension, volume concentration V' of suspended
microaggregates, and the ratio pg of the axes of the
ellipsoid of revolution simulating the microaggregates
suspended in a suspension.

Within  the framework of the structure-
phenomenological method employed in the present
work, the constitutive equation for the internal
microparameters n; and N; of the structural continuum
simulating a real dilute suspension follows from the
equation of the rotational dynamics of suspended
ellipsoidal microaggregates in gradient flows of the
suspension.

3. A Rheological Equation for the Dilute
Suspensions of non-Brownian Ellipsoidal
Microaggregates of Nanoparticles of the
Dispersed Phase in Magnetic Fluids

The constitutive equation for the internal parameters n;
and N; of the structural continuum simulating a dilute
suspension of non-Brownian ellipsoidal microaggregates
can be derived upon the vector multiplication of the
equation of rotational motion
dL;
d_tl — Mi(hf) + Mi(mf), (8)
of suspended non-Brownian ellipsoidal microaggregates
in the gradient flows of a suspension in the presence
of an external magnetic field H; by the vector n;.
In (8), L; is the moment of momentum of suspended
microaggregates, L; = Iejpmning,; I is the inertia
moment of an ellipsoidal microaggregate relative to
the axis passing through the microaggregate center
normally to its symmetry axis, I = (m/5) (a® + b?),
m is the microaggregate mass; €;ry, is the Levi-Civita
tensor; Mi(hf) and Mi(mf) are the angular moments
of the hydrodynamic forces and forces acting from
the side of the external magnetic field on suspended
microaggregates.

Taking into account that

Mi(mf) = q€ikmNiHp, 9)
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(10)

dL;
dt

X nl:| =1 (nz + nknknl) ,

and, according to [6],
[Mi(hf) X "z} =W (A (dikng — dgmngnmng) — N;) ,(11)

we get the required constitutive equation for n; and N;
as

I (nl + hkhkni) =
=W (A (dlknk - dkmnknmni) -
(12)

In (11) and (12), A = (p—-1)/(pg+1); W is
the coefficient of rotational friction of an ellipsoidal
microaggregate in the Newtonian carrier fluid which is
defined by the relation [11]

4
1
W =4up Po
2p2—1

S po+4/p3—1 ’
Po (2100\/103—1 In po—y/pP3—1 1)
if pp > 1. Here, v is the volume of an ellipsoidal
microaggregate and v = 47 ab® /3.
Without regard for the inertia moment of suspended
microaggregates, as it usually is in the rheology of
suspensions, the constitutive equation (12) becomes

N; = X (digng, — dgmngnmng) + % (H; — npHyn;) .(13)

The substitution of N; defined by Eq. (13) in Eq. (2)
allows us to get, in view of (6), the rheological equation
for the dilute suspensions of non-Brownian ellipsoidal
microaggregates of nanoparticles of the dispersed phase

in a magnetic fluid flowing in the presence of a magnetic
field H; as

v
T;; = —p6i]- +2u (1 + M) di;+

" 1 4
+2ul< Yo 4 >><

ab®> \ B2l By ' b2al, Bl (e +b2)
V 2 1
xdkm(nknmnmj> + 2#@ <B(') ((7,2 n b2) — b2a6> X
V_4
X (djk(nkni> + dik(nknj)) + Zp% 1 X

x (Hj(n;) — pyHi(n;)) + %Aqu("mnmﬁ- (14)
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Ni)+ q(H; —npHyng) .

In (14), the averaging is realized with the use of the
distribution function F which is defined, according to
(3) and (13), by the equation

OF 0
E + a—ni(F(wiknk + A (diknk — dkmnknmni) +

4. Magnetorheological Behavior of the Dilute
Suspensions of non-Brownian Ellipsoidal
Microaggregates

Consider a simple shear flow

v =0, vy,=Kz, v,=0 (K — const) (16)

of a dilute suspension of non-Brownian ellipsoidal
microaggregates of nanoparticles of the dispersed phase
in a magnetic fluid in the presence of an external
magnetic field

H,=H, H,=H,=0 (H — const) (17)

with the use of the constitutive equations (13) and (14).

The study of the rotational motion of non-Brownian
ellipsoidal microaggregates in the simple shear flow (16)
of a suspension in the presence of the external magnetic
field (17) with the use of Eq. (13) shows that such
microaggregates are rotating under the action of the
hydrodynamic forces and forces acting from the side of
the magnetic field with the angular velocity w; = {¢, 6}
so that

., K qH sin ¢

-2 20) — L 1
p= - (1+Xcos 2¢0) — 7 — 7, (18)
. K w
0= ZA sin 2y sin 26 + % cos p cos b, (19)

where ¢ and 6 are angles of the spherical coordinate
system, in which

ng =cospsinf, ny, =singsing, n.=cosb. (20)
Here, ¢ is the angle between the zOz plane and the
plane passing through the coordinate axis Oz and the
unit vector n;; @ is the angle between the Oz axis and
the unit vector n;.

Solving Egs. (18), (19) and analyzing their
solutions show that suspended non-Brownian ellipsoidal
microaggregates can stationarily hover under the action
of the hydrodynamic forces and forces acting from the

side of the external magnetic field in the shear plane Ozy
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Dependences of v, f1, and f2 on ¢ in the case where non-Brownian
ellipsoidal aggregates hover; po=10; curves 1, 2, 3 correspond to
v, fl; and f2

at an angle ¢ with respect to the Oz axis which is defined
by the equation

a (Acos 2¢p + 1) — 2sinp =0, (21)
where
KW
=, 22
o=y (22)
The calculation of the elements Tyy, Tya, Tow, Tyy,

and T of the tensor T;; with the use of (14) and (20)
leads to the following formulas for the characteristic
viscosity of the suspension,

R S
VETWV T arm@in)

+l o + L _ 4 X
ab?> \ Doy b2af B (a® + b?)

. ) 2 a’? —bv?
X sin” ¢ cos” ¢ + —

90si
a ab? (a®ag + b?fo) oSS sity

(23)

and for the differences of normal stresses o1 and o,

g1 ETyy—Tzz :K/J,Vfl, (24)

09 =Tpe — T, = KuV fo (25)
for the dilute suspensions of non-Brownian ellipsoidal
microaggregates which hover under the action of the
hydrodynamic forces in the simple shear flow (16) of a

suspension and forces acting from the side of the external
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magnetic field (17) on microaggregates. In (23)—(25),
la is the effective viscosity of the suspension which is
defined as

Ha = oK )

and f; and f> have the form

P af 1 4 y
T oab? \ B2l By T b2l Bl (a? + b?)

2 1 y
By (@ +1%)  BPaj

a? — b?

1
x sin 2¢ sin? —
1n 2 sin go—l—abZ(

2
xsin2¢ 4+ —

in 2¢ sin . 26
a ab? (a®ag + b%Bo) Sincpsing (26)
1 af 1 4
= — - x
2= (angﬁ(’)’ T ey B (@ +b2)>
X sin 2¢ cos® —+—L 2 _ 1 X
PSP 2 \ Bl (@ +02) b2l
2 2 _ 12
X sin 2¢p — — @ -0 sin 2 sin . (27)

a ab? (a®ag + b%6o)

According to (23), (26), and (27), v, fi, and fo are
explicit functions of pg, ¢, and a. It follows from (21),
(23), (26), and (27) that for every value of a defined by
relation (22) corresponds to a certain hovering angle ¢ of
microaggregates and, as a consequence, to certain values
of the functions v, fi, and f» depending only on py. The
dependence of v, fi, and f> on the hovering angle ¢ at
po = 10 is shown in the figure.

Conclusions

The magnetorheological equation of the dilute
suspensions of non-Brownian ellipsoidal microaggregates
of nanoparticles of the dispersed phase in magnetic fluids
derived with the use of the structure-phenomenological
method [5,6] ensures the possibility to theoretically
study the behavior of such suspensions in arbitrary
gradient flows in the presence of an external magnetic
field.

The explicit dependence of the effective viscosity p,
of these suspensions and the first and second differences
of the normal stresses o; and o in the simple shear
flow (16) in the presence of a transverse magnetic
field (17) on the geometric characteristics of suspended
non-Brownian ellipsoidal microaggregates and their
magnetic moment allows us to consider the derived
results as a theoretical model for the magnetorheological
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experimental method of determination of the indicated
parameters of suspended non-Brownian microaggregates
upon the comparison of the calculated and experimental
values of the magnetorheological characteristics of
suspensions.
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MATHITOPEOJIOTI'TA AHI3OTPOITHINX CYCHEH3IN
HEBPOVYHIBCBKUX AT'PETATIB HAHOJUCIIEPCHUX
YACTUHOK MATHITHUX PIJITUH

€.10. Tapan, FO.B. IIpudamuenko, O.0. Meavhuk
Peszmowme

OnepKaHO CTPYKTYPHO-(DEHOMEHOJIOriYHEe MarHiTOpeosoriaae piB-
HSHHS PO3BEJIEHUX CyCIHeH3iil HeOpOyHIBCHKHUX €JNCOITaTbHUX Mi-
KpoarperaTtiB HAHOYACTHHOK JUCHepcHOT (a3u MarHiTHUX piauH.
JIoCmimKYIOThCS MAarHITOPEOJIOTiYHI XapaKTepUCTHKH TaKHUX CYC-
men3iit y mpocriit 3cyBHI# Tedwil 3a HAsSBHOCTI MOIEPEYHOrO Mar-
HITHOTO NOJ y BUMAJKY (DOPMYBAHHS Y CYCHEH3isIX CTPYKTYpPHOT
aHI30TPOIIT, 0 BUHUKAE 3aBAAKHM CTAI[iOHAPHIAl opieHTaIil 3Ba-
JKEHUX MIKpOarperarTiB mij Ji€r0 TigpogwHaMivHUX CHJI i CHJI, SIKi
HIOTH 3 60KY 30BHIIIHBOTO MATHITHOTO IOJIA.
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