
Ì.YE. KORNIENKO, Ò.S. SIDENKO

NONLINEAR PHASE QUASI-MATCHING

AT THE THIRD HARMONIC GENERATION

UNDER THE TWO-PHOTON RESONANCE

Ì.YE. KORNIENKO, Ò.S. SIDENKO

UDC 621.373+535.375

c
2004

Taras Shevchenko Kyiv National University

(6, Academician Glushkov Ave., Kyiv 03127, Ukraine)

The third harmonic generation (ÒHG) under the conditions of

a two-photon resonance is investigated for various nonlinear
polarizabilities as a function of wave �k and frequency �!

mismatches from the resonance when taking into account the

change of populations of resonant states. It is shown that, at

a nonlinear phase quasi-matching (NPM), when the nonlinear

wave mismatch at �! 6= 0 is compensated by a linear one �k,

the efficiency of ÒHG can increase approximately by 2 times in

comparison with the case of �k = �! = 0 and reaches 60%. It
is found that the fixed pump field approximation does not allow
one to describe the NPM phenomenon, and it is necessary to use

the fixed intensity approximation. It is shown analytically and

numerically that, in the case of NPM, the wave and frequency

mismatches can have both identical and different signs. In

a spectrum of harmonics, a gap caused by backward Raman

scattering can appear, which is getting deeper at large pump

intensities due to the saturation of the populations of resonant

states.

Introduction

The nonlinear mixing of frequencies is known to be
one of the mostly developed methods for deriving the
coherent radiation in a wide spectrum range [1�10].
Its effectiveness depends on the properties of nonlinear
media and the intensities and divergence of the exciting
beam. The use of the phase matching (PM) conditions
[1, 2, 11] allows one to accumulate nonlinear effects with
respect to the spatial coordinates during the propagation
of waves and to significantly rise the effectiveness of
the frequency transformation processes. Under non-
resonance conditions, an effective transformation of a
frequency requires the sufficiently high intensities of
the exciting radiation. For this purpose, a high-level
focusing of pumping radiation is used. At the sufficiently
high intensities of the exciting radiation, an increase of
the frequency transformation effectiveness is achieved
by using the nonlinear parametric interaction of waves
under the condition of the resonance between the
frequencies of interacting waves and the energy states
of the medium. In this case, the value of nonlinear
susceptibility significantly increases. The resonance

conditions can be also realized in crystalline media, but a
resonance-induced increase of polarizabilities is inversely
proportional to the energy width of the resonance states.
That is why nonlinear resonance processes are more
often dealt with in gas-like media (metal vapors, inert
gases, etc.) having narrow energy levels [4�10, 12�
16] and cryogenic liquids [3]. One can also employ the
narrow energy levels of some rare-earth ions that are
incorporated in crystals. In this case, the nonlinear
susceptibilities increase by factor of 103 � 105. One can
use one-photon and two-photon resonances, as well as
those of higher orders. In the resonance nonlinear optics,
the most frequently are used two-photon resonances in
the absence of the strong one-photon absorption at the
frequencies of interacting waves [17, 18]. To create the
sources of coherent radiation in the ultraviolet spectrum
range, including vacuum ultraviolet and soft X-radiation
range, the tripling of a laser radiation frequency is used,
including the excimer lasers or tunable dye lasers, their
harmonics, and sum frequencies [14�16, 19].

Here, we theoretically analyze the conditions for
effective third harmonic generation in nonlinear media
under the two-photon absorption resonance and the
exciting laser radiation. Special attention is paid to
a change of the PM conditions that arises due to
significant variations of the dispersion of the medium
in the resonance region induced by a high-intensity laser
field.

From the physical point of view, resonance nonlinear
optical processes are much more diversified than non-
resonance ones [4�10]. In particular, this can be seen
from the fact that, for the processes of parametric
frequency transformation under resonance and quasi-
resonance conditions, the relationship between the
phases of interacting waves changes not only through
their nonlinear interaction but also due to the resonance
self-action accompanying the nonlinear processes [two-
photon absorption (TPA) of pumping, backward Raman
scattering (BRS), and generated radiation of the third
harmonic] as well as a change of the populations of
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resonance states, multiphoton ionization, etc. These
processes predetermine the conditions for a change of
the refractive indices of the medium and the mismatch
of wave vectors �k, which is essential for the dynamics
of nonlinear optical interaction [20,21]. Under these
conditions, in addition to the linear wave mismatch
due to the dispersion of the equilibrium medium, it
is necessary to allow for the nonlinear wave mismatch
�kNL depending on the changed dispersion, that is, on
the intensities of interacting waves.

In order to describe the nonlinear optical processes
under such conditions, we have introduced a concept
of the NPM that assumes the compensation of a
nonlinear wave mismatch with the linear one. The
effectiveness of such a conception was demonstrated
by the example of the generation a sum frequency
under the TPA conditions [20,21]. The importance of
analyzing the quasi-matching conditions is explained by
the fact that the change of wave phases determines
the energy exchange rate between interactive waves.
In this case, the generalized phase characterizing the
parametric interaction in the restricted spatial region
of a nonlinear medium varies near some value which is
optimal for the harmonic generation (a quasi-matching
interaction). This allows one to improve the effectiveness
of the transformation as against the case of linear
quasi-matching without taking into account the induced
dispersion of the medium.

In addition to the quasi-matching conditions in
spatially homogeneous media, we also consider the phase
matching of waves in specially fabricated heterogeneous
solid-state lattice structures, where the phase frequently
varies near the magnitude required for the phase
transformation [1, 22]. Such a phase matching in the
lattice structures is most often realized for nonresonance
three-wave processes. A change of the NPM conditions
under intensive pumping can be induced by a heat
release. In particular, the generation of the second
harmonic in crystal ZnCs2P2 can be accompanied by a
change of the angles of matching by 5� 25Æ [23].

It is important that, in the case of resonance
interactions of waves, the NPM under a slight deviation
from a resonance can provide a significant increase of
the effectiveness of the frequency transformation, which
is impossible for nonresonance processes. It is explained
by the fact that the effectiveness of resonance processes
is essentially restricted by accompanying nonresonance
processes, for example TAP, and the mismatch from
the exact resonance decreases this negative influence.
That's why the consideration of quasi-matching is
closely connected to the problem of the greatest possible

efficiency of the transformation. The specific feature of
the GTH under the TPA conditions is the absence of
a weak wave (like the case where the sum frequency
is generated with the help of laser pumping) and the
signal radiation, which requires a detailed theoretical
analysis. In this case, it is important to allow for the
essential role of the BRS of the generated radiation
with amplification of the exciting radiation. It is worth
mentioning that backward parametric processes under
nonresonance interactions depend on phase conditions,
while a part of backward processes (the incoherent ones)
under resonance conditions does not depend on the
generalized phase.

1. Problem Statement and Original Equations

In the present work, we investigate the NPM in case
where the third harmonic !3 = 3!1 is generated under
conditions of the TPR 2!1 = !21+�!. Here, !1 denotes
the pump frequency, !21 is the equivalent frequency
of the dipole-forbidden transition between states 1 and
2 allowing a two-photon transition, and �! is the
frequency mismatch from TPR. Let us consider the
interaction of plane monochromatic waves propagating
along the z axis and characterized with fixed linear
polarizations: E1;3 = e1;3A1;3 exp[i(!1;3t � k1;3z)] + ñ.ñ.
specified by the orts of polarization e1;3.

The electromagnetic fields of the interacting waves
!1;3 are described by the system of Maxwell's equations
interconnected through the nonlinear polarizations. The
resonance nonlinear polarizations and the populations of
resonance states 1; 2 as well as the interaction of waves
in the medium are considered in the course of time
intervals much greater than the time of relaxation of
the excited state population T1, the time of polarization
T2, and that of transmission of radiation through the
nonlinear medium. While dealing with the equations for
the statistical matrix, we use the method of averaging
over fast motions [4], while, in the wave equations due
to small variations of the wave amplitudes at a distance
in the order of a wavelength, we use the contraction
procedure and retain only first-order derivatives with
respect to the coordinate z, along which the propagation
of waves and the accumulation of nonlinear interaction
take place [1]. In this case, even with nonlinearities being
respectively weak, the amplitude of the generated wave
attains the values comparable to the amplitude of the
exciting radiation.

In the considered quasistationary case, the solution
of the problem is simplified significantly as it is easy
to find analytic solutions for elements of the statistical
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matrix. Nonlinear processes under study are allowed
for in the explicit form of the matrix element for the
interaction of the fields with a generalized two-level
system [4]. Moreover, the dynamics of resonance states
is considered completely, while the whole set of other
levels is allowed for the coefficients of the nonlinear
polarizations describing the TPA of pumping !1 and
stimulated Raman scattering !3 ! !1 + !21 + �!.
The solutions obtained for the statistical matrix allow
one to find explicitly the nonlinear polarizations [4�
10] contained in the coupled Maxwell's equations for
interacting waves.

The system of truncated equations for the complex
amplitudes A1;3 for the process of third harmonic
generation under the conditions of TPA with regard for
the wave �k = k3 � 3k1 and frequency �! = 2!1 � !21
mismatchings looks as

dA1

dz
= �g1n[2(a� ib){2

1
A1jA1j2 � (a+ ib){2

2
�

�A1jA3j2 + (a� 3ib){1{2A3A
�2

1
exp(�i�kz)];

dA3

dz
= �g3n(a� ib)({1{2A

3

1
exp(i�kz) + {

2

2
A3jA1j2);

(1)

where we have introduced the notations

�N = N1 �N2; n =
�N

j�N0j
= sign(�N0)�

�

(
1 +

4aT1T2
~2

�
{
2

1
jA1j4 + {

2

2
jA1A3j2+

+{1{2
�
A3

1
A�

3
exp(i�kz) + h.ñ.

��)�1

;

and

gi =
2�!2

jT2j�N0j
c2~kj

; a = 1=(1 + �2);

b = a�; � = �!T2;

{1 =
2

~

X
k

(d1ke1)(dk2e1)

!k1 � !1
;

{2 =
1

~

X
k

(d1ke3)(dk2e1)

!k1 � !3
+

(d1ke1)(dk2e3)

!k1 + !1
:

Here, N1;2 are the populations of levels 1, 2; �N �
the absolute and n � the relative differences of the

populations of the states, (�N0 denotes the value of
�N at A1;3 = 0); {1;2 � the second-order polarizations
describing the TAP at �N0 > 0 and the Stokes Raman
scattering of the harmonic !3 ! !1 + !21; dik are the
matrix elements of the dipole moment of the transition
between states i and k. In the expressions for the
polarizations {1;2, the summation is carried out over all
levels k having the parity of the wave functions opposite
to that of states 1, 2.

The first term of the right-hand term of Eq. (1)
for the pump amplitude A1 describes the two-photon
absorption, while the second term in the both equations
indicates the stimulated Raman scattering of a wave of
the harmonic !3 resulting in the formation of the Stokes
wave !1 with the participation of resonance states 1 and
2. The terms of Eq. (1) containing the phase multipliers
exp(�kr) describe the investigated process of GTH. The
system of equations (1) allows for the complex character
and the dispersion of nonlinear susceptibilities �R close
to the resonance, whose form is taken to be Lorentz
for the sake of simplicity. The dispersion of the real
and imaginary parts of the nonlinear susceptibility is
specified by the multipliers a and b. Thus, in Eq. (1),
we allow for the accompanying two-photon processes as
well as the variation of the populations of resonance
states, which gives us a possibility to consider the
noninverting n > 0(N1 > N2) and inverted n < 0
states of the medium. The process of self-action of
the harmonic proportional to �NRA3 j A3 j2 is not
taken into account in (1) due to the smallness of the
nonresonance component of the nonlinear susceptibility
�NR.

Let us introduce the expansible wave amplitudes,
length and wave mismatch

aj =

r
g1

gj

j Aj j
As

; � =
z

l0
; s = �kl0;

l0 =
�
g1{

2

1
A2

s

�
�1

; As =

s
~

2 j {1 j
p
T1T2

; (2)

whereAs denotes the saturating pump field, in which the
initial difference between the populations of resonance
states changes by a factor of two (�N(z = 0) = �N0=2)
under the condition of the exact TPR (� = 0), and l0 is
the characteristic length of the TPR at A1 = As. In the
case of the TPR between the states 3s and 3d in a Na
vapour at a pressure of 10 Torr (�N0 = 1:17�1017 ñm�3),

As corresponds to the intensity of 1:13 ÌW/ñm2 and
l0 = 3:5 ñm [5].
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Using (2), it is possible to pass from the equations
for the complex amplitudes A1;3 to those for the real
ones jAj j, and the generalized phase � = s� + '3 � 3'1

(here, 'j are the phases of the complex amplitudes Aj

of waves with the frequencies !j : Aj = jAj j exp(�i'j)).
Such a representation appears to be more appropriate in
many cases of a nonlinear interaction of waves, since it
allows one to separate the values changing rapidly and
slowly, decrease the number of variables, and simplify
the derivation of both analytic and numerical solutions.
Allowing for the dependence of the amplitude variation
on a certain linear combination of the phases 'j , it is
possible to pass from four variables in the equations to
three ones.

da1

d�
= �a1

n

{

�
a(2{a2

1
� a2

3
={ + a1a3 cos �)�

�3ba1a3 sin �] ;

da3

d�
= �a2

1

n

{

h
a(

a3

{
+ a1 cos �) + ba1 sin �

i
;

d�

d�
= s+ a1

n

{

�
a

�
3a3 +

a2
1

a3

�
sin �+

+b

�
3

�
2{ a1+

a2
3

{a1

�
�
a1

{
+

�
9a3 �

a2
1

a3

�
cos �

��
;

n =

�
1 + a a2

1

�
a2
1
+

2a1a3
{

cos � +
a2
3

{2

��
�1

;

{ =

r
g1

g3

{1

{2
: (3)

If we use normalization (2), the GTH under the
conditions of the TPR is characterized by the minimal
number of independent dimensionless parameters [5�
10]. In this case, the ratio of the squared amplitudes
is equal to that of the densities of photon fluxes, and the
effectiveness of the process can be characterized by the
quantum conversion coefficient � = a2

3
=a2

10
, where a10

denotes the pump amplitude at � = 0.

2. Analytic Solutions in the Approximation of

a Specified Intensity of Excitation

At the initial stage of GTH, the variation of jA1j at the
expense of the TPA and the generation of a harmonic
can be neglected, but the allowance should be made for a
change of the phase '1(�) due to the nonlinear dispersion
in the quasiresonance region which is described by the

real part of the corresponding cubic susceptibility. In this
case, from the first equation of system (1), we deduce

a1 = a10 exp[i(2b{
2� � '10)]; (4)

where

� =
z

l1
=

n0a
2

10

{2
�;

l1 =
�
g3n0{

2

2
jA10j2

�
�1

; n0 =
�
1 + aa4

10

�
�1

;

'10 = '1(z = 0):

In the approximation of a given intensity of pumping
(4), the second equation of system (1) allows us to find
the expressions for the amplitude of the harmonic and
the quantum conversion coefficient

� =
a2
3

a2
10

= {
2F(�; a; �); (5)

where

F(�; a; �) = a
[1� e�a� ]2 + 4e�a� sin2(��=2)

a2 + �2
;

� = � + �b; � = 6{2 � 1;

� = �kl1 =
{
2s

n0a
2

10

:

It is worth noting that the function F in the
nonresonance case (� � 1; a; b � 1) turns into the
known multiplier of PS F(�; �) = a �2sinc2(��=2), where
sinc(�) � sin �=� describing the known oscillations
of the intensity of a generated radiation under the
variation of the wave deviation �k which appears in the
expression for �. These oscillations are discovered in the
angular dependence of the generated radiation intensity
as Maker strips but they can also manifest themselves
under the variation of a pump wavelength. One of the
resonance interaction differences of a wave from the
nonresonance one lies in the non-zero intensity of the
generated radiation at the minima of oscillations. At the
same time, formula (4) describes the resonance nonlinear
interaction of waves which is characterized by the wave
antireflection of matter [5�10, 17]. In this case of a
nonlinear medium, the fixed interconsistent amplitudes
of all interacting waves, at which the absorption
and the nonlinear interaction of waves disappear, are
established, and a coherent superposition of waves
propagates in the medium without damping.

In expression (5), the phenomenon of NPM is
determined by the quantity �, where the term �

corresponds to a linear wave mismatch, while the term
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�b(�) defines a nonlinear one which depends, in turn, on
the frequency mismatch �.

Taking into account that the pump amplitude A1(z)
at j A3 j�j A1 j decreases mainly due to the TAP, let
us find the domain of applicability of the approximation
of a specified intensity

a�a2
10
=(1 + a4

10
)� 1: (6)

If this criterion is violated, the analytic solution (5)
describes the GTH only qualitatively.

3. The Nature of the Decreasing Effectiveness

of the GTH in the Neighborhood of an

Exact Resonance

Let us consider the quasiresonance GTH in the absence
of a wave mismatch (s = 0; � 6= 0). In this case, the
expansion of the function F(�; a; �) (5) in a series in
terms of the frequency mismatch has a form

F =
�
1� e��

�2 � �2f1(�; �) � �4f2(�; �); (7)

where

f1 = 2
�
� � �2�2=2

�
e�� � 2�e�2� � (1� �2)

�
1� e��

�2
;

f2 = 2
�
�(1� �)e�2� + e��

�
�2�2

�
1 + �2�2=24

�
�

� � (1� �=2)� �2�3=2
�	

+ (1� �2)
h
�2
�
1� e��

�2
+

+2�e��
�
1� �2�=2� e��

��
:

At � � 1 f1;2 = �2 and F = �2(1 � �2 �
�4), the effectiveness of the conversion � reaches a
maximum in the case of the exact resonance (� =
0). The possibility for a minimum of F to appear
at the exact resonance is associated with the change
of a sign of the function f1. In the case of � <

1:19 ({ < 0:6) at � = �1 < 2:4, the function f1(�)
reverses its sign, and, instead of a maximum of F at
� = 0, there appears a minimum. Moreover, in the
dependence �(�) instead of one maximum at � = 0,
there appear two ones at symmetric deviations from the
TPR. The frequency distance between them is equal
to

p
2(� � �1)f 01(�1)=f2(�1) and increases while waves

propagate in the region � > �1. It is worth noting that
a decrease of �({) is accompanied by a decrease of �1
and, in particular, at � = 1 ({ = 1=

p
3) �1 = 1:594 and

f2(�1) = �4
1
(1� �1=2) =12.

With no regard for a variation of the populations
of the resonance levels (n = 1), expressions (5), (7)
still remain valid. That's why the considered decrease

of � in the resonance region (� ' 0) is not necessarily
conditioned by the saturation effects. As follows from
Eq. (1), the minimum in the dependence �(�) appears as
a result of the BRS !3 ! !1+!21 related in the optical
band to the electron states of atoms or molecules.

At a wide-band pumping, different spectral
components of the third harmonic are independent
in the considered approximation and, instead of the
dependence a3(�), it's possible to consider a spectrum of
harmonics while tuning !1. In this case, the considered
�dip� in the spectrum of the third harmonic is similar to
the line of the BRS in the anti-Stokes region with the
participation of vibrational states [24]. The possibility of
observing the BRS line against the generated radiation
is associated with the fact that the effectiveness of
parametric processes is determined by the absolute
value of nonlinear susceptibility j�Rj, while the BRS
is specified by the imaginary part �00R which decreases
more rapidly with increase in �. At { > 0:6 (� > 1:19),
f1(�) does not possess negative values, and the BRS line
is not formed in the spectrum of the harmonic due to
the smallness of the parameter {2 as compared to {1.

The obtained conclusions are also proved by the
results of a numerical solution of the full system of
equations (3). In Fig. 1, the dependences a3(�) and
n(�) at different values of a10 and { are presented.
It is obvious that, for moderate intensities of pumping
a10 = 1, the effects of saturation of the resonance states
do not manifest themselves (n ' 1). Moreover, in the
case of { � 0:58, there appears a maximum in the
resonance region. An increase of the parameter {, i.e.
an increase of the ratio {2={1, is accompanied by the
formation of a minimum in the resonance region, which is
absolutely stipulated by the BRS. It is interesting to note
that, in this case, the difference between the populations
of the resonance states n reaches a slight maximum, and
the appearance of a minimum of a3 in the resonance
region is not associated with the effect of saturation of
the resonance states.

With increasing the pumping intensity (a10 > 1),
the saturation of populations is best observed closely
to the exact resonance (see Fig. 1,b) and makes an
additional contribution to the formation of a �dip� which
(unlike the BRS line) can be observed at arbitrary
values of {. At n � 1, the value of �R abruptly
decreases, which results in a decrease of the effectiveness
of the generation of !3 in a neighborhood of the
resonance. It is worth noting that the minimum in the
generation of the harmonic is characterized by a smaller
spectral width than that in the difference between
the populations n. Thus, a decreasing effectiveness of
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the resonance generation of the third harmonic under
the conditions of the intensive pumping mainly results
from the decreasing nonlinearity of the medium due
to the equalization of the populations of resonance
states [25�27]. The multiphoton ionization that actually
decreases the concentration of the nonlinear medium
also contributes to the deepening of the minimum in
the resonance region [28]. A correct description of its
influence requires the account of a change of the PM
conditions.

4. Analytic and Numerical Investigation of the

Nonlinear Phase Quasi-matching

Let us pass to the consideration of the simultaneous
influence of the wave and frequency deviations on the
GTH. It is easy to show that the system of equations
(3) satisfies the invariance conditions

a1;3(s; �) = a1;3(�s;��); �(s; �) = ��(�s;��); (8)

which we will consider while analyzing the problem and
representing the results.

Under the initial conditions a10 6= 0, a30 ' 0 (aj0 are
the amplitudes of the waves !j at z = 0), the equation
for the generalized phase � of system (3) contains large
terms proportional to a2

1
=a3 which are stipulated by a

change of the phase of the wave !3 under the nonlinear
parametric interaction. Such members are absent in the
amplitude equations. That's why, at the initial stage of
the GTH, it is possible to consider rapid variations of �
and slow variations of the wave amplitudes. It is easy to
demonstrate that rapid variations of the phase � in the
approximation of fixed amplitudes result in � possessing
the stable value:

�0 = �=2[1 + sign(n{)] + arctan �: (9)

The carried out analytic and numerical investigations
demonstrate the stability of the value � = �0 with
respect to small perturbations. Expression (9) can be
treated as the initial condition for slow variations of the
phase � and the wave amplitudes a1;3. One can show
that the value � = �0 is the optimal one for the process
of frequency conversion. In this case, a change of the
phase in accordance to (3) is determined by a linear wave
mismatch sL and a nonlinear one sNL = a1nb[3(2{a1+

Fig. 1. Dependences of the normalized amplitude of the third

harmonic a3(�) (à) and the relative difference of the populations

of the resonance states n(�) (b) for the dimensionless length of a

nonlinear medium � = 0:5; a10 = 1 (solid curves), a10 = 3 (dotted

curves) for different values of the parameter {

+a2
3
=a1{) � a1={]={, which is equal to s0NL =

n0a
2

10
�b={2 in the approximation of a specified intensity,

the condition a3 � a10 being satisfied.
Under the condition � � 1, (5) easily gives F =

a[�2 � a�3 + (7a2 � �2)�4=12], that is the intensity of
the third harmonic reaches a maximum at � = 0, which
corresponds to the compensation of the nonlinear wave
mismatch sNL by the linear one: � = ��b. In this
case, searching for the extremum of the function F(a)
shows that, at � < �0 = 1:256 �opt = �opt = 0
and Fmax = [1 � exp(��)]2. At � > �0, the maximal
effectiveness of the third harmonic is reached at � 6= 0
and

�opt = ��
�

1 + �2
; �opt = �0 (1 + �2): (10)
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Fig. 2. Dependences of the dimensionless pump amplitudes a1, a3

on the normalized wave deviation s = �nl0 in case where � = 1,

a10 = 3, { = 1=
p
3 for different values of the frequency deviation

from the resonance �: 1 � � = 0, 2 � � = 2, 3 � � = 5, 4 �

� = 10, 5 � � = 20, 6 � � = 50

Moreover, the linear wave mismatch (the term � in
�) can be compensated by a nonlinear wave deviation
from the exact TPR. Under the NPM conditions, the
frequency � and wave s deviations for the GTH process
have opposite signs at � > 0 ({ > 1=

p
6) and like

signs at { < 1=
p
6. For � = 0, the NPM is weakly

observed. According to (10), it can be realized only
at j�j � �=2 for two possible frequency deviations

�1;2 = (���
p
�2 � 4�2)=2�. The necessary length of the

nonlinear medium �opt increases in the square law with
rising � due to a decrease of the nonlinear susceptibility
�R accompanying a deviation from the resonance. For a
fixed value of �, it is easy to find j�j =

p
�=�0 � 1 and

�opt = {
2 [1� exp(��0)]2 �=�0 ' 0:407{2�. Thus, under

the NPM condition, � does not reach the saturation (like
in the case where s = � = 0), but increases linearly with
rising � until the used approximation is violated.

It is worth noting the universality of formula (4)
and its applicability to different nonlinear processes
including those of generating the sum and difference
frequencies !4 = !1 � !0

1
� !2 (!1; !

0

1
� pump

frequencies, !2 � the frequency of a signal) under the
TPR conditions !1 � !0

1
= !21 + �!, as well as the

processes of GTH under the conditions of one- (!1 =
!21) and three-photon (3!1 = !21) resonances [21].
In different cases, it is necessary to change only the
expressions for individual quantities, while the general
form of expression (4) remains invariable, which proves
the universality of the NPM phenomenon.

Since the NPM is substantially related to the phases
of interacting waves, it should be considered with regard
for the variation of the phase of a pumping wave, i.e.
the approximation of a specified intensity should be
used. In order to compare, it is worth noting that the
approximation of a specified field corresponds to � = �1,
and the signs of the frequency and wave deviations
always coincide under the condition of compensation.

The numerical solution of the system of equations (3)
with regard for (9) was carried out in a general case of the
arbitrarily varying amplitudes and phases of interacting
waves. The obtained dependences a1;3(s) in the case of
a10 = 3, � = 1 ({ = 1=

p
3) at arbitrary values of the

frequency mismatch � are represented in Fig. 2.

Under the conditions of the exact resonance (� =
0) as in the non-resonance case, the functions a13(s)
are even with respect to the wave mismatch s. When
introducing the frequency mismatch � > 0, the
maximum of the quantity a3 and the minimum of
the quantity a1 shift sideways from the negative wave
deviations s, as it should be according to (10) for � = 1.
In this case, the dependence a3(s) can be sufficiently
asymmetric, and, along with the central maximum,
lateral ones are observed (curve 2). With increasing
a deviation � from the TPR, the maximum of the
amplitude of a generated wave a3 increases, and the
shifting from the conditions of phase matching s = 0
continues. For a fixed length of the nonlinear medium
� = 1, the maximal quantum effectiveness of the GTH
�max = (a3max=a10)

2 = 22% is reached at �opt ' 10
and sopt ' �1:7. For � < 0, according to (8), the
maximum of � would be reached at s > 0. A further
increase of � is accompanied by both a decrease of the
amplitude of the harmonic a3 and a shift of its maximum
in the direction of the PS (curves 5, 6). Thus, the phase
matching represents the boundary case of the NPM.

The pumping intensity decreases due to the GTH
and the TAP, that's why the absolute minimum of a1
is reached at � � 5 < �opt. From Fig. 3,a representing
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the dependence �(s) for different �, it is obvious that,
in the case of NPM, the values of �(�) in the region of
maxima of a3 marked by arrows do not differ essentially
from the optimal values �0(�) indicated at the axis of
ordinates. As a result, the coefficient of power conversion
�0 = 3� under the NPM increases from 28% at s = � = 0
to 66%. In order to compare, it is worth noting that,
in the case of s = � = 0, the maximal conversion
coefficient �0 = 31:6% can be reached asymptotically
with increasing � at { = 0:675. It is limited by
the parametric wave transparency of matter if n =
1 and nonlinear interaction of waves does not occur
due to the establishment of the corresponding coherent
superposition of waves [17]. Thus, under the NPM, the
maximal effectiveness of the GTH per finite length of
the medium can be more than twice greater than the
asymptotic value of the generation efficiency in the case
of the exact resonance.

Previously, the phenomenon of the wave
transparency of matter was considered under the
conditions of the exact resonance [5�10], but it can
also take place in the presence of wave and frequency
deviations. Fig. 3,b shows the dependences n(s) for
different values of �. It is obvious that, in the resonance
case, the wave transparency determined by the
maximum n ' 1 is observed only in the neighborhood
of the PS. The deviation from the resonance � 6= 0 is
accompanied by a shift of the region of the existence
of wave transparency from the PS and, in this case,
the maxima of n and a3 (marked by arrows) don't
coincide. Fig. 3,b demonstrates a smooth passing from
the mode of the wave transparency in the resonance case
s = � = 0 to the non-resonance one where a variation
of populations is inessential. It is worth noting that,
under the NPM, the region of wave deviations s, where
the wave transparency is observed, expands a little and
becomes asymmetric.

Conlusions

The nonlinear quasi-matching is a typical phenomenon
of resonance nonlinear optics, which is observed in
the third harmonic generation under conditions of
the two-photon resonance with respect to pumping
as well as in a number of nonlinear parametric
interactions of waves and the processes of stimulated
scattering (SRS, SBS, etc.). The investigation carried
out has demonstrated that the nonlinear wave mismatch
qualitatively changes the picture of the nonlinear optical
interaction of waves. The maximal efficiency of the
generated radiation is reached under the NPM

Fig. 3. Dependences of the generalized phase �(s) (a) and the

normalized difference of the populations of the resonance states

n (b) on the normalized wave deviation s = �nl0. Conditions and

notations are the same as in Fig. 2. The arrows mark the positions

of maxima of a3 and �0(�)

conditions, where the nonlinear wave deviation is
compensated by the corresponding linear one. The NPM
easily manifests itself in the shifts of the maxima
of generated radiation from the exact resonance and
phase matching. These deviations clearly demonstrate
the variations of the refractive indices induced by
strong fields. The well-known phase matching conditions
represent the limiting case of the NPM and usually take
place in the non-resonance region. The NPM is closely
related to the phenomenon of the wave transparency
of matter in the presence of the wave and frequency
mismatching.

Thus, we have obtained the simple analytic
expressions describing NPM, investigated its basic
features, and demonstrated their universality. The main
rules of the NPM determined analytically are verified
by numerical calculations. It is shown that, with a
deviation from the exact resonance amounting to 5�
10 values of its half-width under the NPM conditions,
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the effectiveness of the generation of the third harmonic
can increase by more than a factor of 2 as compared
to the exact two-photon resonance and can reach 66%.
In two-photon absorption spectroscopy, a shift of the
minimum of the pump radiation sideways from the
resonance at the output of the nonlinear medium does
not necessarily indicate a shift of the resonance levels
but can be conditioned by the simultaneously running
process of the GTH.

The results obtained in the present work can be used
for explaining the experimental rules observed under
resonance parametric interactions and for choosing the
optimal parameters of nonlinear media for the third
harmonic generation.
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ÍÅËIÍIÉÍÈÉ ÊÂÀÇIÑÈÍÕÐÎÍIÇÌ ÏÐÈ ÃÅÍÅÐÀÖI�
ÒÐÅÒÜÎ� ÃÀÐÌÎÍIÊÈ Â ÓÌÎÂÀÕ ÄÂÎÔÎÒÎÍÍÎÃÎ

ÐÅÇÎÍÀÍÑÓ

Ì.�. Êîðíi¹íêî, Ò.Ñ. Ñiäåíêî

Ð å ç þ ì å

Äîñëiäæåíî ãåíåðàöiþ òðåòüî¨ ãàðìîíiêè (ÃÒÃ) â óìîâàõ äâî-

ôîòîííîãî ðåçîíàíñó ïðè äîâiëüíèõ íåëiíiéíèõ ïîëÿðèçîâ-

íîñòÿõ, iñíóâàííi õâèëüîâî¨ �k òà ÷àñòîòíî¨ �! âiäñòðîéêè
âiä ðåçîíàíñó ç óðàõóâàííÿì çìiíè çàñåëåíîñòåé ðåçîíàíñíèõ

ñòàíiâ. Ïîêàçàíî, ùî ïðè íåëiíiéíîìó êâàçiñèíõðîíiçìi (ÍÊÑ),

êîëè íåëiíiéíà õâèëüîâà âiäñòðîéêà ïðè �! 6= 0 êîìïåíñó¹òüñÿ
ëiíiéíîþ �k, åôåêòèâíiñòü ÃÒÃ ìîæå çðîñòàòè ïðèáëèçíî ó

2 ðàçè (ïîðiâíÿíî ç âèïàäêîì �k = �! = 0) i ïåðåâèùóâà-
òè 60%. Âñòàíîâëåíî, ùî íàáëèæåííÿ çàäàíîãî ïîëÿ íàêà÷êè

íå äîçâîëÿ¹ îïèñàòè ÿâèùå ÍÊÑ i íåîáõiäíî êîðèñòóâàòèñÿ
íàáëèæåííÿì çàäàíî¨ iíòåíñèâíîñòi. Àíàëiòè÷íî òà ÷èñåëüíî

ïîêàçàíî, ùî ïðè ÍÊÑ õâèëüîâà i ÷àñòîòíà âiäñòðîéêè ìî-

æóòü ìàòè ÿê îäíàêîâi, òàê i ðiçíi çíàêè. Ó ñïåêòði ãàðìîíiêè

ìîæå ç'ÿâèòèñÿ �ïðîâàë�, çóìîâëåíèé îáåðíåíèì êîìáiíàöié-

íèì ðîçñiÿííÿì, à íàñè÷åííÿ çàñåëåíîñòåé ðåçîíàíñíèõ ñòàíiâ

ñïðè÷èíþ¹ éîãî ïîãëèáëåííÿ ïðè âåëèêèõ iíòåíñèâíîñòÿõ íà-

êà÷êè.
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