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The vibrational dynamics of a DNA molecule with counterions

neutralizing the charged phosphate groups has been studied. With

the help of the elaborated model, the conformational vibrations of

a DNA double helix with alkaline metal ions have been described

both qualitatively and quantitatively. For the complexes of DNA

with counterions Li+, Na+, K+, Rb+, and Cs+, the normal

modes have been found, and a mode characterized by the most

notable ion displacements with respect to the DNA backbone has
been determined. The vibration frequency of counterions has been

established to decrease as the ion mass increases. The results of

theoretical calculations are shown to be in good agreement with

the experimental data of Raman spectroscopy.

Introduction

Starting with the early research by Watson and Crick

[1], it is well known that a DNA macromolecule in

the natural form is a salt, a complex of nucleic acid

and metal cations. The ion environment of the double

helix plays the dominant role in the helical structure

formation. The concentration of the counterions in

a DNA solution determines the macromolecule helix

twisting, bending, and the recognition of the DNA sites

by proteins and drugs [2�5]. Therefore, metal cations

are of paramount importance in the DNA functioning in

living systems.

Metal ions interacting with DNA can be divided

into two groups [4, 5]. The first group represents

the ions belonging to the diffusion atmosphere of the

macromolecule. These ions keep their hydrate envelopes

as it is typical of their state in solutions. Another

group is the ions that are directly bound with different

structural elements of the double helix. The interaction

of ions of this group is very specific and depends on

their type. Transition and alkaline-earth metal ions are

bound principally with nucleic base atoms, the cations

of alkaline metals being bound with phosphate groups of

the helix backbone [5].

Under ordinary conditions, thermal fluctuations

cause vibrations of DNA structural elements and

counterions around their equilibrium positions. The

vibrations of alkaline metal ions with respect to

the DNA backbone phosphates (ion-phosphate modes)

are likely to be visual and vastly intense in

vibrational spectra because of the homogeneity of

backbone phosphate groups and interacting cations.

The determination of the character of these vibrations

is of great interest for understanding the counterion

role in the DNA helix mobility and conformational

transformations.

The vibrations of the double helix structure elements

can be observed in the low-frequency region because of

the massiveness of DNA atomic groups and a relatively

weak interaction between them. In fact, the DNA

vibration spectra show the set of modes in the region

lower than 250 cm�1 [6�17]. The low-frequency spectra

of DNA can be conditionally divided into three ranges.

The lowest range (10�30 cm�1) characterizes vibrations

of the double helix backbone [16, 19]. The DNA

frequencies in this range depend on the counterion type

[13,15,16], and humidity [9,16]. The middle range (60�

120 cm�1) is generated by vibrations of the hydrogen

bonds and depends on the internucleoside mobility

[16, 19]. A mode strongly depending on the counterion

type has been observed in the range 120�250 cm�1 [17].

In this frequency range, an internal vibrational mode of

nucleic bases can be also observed [14, 18]. Therefore,

it is important to estimate a possible range of the DNA

ion-phosphate modes and their dependence on the ion

type.

To describe the low-frequency vibrational spectra

of a DNA macromolecule, a theoretical approach has

been developed in [19, 20]. However, in this approach,

the counterion vibrations have not been taken into

consideration. The problem of the ion effect on the DNA

low-frequency modes has been studied in [12,21,22]. The

results showed that the DNA low-frequency vibrational

spectra depend on counterions, but the specific ion mode

was not found.
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The purpose of this paper is to describe the low-

frequency vibrations of DNA with counterions, as well

as to determine a place of the ion-phosphate mode and

its dependence on the counterion type.

1. Model of DNA with Counterions

In frame of the approach [19, 20], the improved model

of the DNA vibrations is elaborated [23]. The model

presents DNA as a double chain of the backbone

masses m0 (PO2 + 2O+C5) with connected pendulum-

nucleosides m (sugar+base) (Fig. 1). The counterions

are modelled as masses (ma) bound to the backbone.

The nucleoside bases of different chains are connected

by hydrogen bonds (Fig. 1). The heterogeneity of the

DNA bases is important for vibrations in H-bond base

pairs and the mode of intranucleoside mobility [19, 20].

The heterogeneity of the system makes a contribution

in the wildness of the vibrational bands of the low-

frequency spectra. In present paper, we intend to find

the place of the ion mode in the haul DNA low-frequency

spectra. On this stage, the heterogeneity of the masses

of nucleic bases and the internucleoside mobility are not

considered.

Let us write the energy of the system as

E =
X
n

2X
i=1

(Kni + Uni) +
X

n;n�1

Un;n�1; (1)

where Kni and Uni are the kinetic and the potential

energy of the n-th monomer link of the system, and

Un;n�1 is the interaction along the chain.

The kinetic energy of the n-th monomer can be

written as

Kni =
1

2
M _Y 2

ni
+

1

2
I _�2

ni
+mls _�ni _Yni+

+
1

2
ma(2 _Yni _�ni + _�2

ni
); (2)

where M = m0 + m + ma; Yn is the displacement of

the n-th nucleoside and phosphate group mass; I =

ml2+mar
2
0 is the inertia moment of the nucleotide with

a counterion; l is the reduced length of the pendulum-

nucleoside, r0 is the equilibrium distance between an ion

and a phosphate group; �n is the angle of a displacement

of the n-th nucleoside from the equilibrium state �eq;

ls = l sin �eq; �n is a displacement of the n-th ion from

the equilibrium state.

For small displacements, the potential energy of the

monomer link can be presented as a sum of three terms

describing the energy of H-bond stretching in the pair,
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Fig. 1. The four mass model with counterion. a � the monomer

links of the DNA. I � the counterions that directly bind to the

DNA structure elements, II � the diffusion atmosphere of the

macromolecule. b � the displacements of the atomic groups and

ions in a monomer link

the energy of torsion motions of a nucleoside around the

backbone chains, and the energy of the ion-phosphate

bond. The potential energy of a monomer link of the

chain may be written as follows:

Uni =
1

2

�
�Æ2

n
+ ��2

ni
+ �2

ni

�
; (3)

where � is the force constant of the hydrogen bond

stretching in pairs, Æn is the base pair stretching, � is

the force constant of a nucleoside vibration relative to

a phosphate group,  is the constant of ion-phosphate

vibrations. From the geometric configuration of the

model (Fig. 1), the stretching of base pairs is described

as

Æn = [(Æ0 + Æc + Æy)
2 + Æ2

s
]
1

2 � Æ0: (4)

Here, Æ0 is the equilibrium distance; Æc = 2l cos �0 �
l cos(�0 + �1n) � l cos(�0 + �2n); Æy = Y1n + Y2n; Æs =

l sin(�0+ �1n)+ l sin(�0+ �2n). For small displacements,

expression (4) takes the form:

Æn t ls(�1n + �2n) + Y1n + Y2n: (5)

ISSN 0503-1265. Ukr. J. Phys. 2004. V. 49, N 11 1073



S.M. PEREPELYTSYA, S.N. VOLKOV

In this work, we are interested in the modes of

the limited long-range vibrations of the optic type that

are observed in spectroscopic experiments. Thus, the

interaction of the monomers along the chain (Un;n�1)

can be waved.

Using the expressions for the energy (1), (2), (3),

and (5), we can write the Lagrange equations of motion

for this system. For the convenience of the subsequent

consideration, we introduce the variables:

Y = Y1 + Y2; y = Y1 � Y2;

� = �1 + �2; � = �1 � �2;

� = �1 + �2; � = �1 � �2: (6)

In variables (6), the equations of motion for the whole

system are separated into two systems of connected

vibrations:

�Y +
mls

M
�� +

ma

M
�� = ��0(ls� + Y );

�� +
mls

I
�Y = ��0� � �0

Mls

I
(ls� + Y );

�Y + �� = �0�; (7)

�y +
mls

M
�� +

ma

M
�� = 0;

�� +
mls

I
�y = ��0�;

�y + �� = �0�: (8)

Here, �0 = 2�=M , �0 = �=I , and 0 = =ma.

We seek for the normal modes of system (7) and (8)

in the form q = q0e
�i!t. The system of equations (7)

yields the equation for frequencies:

(0 � !2)

"
(�0 � !2)(p0 � !2)�

Ml2
s

I
�

�(�0 � !2m=M)2

#
�
ma

M
!4(p0 � !2) = 0: (9)

Here, p0 = �0Ml2
s
=I + �0. The solutions of Eq. (9) are

the modes !1, !2, and !3.

From (8), the following equation is obtained:

!4�+ !2(�00 + 00) + 0�0 = 0: (10)

Here, �00 = �0(ma=M � 1), 00 = 0(m
2l2
s
=MI � 1), and

� = 1 � ma=M �m2l2
s
=MI . The solutions of (10) are

the modes !4 and !5:

!24;5 =
�(�00 + 00)�

p
(�00 + 00)

2 � 4��00

2�
: (11)

Let us analyze the modes !4;5. Taking into account

that, for all the counterion types, ma=M and m2l2
s
=MI

are rather small (about 0.1), formula (11) may be

transformed as

!24 � 0; (12)

!25 � �0: (13)

Expressions (12) and (13) show that the modes !4
and !5 depend, respectively, only on the constant of

ion vibrations and the constant of backbone vibrations.

Analyzing the ratios of the amplitudes obtained from

(8)

y0

�0
=

(�0 � !2)I

!2mls
; (14)

�0

�0
=

(�0 � !2)I

(0 � !2)mls
; (15)

it is clear that the amplitude of ion vibrations (�0) is

much larger in the mode !4 in comparison with the

amplitudes of the phosphate (y0) and nucleoside (�0)

motions. So, the mode !4 is characterized mostly by ion

displacements. That is why, we consider that this mode

is the mode of ion vibrations.

Let us analyze Eq. (9). As seen, the form of Eq. (9)

depends on the counterion mass (ma). Taking into

account that the ratio ma=M is very small (about 0.05)

for light ions (Li+ and Na+), the last term in Eq. (9)

can be waved as

(0 � !2)

"
(�0 � !2)�

�(p0 � !2)�
Ml2

s

I
(�0 � !2m=M)2

#
� 0: (16)

One of the solutions of (16) is !1 �
p
0. The amplitude

of ion vibrations in the mode !1 is the largest in

comparison with the amplitudes of the phosphate (Y0)

and nucleoside (�0) motions. So, we have found that, for

light counterions, the mode !1 can be also considered

as a mode of ion vibrations. This means that, for light

counterions in the DNA low-frequency spectra, there is

a twice degenerated mode of ion vibrations (!1 = !4 �p
0).
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The analysis for heavy ions (Rb+ and Cs+) shows

that, in the mode !1, the H-bond stretching amplitude

is the largest one. This means that the mode !1 becomes

the H-bond stretching mode. So, the structure of the

DNA low-frequency spectra is qualitatively different for

light and heavy counterions.

For the further analysis of the ion mode, let

us determine the constant of ion vibrations. Since

counterions form a regular structure around the sugar-

phosphate backbone of the DNA, such a system can be

considered as an ion crystal. According to the classical

study, the ion interaction energy in a crystal can be

presented by the potential [24]

V (r) = �
M�e

2

4�""0r
+B exp

�
�
r

b

�
; (17)

where M� is the Madelung constant, e is the ion charge,

" is the dielectric constant, r is the distance between

charges, and b characterizes the repulsion between ions.

The first and second terms describe, respectively, the

electrostatic attraction and the Born�Mayer repulsion.

Expanding energy (17) in a series in small displacements

from their equilibrium positions � = r � r0, V � �2=2,

and the constant of ion vibrations is

 =
M�e

2

4�""0r
3
0

�r0
b
� 2

�
: (18)

Using the expression for the constant of ion vibrations

(18) and (12), we get the approximate formula for the

mode of ion vibration as

!ion �

s
M�e2

4�""0mar
3
0

�r0
b
� 2

�
: (19)

Analyzing (19), we see that the ion mode depends

strongly on the equilibrium distance r0 and the ion mass

ma. Thus, we can conclude that the ion mode has to

decrease with increase in the ion mass:

!Li > !Na > !K > !Rb > !Cs: (20)

The ion mode also depends on the Madelung constant

M�. This constant is lowest for a dipole (M� = 1) and

is big enough for a NaCl ion crystal (M� = 1:748). In

DNA, the value of the Madelung constant is not known,

but we can say that the Madelung constant depends on

the ion concentration, and it will be different in a dilute

solution and in a saturated one. This means that the ion

mode has to depend on the ion force of a solution.

The constant of ion vibrations also depends on the

other parameters (M�, b, "), which will be considered in

the following section.

2. Constant of Ion Vibrations

Here, we study the conformational vibrations of DNA

with alkaline metals. So, the equilibrium distance r0
is estimated as a sum of Pauling radii of the ion and

the oxygen atom of a phosphate group (Table 1). The

parameter b is taken to be equal to values that are known

for the ion crystals LiF, NaF, KF, RbF, and CsF [25]

(Table 1).

Let us estimate the dielectric constant. The value

of this constant depends on the distance between the

ions and the nature of the environment. The dielectric

constant determination for the DNA presents some

difficulties [27�32]. The vacuum dielectric constant (" =

1) is not suitable for the description of the electrostatic

interaction in DNA, because, in this case, the potential

near DNA is too high [29]. While solving the Poisson�

Boltzman equation, the dielectric constant of the DNA�

solution system is considered very often between 2 and 4

[29]. Hingerty with coworkers developed the approach,

where the dielectric constant is presented as a function

of the distance r is the distance between charges in

angstroms [27]:

"(r) = 78�77(r=2:5)2 exp(r=2:5)(exp(r=2:5)�1)�2:(21)

Lavery with coworkers improved the function of

Hingerty [28]:

"(r) = "1 �
"1 � 1

2
[(sr)2 + 2sr + 2]e�sr; (22)

where "1 = 78 and s = 0:16. There exist also other

distance-dependent dielectric functions [29�31], but the

functions of Hingerty (21) and Lavery (22) are most

commonly used. The dielectric constants calculated by

formulas (21) and (22) are shown in Table 1.

Let us estimate the Madelung constant M�. This

constant characterizes the interaction of one ion with

the other ions of the system. In our model, we consider

the charges of phosphate groups and counterions that

neutralize them and take into account that the

T a b l e 1. Parameters for the ion vibration constant

Parameter Li+ Na+ K+ Rb+ Cs+

r0(�A) 2.00 2.35 2.73 2.88 3.01

b (�A) 0.329 0.316 0.327 0.329 0.313
" [27] 5.0 6.4 8.2 9.0 10.1

" [28] 1.3 1.5 1.8 1.9 2.1

M� (" = const) 1.307 1.360 1.417 1.439 1.470

M� (" by [27]) 1.045 1.067 1.099 1.114 1.136

M� (" by [28]) 1.050 1.066 1.089 1.099 1.116
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Fig. 2. The dependence of the low-frequency modes on

counteriontype. � � our results, o � [17], � � [13]

negatively charged ions of Cl� are present in a solution.

These anions are situated at the distance about 7 �A [4].

As usual, long-range electrostatic interactions in such

systems as DNA are cut off at the distance of about

10 �A [26] that is approximately equal to the distance

between two neighbor phosphate groups of one polymer

chain. That is why, only the charges of neighbor ion-

phosphate pairs and Cl� anions are considered in the

calculations of the Madelung constant. The following

formula for the Madelung constant is obtained:

M� = 1 +
�(r0)r0

�(rt)rt
+ 2

�
�(r0)r0

�(rp)rp
�

�(r0)r0

�(ra)ra

�
: (23)

Here, �(r) is the dielectric constant, rt is the distance

between an ion and a Cl� anion of the solution,

rp is the distance between an ion and a neighbor

phosphate group of the same polymer chain, and ra is

the distance between neighbor ions of the same polymer

chain (Fig. 1). The first term in (23) that is equal

to 1 characterizes the interaction in the phosphate-

counterion dipole, the second term describes the energy

of interaction between the phosphate counterion and a

Cl� anion of the solution, and the terms in brackets

describe the interaction of the phosphate counterion

with neighbor phosphate-counterion pairs. The values

of the Madelung constant calculated by formula (23)

are shown in Table 1. From the results of Table 1,

we see that the Madelung constant strongly depends

on the permittivity, but, nevertheless, the long-range

electrostatic interactions make a big contribution to the

constant of ion vibrations.

3. Ion Mode

Using the parameters shown in Table 1 and formula

(18), we estimated the constant of ion vibrations ().

The frequencies of ion vibrations (!4) calculated by

expressions (11) are shown in Table 2.

Analyzing the results shown in Table 2, we can say

that the best agreement with the experimental data is

reached with the value of " = 2 and the Lavery dielectric

function [28]. We note that the mode near 170 cm�1

was found in works [12, 17] for a solution of DNA +

NaCl, but the authors consider this mode as the mode

of internal vibrations of NaCl crystals.

From the data of Table 2, we can see that, in the case

of ion Li+, the calculated frequency of vibrations differs

significantly from the experimental data. The reason for

this situation can be connected with the effects of ion

hydratability. An ion Li+ has a very small weight

(7 a.u.m.) and a radius (0.6 �A) as compared to molecules

of water. Therefore, the influence of water on the lithium

vibrations can be very large. Our estimations of the Li+

vibration frequency in the case where it is in the complex

with one (!Li4 = 267 cm�1), two (209 cm�1), and three

(180 cm�1) molecules of water show that the frequency

becomes significantly lower. If we take into account that

a lithium ion moves together with water molecules in

the solution, the frequency becomes very close to the

experimental value.

For the understanding of the dependence of low-

frequency spectra on the counterion type, the frequencies

of all five branches of vibrations !1, !2, !3, !4, and !5
are calculated. The obtained results are shown in Fig. 2.

As we can see, all the low-frequency modes obtained

with the help of the proposed approach decrease with

increase in the counterion mass. The ion mode (!1, !4)

is most sensitive to the counterion type. Our calculations

show the splitting of the ion mode for heavy ions that

T a b l e 2. Frequencies of ion vibrations for B-DNA

(cm�1)

Method Li+ Na+ K+ Rb+ Cs+

" = 2 444 233 162 112 93

" = 4 314 165 114 79 66

" [28] 488 237 151 100 80

" [27] 252 115 70 46 37

[17] 237� > (150) 230� > (150) 150 110 95

[14] 235

N o t e: The asterisk � marks the values determined by us from

the spectra of work [17].
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was qualitatively obtained above. The theoretical results

for the lowest mode (!2;5) and for the ion mode (!4)

correlate with the experimental data (Fig. 2). The

counterion dependence of the H-bond stretching mode

(!3) is not studied experimentally.

In conclusion, we emphasize that a specific mode of

ion-phosphate vibrations is found. It lies in the frequency

range 90 � 250 cm�1 and decreases with increase in

the counterion mass. This mode is very sensitive to

the counterion type and to the ion force of a solution.

Moreover, the results presented in Fig. 2 show that

all the low-frequency modes of a DNA macromolecule

depend of the counterion type.
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IÎÍÍÀ ÌÎÄÀ Ó ÑÏÅÊÒÐI ÍÈÇÜÊÎ×ÀÑÒÎÒÍÈÕ

ÊÎËÈÂÀÍÜ ÌÎËÅÊÓËÈ ÄÍÊ

Ñ. Ì. Ïåðåïåëèöÿ, Ñ. Í. Âîëêîâ

Ð å ç þ ì å

Äîñëiäæåíî êîëèâàëüíó äèíàìiêó ìîëåêóëè ÄÍÊ ç ïðîòèiîíà-
ìè, ùî íåéòðàëiçóþòü çàðÿäè íà ôîñôàòíèõ ãðóïàõ. Çà äîïî-

ìîãîþ ðîçâèíóòîãî ïiäõîäó äëÿ îïèñàííÿ êîíôîðìàöiéíèõ êî-

ëèâàíü ìàêðîìîëåêóëè ÄÍÊ ç iîíàìè ðîçãëÿíóòî êîëèâàëüíó

äèíàìiêó ïîäâiéíî¨ ñïiðàëi ç iîíàìè ëóæíèõ ìåòàëiâ íà ÿêiñíî-

ìó òà êiëüêiñíîìó ðiâíÿõ. Çíàéäåíî íîðìàëüíi ìîäè êîìïëåêñiâ

Li-, Na-, K-, Rb- òà Cs-ÄÍÊ i âèçíà÷åíî ìîäó, ùî õàðàêòåðè-

çó¹òüñÿ ñèëüíèìè çìiùåííÿìè iîíiâ ïî âiäíîøåííþ äî îñòîâà

ÄÍÊ. Ïîêàçàíî, ùî ÷àñòîòà iîííèõ êîëèâàíü çìåíøó¹òüñÿ çi
çáiëüøåííÿì ìàñè iîíà. Ðåçóëüòàòè òåîðåòè÷íèõ ðîçðàõóíêiâ

êîðåëþþòü ç åêñïåðèìåíòàëüíèìè äàíèìè êîìáiíàöiéíîãî ðîç-

ñiÿííÿ ñâiòëà.
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