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The resonance states of 4H, 4He, and 4Li embedded in the

three-cluster d + N + N continuum are investigated within

a three-cluster model. The model treats the Pauli principle

exactly and incorporates the Faddeev components for a proper

description of the boundary conditions for the two- and three-body

continua. The hyperspherical harmonics are used to distinguish

and enumerate channels of the three-cluster continuum. It is shown

that the effective barrier created by the three-cluster configuration

d+N +N is strong enough to accommodate two resonance states.

Introduction

In this paper, we study the nature of resonance states in
4H, 4He, and 4Li. All these nuclei have a rich structure
of resonance states [1]. There are 4 well-determined
resonances in 4H and 4Li, and up to 15 resonance states
were detected in 4He. Most of these resonances have a
width that is much larger than the resonance energy
when measured from the lowest threshold. Although
these resonances have been experimentally confirmed,
they can hardly be observed in current theoretical model
descriptions of these systems through standard elastic
and inelastic scattering quantities such as S-matrix
elements, differential or total cross sections, and so on.

For many years, the four-nucleon system was studied
by different microscopic and semi-microscopic methods.
Different forms of the Schr�odinger equation (differential
[2, 3], integral [4�6], integro-differential [7�9], matrix
or algebraic [11�13], ... ones) have been used to study
these nuclei. Special attention was paid to 4He, the
only nuclear 4-particle system featuring a bound state.

The theoretical study of the �ground states� of 4H
and 4Li and the excited states of all three nuclei was
carried out mainly through resonance state analysis. Of
all resonances, the first excited 0+ state has received
most attention. In none of the descriptions, the role of
three-cluster channels was properly considered, and so
resonance states induced by this channel could not be
theoretically discovered and analyzed.

Our objective is to determine the type and nature
of resonance states in 4H, 4He and 4Li that are
reproduced within a three-cluster microscopic model.
For all three nuclei, we will consider one single three-
cluster configuration d + N + N . This is certainly
the most dominant three-cluster channel, as it has
the lowest energy threshold. Moreover, one can easily
construct all binary channels for these nuclei within such
a description. In 4He for example, this configuration
allows one to study resonances created by the two-
cluster channels p+3H, n+3He, and d+ d, as well as by
the three-cluster channel d + p + n. The latter should
be very important, because 7 resonance states were
detected above the d+p+n threshold. It is interesting to
note in the same context that all four resonance states of
4H lie below the three-cluster d+n+n threshold, whereas
two resonances in 4Li are found above the d + p + p
threshold.

We propose a modification of the method formulated
in [14�16] and used in [17, 18] to study resonances
embedded in the three-cluster continuum and reactions
with three-cluster exit channels. The method was
shown to provide a suitable instrument for investigating
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Borromian nuclei (for instance, 6He) and nuclei with
prominent three-cluster features (like 6Be). We wish
to extend the method proposed in [14, 16] to handle
systems, in which binary channels play a prominent
role, by including the correct boundary conditions for
both binary and ternary channels. The results obtained
in [14, 19] and in [17, 18] allow us to restrict the model
space to the most relevant subspace.

To reach this objective, we have to:
� specify the microscopic modelling of the three-cluster
configuration and the approximations to be used in
calculations,
� construct a set of dynamic equations that take into
account the proper boundary conditions for both binary
and ternary channels,
� implement reliable numerical methods to calculate
continuous spectrum wave functions and S-matrix
elements.

1. Model and Methodology

We propose the following trial wave function for the 4-
particle systems

	 = 	1 +	2 +	3 = Af�1(A1)�2(A2)�3(A3)�

� [f1 (x1;q1) + f2 (x2;q2) + f3 (x3;q3)]g; (1)

where �� (A�) is the antisymmetric and translationally
invariant internal wave function of the A� nucleon
system, and x�;q� are the familiar Jacobi coordinates
denoting the relative position of two of the clusters (x�)
and the relative position of the third cluster with respect
to the former two-cluster subsystem (q�):
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with (�; �; 
) being cyclic permutations of (1; 2; 3). The
three components of the wave functions f	1;	2;	3g

(more precisely ff1; f2; f3g) have to be determined
by solving the many-particle Schr�odinger equation.
Specific symmetries of the system can reduce the
number of components: if the three-cluster configuration
contains two identical clusters, only two distinguishable

components ff1; f2g will occur; this is the case for 4H
and 4Li. If all three clusters are identical (impossible
for the 4-particle system though), only one independent
component ff1g would occur.

We shall use a matrix or algebraic form of the
Schr�odinger equation. To this end, we expand the wave
function f� (x�;q�) in an oscillator basis (referred to as
a BiOscillator (BO) basis):

f� (x�;q�) =
X

ny;l;nx;�

C
(�)
ny;l;nx;�

jny; l; nx; �;LMi� ; (2)

where

jny; l; nx; �;LMi� =

�ny;l (q�) �nx;� (x�) fYl (bq�) � Y� (bx�)gLM (3)

and �n;l (q) is the familiar (radial) oscillator function:

�n;l (q) = (�1)
n

s
2� (n+ 1)

� (n+ l + 3=2)

1

b3=2

�q
b

�l
�

� exp

�
�
1

2

�q
b

�2�
Ll+1=2n

��q
b

�2�
: (4)

The total angular momentum L of the three s-clusters
is a vector sum of two partial angular momenta l� and
�� associated with the respective Jacobi coordinates x�
and q�.

As each cluster function �� (A�) is antisymmetric
by construction, the antisymmetrization operator in
(1) only involves the permutation of nucleons between
clusters, and it can be represented as

bA = 1+ bA12 + bA23 + bA31 + bA123; (5)

where bA�� exchanges nucleons from clusters � and �,

and bA123 permutes particles from all three clusters.
In some respects, this antisymmetrization operator
is similar to a short range interaction. Indeed, the
antisymmetrization is noticeable only when the distance
between clusters is small. At larger distances, both
the potential energy and the antisymmetrization effects
become negligibly small. The operator bA123 is important
only when the distance between all three clusters is less
than a certain restricted value. If one of the clusters (say,
cluster �) is far away from the two other clusters � and


, and the latter are close to one other, bA�
 will have
a pronounced contribution, as well as the two-cluster
interaction bV�
 derived from the NN -potential.
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Each set of Jacobi coordinates x� and q� and each
set of oscillator functions (3)�
jny; l�; nx; ��;LMi

�

	
(6)

for � =1, 2 or 3 cover the whole configuration space
(i.e., account for all possible relative positions of three
clusters in space). We will limit ourselves to the subspace
fjny; l� = L; nx; �� = 0;LMig of the total Hilbert space.
Two arguments for such a choice can be given (in
particular for the 4-particle system):

1. We deal with s-shell clusters, and the two-cluster
compound subsystems also are s-shell nuclei; the
latter (d, 3H and 3He) have a ground state
containing a dominant S-wave contribution.

2. It was shown in [14, 15, 19] that this subspace
dominates the full Hilbert space. For instance,
the ground state energy of 6He and 8He obtained
within this subspace differs by less than 1% from
the energy obtained in the full Hilbert space. It
was also shown that this subspace dominates the
wave function of the 2+ state of 6He, appearing
as a resonance embedded in the three-cluster
continuum �+ n+ n, as well.

To include the proper boundary conditions, we will

split the oscillator space
n
C
(�)
ny;l;nx;�

o
(� = 1; 2; 3) into

the internal and asymptotic parts. The former consists
of the basis functions of the lowest Ni oscillator shells
(i.e. all functions with N = ny + nx = 0; 1; 2; : : :Ni;
it involves (Ni + 1) (Ni + 2) =2 basis functions for each
value of �). With this size of the internal region in
oscillator space, one can evaluate the maximal size of the
three-cluster system in the coordinate space by using the
correspondence between the oscillator and coordinate
representations (see details in [20, 21])

Rmax ' b
p
4Ni + 6: (7)

If, for instance, the oscillator length b = 1:5 fm
and Ni = 15, then Rmax ' 12 fm. The maximal
distance between any pair of clusters will be of the same
magnitude. Rmax also corresponds to the minimal size
of the three-cluster system in the asymptotic region.
So all three clusters are close to one another in the
internal region, which means that all antisymmetrization
components are important, as well as all interactions
between clusters.

In the asymptotic region, we distinguish two different
regimes. In the first regime, the distance between two
clusters is small, while the third one is far apart. In the

second regime, all three clusters are well separated. If
a selected pair of clusters (say, � and 
 clusters) has
(a) bound state(s), then the first regime is responsible
for the scattering of the third cluster by the compound
� + 
 subsystem. This process can be described by two-
body asymptotics. The second regime is associated with
the full disintegration of the three-cluster system into
three independent (non-interacting) clusters. These two
regimes have to be treated differently. This means that
two different forms of the wave function have to be used
to properly describe these processes. It will require some
reconstruction of the basis functions in order to suit
both two- and three-body physical processes in the exit
channels.

In the first regime of the asymptotics, we can neglect
all antisymmetrization components but bA�
 . As for the
potential energy, the most important contribution is
generated by the two-cluster potential bV�
 . The other

components bV�� and bV�
 , originating from the short-
range NN -forces, are negligibly small, and only long-
range Coulomb forces are of importance. The wave
function in the coordinate and oscillator representations
can then be factorized as

	� = bAf�1 (A1) �2 (A2) �3 (A3) f� (x�;q�)g '

' bA�
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The two-cluster wave function 	
(2)
� (its counterpart in

the oscillator space is
n
C
(�)
nx;�

o
) is an eigenfunction of

the two-cluster Hamiltonian (8)

bH(2)
� =

X
i2A�+A


bTi + X
i<j2A�+A


bV (ij) : (8)

By solving the Schr�odinger equation

N2X
enx=0

D
nx; �

��� bH(2)
� �E(�)

��� enx; �EC(�)enx;� = 0 (9)

with a chosen number of basis functions N2, we obtain

the bound state(s) E
(�)
� (� = 0; 1; : : :) of the two-cluster

subsystem, which determine the threshold energy of the
two-body break up of the three-cluster system.
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In the second regime of the asymptotics we can
neglect the antisymmetrization operator and the short-
range components of the inter-cluster potential. In this
regime, we use the Hyperspherical Harmonics (HH) basis
to describe the full decay of the three-cluster system,
because (see, for instance, [14, 17, 22, 23]) this basis is
the obvious choice for such a type of the three-cluster
behavior. The transition from the bioscillator basis
jny; l; nx; �;LMi

�
to the HH basis jn�;K; l; �;LMi

�

(see details of the definition of HH functions in,
e.g., [16]) is performed by an orthogonal matrix. This
transformation can be calculated in a straightforward
way.

The asymptotic part of the wave function will then
be represented by two sets of expansion coefficients(
C

�
�;E

(�)

0

�
ny;L

; C
(�)
n�;Kmin;L

; C
(�)
n�;Kmin+2;L

; : : : ; C
(�)
n�;Kmax;L

)
;

(10)

where Kmin = L. All expansion coefficients in the
asymptotic region have a similar form and consist of

incoming ( 
(+)
L ,  

(+)
K ) and outgoing ( 

(�)
L ,  

(�)
K ) waves

(see details of the definition in [17, 18]):

C
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q
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h
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L (k�Rny )�

�Sc0;�  
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2
h
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K (k�n)�

�Sc0;�K  
(+)
K (k�n)

i
; (12)

where the index c0 denotes the entrance channel and

k =

r
2m

~2
E; �n = b

p
4n� + 2K + 6; (13)

k� =

r
2m

~2

�
E �E

(�)
0

�
; Rny = b

p
4ny + 2L+ 3: (14)

Note that the index � enumerates the binary channels,
while both indices � and K distinguish the ternary
channels. Thus, c0 equals �0, if the entrance channel is a
binary one, or c0 = �0;K0 for the three-cluster entrance
channel.

With this definition of the asymptotic part of
the wave function, we deduce the equations for the

scattering parameters and wave function. By taking into
account (9)�(12), we obtainX
e�

X
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�

D
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Æ
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D
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��� bH�
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���en�; eKEe�  (�)eK (ke�) : (15)

In the general case of three different clusters, this system
of linear equations contains

3

2
(Ni + 1) (Ni + 2) + 3 + 3Nch:HH (16)

parameters to be determined. Here,

Nch:HH = (Kmax �Kmin) =2 + 1 (17)

is the number of HH channels. From this total
amount, 3

2 (Ni + 1) (Ni + 2) coefficients represent the
wave function in the internal region, and the other 3 +
3Nch:HH parameters determine the elastic and inelastic
processes leading to two or three clusters in the exit
channels. These parameters unambiguously define the
wave functions in the asymptotic region.

2. Results

We use the Minnesota (MP) [24], and the modified
Hasegawa�Nagata (MHNP) [25, 26] nucleon-nucleon
(NN) potentials. The oscillator radius b is chosen to
optimize the bound state energy of a deuteron and
equals b = 1:512 fm for MP and b = 1:668 fm for
MHNP. Considering these two potentials reveals the
effect of peculiarities of NN -forces on the parameters
of resonance states.

In the first calculation, we neglect all binary
channels, and only consider the three-cluster channels.
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Fig. 1. Eigenphase shifts for the L
�
= 1, S = 1 state of

4
Li

obtained with the Minnesota potential and Kmax = 11. The

eigenchannels are enumerated

This allows us to understand what kinds of resonances
are generated by this channel only. We have omitted
spin-orbital components of the NN -forces to reduce the
computational burden.

The results obtained in this approximation can be
considered to represent a �lower limit� for the width of
a resonance, as additional channels will open new decay
possibilities of the resonance, which will increase its
width. In this respect, the three-cluster approximation
will indicate whether some resonances state(s) could
survive if binary channels are included.

By solving the dynamic equations (15) for Nc

channels, we directly obtain theNc�Nc S-matrix. There
are two different parametrizations for the S-matrix. In
the first one, each element Sij can be represented by the

T a b l e 1. Resonance states of 4H, 4He, and 4Li created
by the three-cluster channel d + N + N . Results are

obtained with the Minnesota potential

Nucleus L� S Kmax E, MeV �, MeV E, MeV �, MeV

4
H 1

�

0 11 1.642 0.367 6.726 2.759
4H 1� 1 11 1.911 0.374 6.958 2.982
4Li 1� 0 11 2.604 0.413 7.787 3.141
4Li 1� 1 11 2.912 0.465 8.085 3.384
4
He 2

+
0 10 1.950 0.233 2.904 0.207

T a b l e 2. Resonance states of 4H, 4He, and 4Li created

by the three-cluster channel d + N + N . Results are
obtained with the MHN potential

Nucleus L� S Kmax E, MeV �, MeV E, MeV �, MeV

4H 1� 0 11 3.972 1.170 9.469 3.440
4H 1� 1 11 3.738 0.950 9.250 3.362
4Li 1� 0 11 0.748 0.093 5.009 1.531
4
Li 1

�

1 11 0.662 0.056 4.772 1.329
4
He 2

+
0 10 0.890 0.005 2.436 0.167

Fig. 2. Phase shifts of the 3)3 scattering for the L
�
= 1

�

, S = 1

state of 4Li. Results are obtained with the Minnesota potential

and Kmax = 11

phase shift Æij and the inelastic parameter �ij : Sij =

�ij exp f2iÆijg. In the second parametrization, the S-
matrix is reduced to a diagonal form by the orthogonal
transformation

kSk = kOk
T
�




S(E)


 � kOk : (18)

The latter procedure leads to Nc uncoupled elastic
�eigenchannels�, whose (eigen)phase shifts parametrize
the diagonalized S(E)-matrix. We use the eigenphase
shifts to determine both the energy and width of
the resonances. They are obtained from the following
equations:

d2Æ�

d2E
jE=Er

= 0; � = 2

�
dE

dÆ�

�
jE=Er

: (19)

We start our analysis from the eigenphase shift. In
Fig. 1, we display the eigenphase shift of the so-called
3)3 scattering for L� = 1�, S = 1 state in 4Li,
obtained with the Minnesota potential. Similar pictures
are obtained for other nuclei and different (L�, S) states
and also with the MHN potential. One can see from
Fig. 1 that there are two resonance states in 4Li, first
resonance is narrow and manifests itself through the first
eigenchannel, while the second resonance is very broad
and appears in the third eigenchannel.

In Figs. 2 and 3, we display the phase shifts Æii
and inelastic parameters �ii connected with the diagonal
matrix elements of the original S-matrix. They are
obtained for 4Li and with MP. One notices that only two
hyperspherical harmonics are responsible for the lowest
1� resonance state. The K = 3 phase shift displays the

ISSN 0503-1265. Ukr. J. Phys. 2004. V. 49, N 11 1057
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Fig. 3. Inelastic parameters of the 3)3 scattering for the L
�
= 1

�

,

S = 1 state in 4Li. Results are obtained with the Minnesota

potential and Kmax = 11

classical behavior for a resonance state, while the K = 5

phase shift indicates a �shadow� resonance. Many more
hyperspherical momenta are involved in creating the
second resonance.

In Tables 1 and 2, we collect the parameters of the
resonance states lying above the three-cluster threshold
d + N + N . The even parity states are obtained with
Kmax = 10, and the odd parity states with Kmax = 11.

It is known that there is an effective barrier in
each channel of a three-cluster system. The barrier is
created by a potential well resulted from the NN -
interaction between nucleons from different clusters and
a centrifugal barrier which is proportional to

~
2

2m

K(K + 4)

�2
: (20)

In 4He and 4Li, the Coulomb repulsion

Ze�

�
(21)

has to be added to the effective barrier. The effective
charge Ze� depends on the quantum numbers �, K,
l1, and l2, and its definition can be found in [16]. The
deeper the potential well, the larger is the effective
barrier and, consequently, more resonance states can
be created by such effective barrier. One can see that
the effective barrier generated by the MHN potential
is deeper than the one connected with the Minnesota
potential. As a result of this difference, the resonance
states in 4H obtained with the MHN potential have a
larger energy than the resonances calculated with the
Minnesota potential.

Fig. 4. Energy of the 1
�

resonance state of
4
H (total spin S = 1) as

a function ofKmax. Error bars indicate the double of the resonance

width. The calculations have been performed with the Minnesota

potential

The results presented in Tables 1 and 2 are obtained
for the even parity states with Kmax = 10 and for
the odd parity states with Kmax = 11. These values
for Kmax are sufficient to obtain stable results. This is
demonstrated in Fig. 4, where the parameters (energy
and width) of the 1� resonance in 4H are displayed as
functions of Kmax. The results in Fig. 4 are presented
for the Minnesota potential, and similar results are
obtained for the MHN potential. We indicate some
�false� resonances appearing at small values of Kmax

due to the restriction on decay channels compatible
with this Kmax. When we increase the number of
open channels, the �false� resonances disappear and the
physical resonances converge to their correct positions.

There are some arguments that the physical
resonances do not depend on the boundary conditions
implemented or on the used approximations. One
can study, e.g., the behavior of the so-called Harris
states, i.e. the eigenvalues of the Hamiltonian as a
function of the number of basis functions involved in
a calculation. It was shown (see, for instance, [27, 28])
that the eigenvaluesE� (n) [E� (n) is the �-th eigenvalue
obtained with n basis functions] create plateaus at
the energies of resonance states. For a very narrow
resonance, this plateau is already observed for a small
value of n. For wider resonances, one needs more basis
functions to reach a plateau. For a small number of basis
functions a wider resonance can become apparent as the
repulsion of two eigenvalues (the avoided crossing of
two eigenvalues). Such a behavior of these eigenvalues
was observed for the Hamiltonian of the three-cluster
configuration d+N +N in 4H, 4He and 4Li.
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Conclusion

A microscopic model is formulated to treat properly
the two- and three-body boundary conditions. For
this aim, the Faddeev component is used. The
hyperspherical harmonics are used to enumerate
three-cluster channels. They are very valuable for
describing the three-cluster asymptotics. Two NN -
potentials are involved in the calculations in order
to evaluate the sensitivity of the final results with
respect to this important factor of the microscopic
model.

The model is applied in studying the resonance
states in 4H, 4He, and 4Li nuclei created by the three-
cluster configuration d +N +N . The results presented
here demonstrate that the three-cluster configuration
creates an effective centrifugal barrier which allows
one to accommodate several resonances. The effect
of two-cluster channels on the position and width of
three-cluster resonances will be discussed in a future
work.
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ÒÅÎÐÅÒÈ×ÍÈÉ ÀÍÀËIÇ ÐÅÇÎÍÀÍÑÍÈÕ ÑÒÀÍIÂ Â 4H,
4He ÒÀ 4Li ÍÀÄ ÒÐÈÊËÀÑÒÅÐÍÈÌ ÏÎÐÎÃÎÌ

Â.Ñ. Âàñèëåâñüêèé, Ô. Àðiêñ, ß. Áðóêõîâ, Â.Ì. Ðîìàíîâ

Ð å ç þ ì å

Ó ðàìêàõ òðèêëàñòåðíî¨ ìîäåëi äîñëiäæåíî ðåçîíàíñíi ñòà-

íè ÿäåð
4
H,

4
He i

4
Li, çàíóðåíi â òðèêëàñòåðíèé êîíòèíóóì

d+N +N . Öÿ ìîäåëü òî÷íî âðàõîâó¹ ïðèíöèï Ïàóëi òà âèêî-

ðèñòîâó¹ ôàää¹¹âñüêi êîìïîíåíòè äëÿ êîðåêòíîãî âðàõóâàííÿ

ãðàíè÷íèõ óìîâ ó äâî- òà òðè÷àñòèíêîâîìó êîíòèíóóìi. Êàíà-

ëè òðè÷àñòèíêîâîãî êîíòèíóóìà ðîçðiçíÿþòüñÿ i íóìåðóþòüñÿ

çà äîïîìîãîþ ãiïåðñôåðè÷íèõ ôóíêöié. Ïîêàçàíî, ùî åôåêòèâ-

íèé áàð'¹ð, ÿêèé ïîðîäæó¹òüñÿ òðèêëàñòåðíîþ êîíôiãóðàöi¹þ

d+N +N , äîñòàòíüî iíòåíñèâíèé äëÿ ñòâîðåííÿ äâîõ ðåçîíàí-

ñiâ.
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