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The paper deals with the theoretical investigation of intrasubband

plasmons in an array of quantum wires, consisting of a finite

number of quantum wires (QWs) arranged at an equal distance

one from another and placed into an external magnetic field. Two

types of the arrays of QWs are under consideration: an ordered

array of QWs with equal electron densities in all QWs and a
weakly disordered array of QWs which is characterized by the

fact that the density of electrons of one defect QW is different

from that of other QWs. For the ordered array of QWs placed

into an external magnetic field, the nonmonotone dependence of

the plasmon frequency on the 1D density of electrons in QWs is

predicted. For a high magnetic field, the existence of 1D electron

density ranges, in which plasmon modes do not exist, is shown.

For a weakly disordered array of QWs, the existence of the local
plasmon modes, whose properties differ from those of usual modes,

is found. At high magnetic fields, the disappearance of the local

plasmon modes at certain ranges of the 1D electron density in a

defect QW is shown.

Introduction

Quasi one-dimensional electron systems (1DESs) or

QWs are artificial structures, in which the motion of

charge carriers is confined in two transverse directions

but is essentially free (in the effective mass sense) in the

longitudinal direction [1�3]. Usually, QWs are produced

by imposing the one-dimensional confinement to a two-

dimensional electron system (2DES). This additional

confinement is, in general, weaker than the strong

confinement of original 2DES [4]. One of the motivations

to study QWs is the fact that the mobility of charge

carriers is higher than that in 2DES, on which they are

built. The reason for this is that the impurity content

and distribution around the QWs can be selectively

controlled, thereby producing the enhanced mobility [5].

Collective charge-density excitations or plasmons

in QWs are of great interest to physicists. Earlier,

plasmons in QWs were investigated both theoretically

[5�9] and experimentally [10�13]. It was shown in those

papers that plasmons in QWs possess some new unusual

dispersion properties. Firstly, the plasmon spectrum

strongly depends on the width of QW. Secondly, 1D

plasmons are free from the Landau damping [6, 9] over

the whole range of wavevectors.

From the viewpoint of practical application, the

so-called weakly disordered arrays of low-dimensional

systems are the objects of interest. Recently the

plasmons in a weakly disordered superlattice formed of a

finite number of equally spaced two-dimensional electron

systems have been theoretically investigated in the cases

where the external magnetic field is absent [14�16]

or present [17]. The weakly disordered superlattice is

characterized by the fact that all of two-dimensional

systems possess the equal density of electrons except

one (�defect�) two-dimensional system, whose density

of electrons differs from that of other two-dimensional

systems. It was found that the plasmon spectrum of

such an array contains the local plasmon mode, whose

properties differ from those of other plasmon modes.

The existence of a local plasmon mode is completely

analogous to the existence of the local phonon mode

originally obtained by Lifshitz in 1947 for the problem

of phonon modes in a regular crystal containing a

single isotope impurity [18]. Notice that practically the

entire flux of electromagnetic energy of plasmons, which

correspond to the local mode, is concentrated in the

vicinity of the defect 2DES. At the same time the

opportunity of using the plasmon spectrum peculiarities

to determine the parameters of defects in the superlattice

was indicated in [17].

Plasmons in a finite weakly disordered array of

QWs without an external magnetic field have been

investigated theoretically in [19]. It has been supposed

that the defect QW can occupy an arbitrary position in

the array. It is shown in [19] that the position of a defect

QW in the array does not strongly affect the spectrum

of the local plasmon mode but it exerts an significant

influence on the spectrum of other plasmon modes. At

the same time, when the defect QW is arranged inside

the array, the plasmon spectrum contains modes, whose

dispersion properties do not depend on the electron

density in the defect QW.
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The external magnetic field is known to cause

considerable changes in the plasmon spectrum of

low-dimensional structures. So, plasmons in single

2DES placed into the external magnetic field directed

perpendicularly to the 2DES were earlier investigated

both theoretically [20] and experimentally [21]. It was

shown that the dispersion relation for plasmons in 2DES

placed into the external magnetic field can be expressed

as

!2H = !2c + !2; (1)

where !H is the frequency of a plasmon in the presence of

an external magnetic field, !c = eB=m�c is the cyclotron

resonance frequency, and ! is the frequency of plasmons

when the external magnetic field is absent.

Plasmons in a single 1DES was also investigated

theoretically [22, 23] and experimentally [11, 12]. As

was shown experimentally [11], the dispersion law

for a one-dimensional plasmon in the presence of

the magnetic field can also be described by (1).

Nevertheless, another one-dimensional plasmon mode

was found experimentally in [12]. The last possesses

the negative magnetic field dispersion. At the same

time, it was shown theoretically [22] that the above-

mentioned negative magnetic field dispersion for one

dimensionality occurs in the high magnetic field only.

At a weak magnetic field, the properties of intrasubband

plasmons in a single QW depend considerably on the

one-dimensional electron density in the QW. Thus, if the

density of electrons in the QW exceeds a certain critical

value, the intrasubband plasmon frequency increases

with the magnetic field. In the opposite case where the

density of electrons in the QW is smaller than the critical

value, the intrasubband plasmon frequency decreases as

the magnetic field increases.

In this paper, we investigate intrasubband plasmons

in a finite array of QWs, placed into an external

magnetic field. We consider two types of QW array: an

array in which the 1D elecron densities are equal in all

QWs (the ordered array of QWs) and an array in which

the 1D electron density of one defect QW differs from

that of other QWs (weakly disordered array of QWs).

1. Dispersion Relation

We consider the array of QWs consisting of a finite

number M of QWs arranged in the planes z = ld

(l = 0; :::;M � 1 is the number of the QW, d is the

distance between adjacent QWs). At the same time,

we assume that the 1D density of electrons in the l-

th QW is equal to Nl. The QWs are considered to

be placed into the uniform dielectric medium with the

dielectric constant ". We use such a simple model (in

which the dielectric constants of the media inside and

outside the array are equal) to avoid the appearance of

a surface plasmon mode. We reckon the movement of

electrons to be free in the x-direction and considerably

confined in the directions y and z. We assume that

the array of QWs is built on ideal 2DESs by applying

an additional confining potential along the y-direction,

which is parabolic: Uconf = 1
2
m�!20y

2
. Here, m�

is the

effective mass of an electron, !0 is the classical oscillation

frequency of the electron placed in the potential Uconf .

At the same time, we suppose that the width of all QWs

is equal to zero in z-direction. The external constant

magnetic field is taken to be perpendicular to the plane

xy along the axis z.

To obtain the single-particle wave-function of the

electron in a QW we write the expression for the vector

potentialA in the Landau gauge:A = (�By; 0; 0). So, in
this case, the single-particle Hamiltonian of the electrons

is

Ĥ =
1

2m�

�
p̂+

e

c
A
�2

+ Uconf(x; y); (2)

where p̂ = �i~r is the operator of the momentum of

an electron. In (2), we neglect the spin splitting in the

magnetic field.

We seek an explicit form for the electron wave-

function:  (x; y) = exp(ikx)�(y). In this case after some

algebra, the Schr�odinger equation Ĥ (x; y) = E (x; y)
can be written as

�
~
2

2m�

@2�

@y2
+

1

2
m�
2 [y � �k]

2
�(y) =

=

�
E �

~
2k2

2m�

!20

2

�
�(y); (3)

where � = ~!c=m
�
2

, 
2 = !2c +!
2
0. The solution of (3)

is a shifted harmonic oscillator wave function. Therefore,

the expression for energy subbands and a single-particle

wave function for the electron in l-th QW reads as [24]

Em(k) = Em + (1=2m�)(!0=
)
2
~
2k2; (4)

 l;m;k(r) = (1=2�)1=2eikx�m(y � �k) [Æ(z � ld)]
1=2

: (5)

Here,

Em = ~
(m+ 1=2);

�m(y) = (2mm!�1=2l
)
�1=2 exp

�
�
y2

2l2


�
Hm(y=l
); (6)
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m is the number of the energy subband, Hm(y) is an

Hermite polynomial, l
 = (~=m�
)1=2 is a typical width
of the wave function (which is merely a magnetic length,

if !0 = 0).

As evident from expression (4), in the presence of a

confining potential in the y-direction, the degeneracy of

Landau levels is broken and each Landau level forms a

subband. At the same time, the wave function (5) in

y-direction depends on the wavevector k in x-direction.

So, in the presence of confining potential and external

magnetic fields the directions x and y are coupled.

To obtain the spectrum of collective excitations,

we start with a standard linear-response theory in

the random phase approximation. Let us consider

Æn(r) which is a deviation of the electron density

from its equilibrium value. On applying the above-

mentioned standard linear-response theory and the

random phase approximation, the matrix element of the

electron density deviation from its equilibrium value

Æn
;
0=h
jÆnj
0i=
R
dr �


(r) 
0 (r)Æn(r) can be related

to the perturbation as

Æn

0 =
f
0 � f


E
0 �E
 + ~!
V

0 : (7)

Here, 
 = (l;m; k) is a composite index, f
 is the Fermi

distribution function, V
;
0 = h
jV j
0i are the matrix

elements of the perturbing potential V = V ex + V H
,

V ex
and V H

are the external and Hartree potentials,

respectively.

Note that the matrix elements of the Hartree

potential can be expressed in terms of the perturbation

[6] as

V H


0 =

e2

"

Z
dr �


(r) 
0(r)

Z
dr1

jr� r1j
Æn(r1): (8)

Considering that

Æn(r1) =
X
��0

Æn��0 �

�0(r1) �(r1); � = (n; s; k1);

we obtain

V H


0 =

X
��0

W

0��0Æn��0 : (9)

Here,

W

0��0 =
e2

"

Z
dr �


(r) 
0(r)�

�

Z
dr1

jr� r1j
 �

�0(r1) �(r1) =

=
Æ(q � q1)

2�

2e2

"
Æn;n0Æl;l0Wl;njm;m0;s;s0 (k

0; k; k01; k1) ; (10)

where

Wl;njm;m0;s;s0 (k
0; k; k01; k1) =

Z
�m(y � �k)�

��m0(y � �k0)�s0 (y1 � �k01)�s(y1 � �k1)�

�K0

�
q((y � y1)

2 + (l � n)2d2)1=2
�
dydy1; (11)

q = k0 � k, q1 = k01 � k1, K0(x) is the zeroth-

order modified Bessel function of the second kind. From

(7),(9), and (10), following some algebra, we get

Ænlmk;lm0k+q =
flm0k+q � flmk

Elm0k+q �Elmk + ~!

 
V ex
lmk;lm0k+q+

+
2e2

"

1

�

X
n;s;s0

Z
dk1Ænnsk1;ns0k1+q�

�Wl;njm;m0;s;s0(k + q; k; k1 + q; k1)

!
: (12)

The factor of 2 before the summation symbol comes from

the spin degeneracy.

Collective excitations of the QW array exist when

Eq. (12) has a nonzero solution Æn in the case where the

external perturbation V ex = 0. Since the parameter �k

is the small value [22], we can expand the wave function

in terms of � as �m(y � �k) = �m(y) � �k�0m(y) +
1
2
�2k2�00m(y). In addition, at q ! 0, we can admit

�(k+ q) � �k, �(k1+ q) � �k1. Under this assumption,

we can represent (11) in the form

Wl;njm;m0;s;s0 (k + q; k; k1 + q; k1) �

� C
(0)

l;njm;m0;s;s0
(q) + �kC

(1)

l;njm;m0;s;s0
(q)+

+�2k2C
(2)

l;njm;m0;s;s0
(q) + �k1

n
B
(1)

l;njm;m0;s;s0
(q)+

+�kB
(2)

l;njm;m0;s;s0
(q)
o
+ �2k21Al;njm;m0;s;s0(q); (13)

where

C
(0)

l;njm;m0;s;s0
(q) =

Z
�m(y)�m0(y)�s(y1)�s0(y1)�

�K0

�
q((y � y1)

2 + (l � n)2d2)1=2
�
dydy1;

C
(1)

l;njm;m0;s;s0
(q) = �

Z
�s(y1)�s0 (y1)�
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�f�0m(y)�m0 (y) + �0m0(y)�m(y)g�

�K0

�
q((y � y1)

2 + (l � n)2d2)1=2
�
dydy1;

C
(2)

l;njm;m0;s;s0
(q) =

1

2

Z
�s(y1)�s0 (y1)�

�f�00m(y)�m0 (y) + �00m0(y)�m(y)+

+ 2�0m(y)�0m0(y)g�

�K0

�
q((y � y1)

2 + (l � n)2d2)1=2
�
dydy1;

B
(1)

l;njm;m0;s;s0
(q) = �

Z
�m(y)�m0 (y)�

�f�0s(y1)�s0 (y1) + �0s0(y1)�s(y1)g�

�K0

�
q((y � y1)

2 + (l � n)2d2)1=2
�
dydy1;

B
(2)

l;njm;m0;s;s0
(q) =

Z
f�0m(y)�m0(y)+

+ �0m0(y)�m(y)g�

�f�0s(y1)�s0 (y1) + �0s0(y1)�s(y1)g�

�K0

�
q((y � y1)

2 + (l � n)2d2)1=2
�
dydy1;

Al;njm;m0;s;s0(q) =
1

2

Z
�m(y)�m0(y)�

�f�00s (y1)�s0 (y1) + �00s0(y1)�s(y1)+

+ 2�0s(y1)�
0

s0 (y1)g�

�K0

�
q((y � y1)

2 + (l � n)2d2)1=2
�
dydy1:

Substituting (13) into (12), we obtain

Ænlmk;lm0k+q =
2e2

"

1

�

flm0k+q � flmk

Elm0k+q �Elmk + ~!
�

�

X
n;s;s0

Z
dk1Ænnsk1;ns0k1+q

h
C
(0)

l;njm;m0;s;s0
(q)+

+�kC
(1)

l;njm;m0;s;s0
(q) + �2k2C

(2)

l;njm;m0;s;s0
(q)+

+k1

n
�B

(1)

l;njm;m0;s;s0
(q) + �2kB

(2)

l;njm;m0;s;s0
(q)
o
+

+�2k21Al;njm;m0;s;s0(q)
�
: (14)

Multiplying both the left- and right-hand side of Eq. (14)

by 2ki (i = 0; 1; 2) and integrating, we get

�
(0)

ljm;m0
=

2e2

"

X
n;s;s0

hn
C
(0)

l;njm;m0;s;s0
(q)�

(0)

ljm;m0
+

+�C
(1)

l;njm;m0;s;s0
(q)�

(1)

ljm;m0
+

+ �2C
(2)

l;njm;m0;s;s0
(q)�

(2)

ljm;m0

o
�
(0)

njs;s0
+

+
n
�B

(1)

l;njm;m0;s;s0
(q)�

(0)

ljm;m0
+

+ �2B
(2)

l;njm;m0;s;s0
(q)�

(1)

ljm;m0

o
�
(1)

njs;s0
+

+ �2Al;njm;m0;s;s0(q)�
(0)

ljm;m0
�
(2)

njs;s0

i
; (15)

�
(1)

ljm;m0
=

2e2

"

X
n;s;s0

hn
C
(0)

l;njm;m0;s;s0
(q)�

(1)

ljm;m0
+

+�C
(1)

l;njm;m0;s;s0
(q)�

(2)

ljm;m0
+

+�2C
(2)

l;njm;m0;s;s0
(q)�

(3)

ljm;m0

o
�
(0)

njs;s0
+

+
n
�B

(1)

l;njm;m0;s;s0
(q)�

(1)

ljm;m0
+

+ �2B
(2)

l;njm;m0;s;s0
(q)�

(2)

ljm;m0

o
�
(1)

njs;s0
+

+ �2Al;njm;m0;s;s0(q)�
(1)

ljm;m0
�
(2)

njs;s0

i
; (16)

�
(2)

ljm;m0
=

2e2

"

X
n;s;s0

hn
C
(0)

l;njm;m0;s;s0
(q)�

(2)

ljm;m0
+

+�C
(1)

l;njm;m0;s;s0
(q)�

(3)

ljm;m0
+

+�2C
(2)

l;njm;m0;s;s0
(q)�

(4)

ljm;m0

o
�
(0)

njs;s0
+

+
n
�B

(1)

l;njm;m0;s;s0
(q)�

(2)

ljm;m0
+

+ �2B
(2)

l;njm;m0;s;s0
(q)�

(3)

ljm;m0

o
�
(1)

njs;s0
+

+ �2Al;njm;m0;s;s0(q)�
(2)

ljm;m0
�
(2)

njs;s0

i
; (17)

where

�
(i)

njs;s0
= 2

Z
dk1k

i
1Ænnsk1;ns0k1+q ;
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�
(i)

ljm;m0
= 2

Z
dkkiÆnlmk;lm0k+q ;

�
(i)

ljm;m0
=

1

�

Z
dk ki

flm0k+q � flmk

Elm0k+q �Elmk + ~!
:

We restrict our consideration to intrasubband

plasmons. So, we consider that the intersubband

transitions of charge carriers are absent. Then �
(i)

ljm;m0
=

0 if m 6= m0
, and the system of equations (15)�(17) can

be rewritten as

�
(p)

ljm;m
=

2e2

"

X
n;s;t

Ul;n;m;s;p;t�
(t)

njs;s
; (18)

where

Ul;n;m;s;p;1 = C
(0)

l;njm;m;s;s
(q)�

(p)

ljm;m
+

+�C
(1)

l;njm;m;s;s
(q)�

(p+1)

ljm;m
+ �2C

(2)

l;njm;m;s;s
(q)�

(p+2)

ljm;m
;

Ul;n;m;s;p;2 = �B
(1)

l;njm;m;s;s
(q)�

(p)

ljm;m
+

+�2B
(2)

l;njm;m;s;s
(q)�

(p+1)

ljm;m
;

Ul;n;m;s;p;3 = �2Al;njm;m;s;s(q)�
(p)

ljm;m
; p = 0; :::; 2:

Equation (18) is a set of linear equations, and it has

the nonzero solution with its determinant being equal

to zero. Thus, the plasmon dispersion relation can be

written in the form:

det





Æl;nÆm;sÆp;t �
2e2

"
Ul;n;m;s;p;t





 = 0: (19)

Note, that as M = 1, the dispersion relation (19)

coincides with the dispersion relation for plasmons in a

single QW in the presence of an external magnetic field

obtained in [22].

At a zero temperature and within the long-

wavelength limit (where q ! 0), the function �
(i)

ljm;m

can be written as

�
(0)

ljm;m
=

2glm
�mr

q2

!2
; �

(1)

ljm;m
= �

a

b
�
(0)

ljmm
;

�
(2)

ljm;m
=
�a
b

�2
�
(0)

ljmm
�
q

b

2glm
�
;

�
(3)

ljm;m
= �

�a
b

�3
�
(0)

ljmm
+
q

b

2glm
�

�
q +

a

b

�
;

�
(4)

ljm;m
=
�a
b

�4
�
(0)

ljmm
�

Fig. 1. Dispersion curves of intrasubband plasmons in an ordered

array of QWs with parameters: M = 5, d = 15:0l0, Nl =

N = const (l = 0; :::;M � 1), !p =
�
2e2N="m�l2

0

�
1=2

= 1:5!0,

!c = 0:75!0

�
q

b

2glm
�

"
q2 +

�
2glm
�

�2

+
a

b
q +

�a
b

�2#
;

where

a =
~
2q2

2mr

+ ~!; b =
~
2q

mr

; mr = m�(
=!0)
2;

glm =
1

~

q
2mr(E

l
F �Em);

El
F is a Fermi level in the l-th QW.

2. Intrasubband Plasmons in the Ordered QW

Array

Fig. 1 presents the dispersion curves for intrasubband

plasmons in a finite ordered array of QWs (in which

1D electron densities are equal in all QWs), placed

into the external magnetic field. The y-axis gives the

dimensionless frequency !=!0, and the x-axis gives the

dimensionless wavevector ql0. As the model of the QW

we use a heterostructure GaAs with the effective mass

of electrons m� = 0:067m0 (m0 is the mass of a

free electron) and the dielectric constant " = 12. For
comparison, the dispersion curve for the plasmons in a

single QWwith the same parameters is depicted in Fig. 1

by dashed curve 1. As seen from Fig. 1, the intrasubband

plasmon spectrum in the finite ordered array of QWs

contains M modes. Thus, the number of modes in the

spectrum is equal to that of QWs in the array [14] (it
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Fig. 2. Dependence of the intrasubband plasmon frequency on

the plasma frequency of electrons in QW at M = 5, ql0 = 0:04,

d = 15:0l0, Nl = const (l = 0; :::;M�1) and for three values of the

cyclotron frequency of electrons in QWs: !c = 0 (a), !c = 0:25!0

(b), !c = 0:75!0 (c)

should be mentioned that, in the case under

consideration, the value of plasma frequency of the

electrons in QWs is chosen in such a way that only the

lowest energy subband is occupied by electrons in each

QW). Note that, with an increase of the wavenumber

q, the plasmon frequency ! increases monotonically

likewise. It should be emphasized that in the limit qd!

1, when the Coulomb interaction between electrons in

adjacent QWs is negligible, the dispersion curves for

plasmon modes are gradually drawn together and are

close to the dispersion curve for the plasmon in the single

QW with the same density of electrons (dashed curve 1).

Now we consider the influence of the electron density

value on the properties of intrasubband plasmons in the

ordered array of QWs. Fig. 2 shows the dependence

of the plasmon frequency on the plasma frequency of

electrons in QWs for a fixed value of the wavevector

q and for different values of the cyclotron frequency of

electrons. The y-axis gives the dimensionless frequency

!=!0, and the x-axis gives the dimensionless plasma

frequency of electrons in QWs !p=!0. We consider

first the case where !c = 0 (Fig. 2,a), i.e. when the

external magnetic field is absent. Fig. 2,a shows that,

in this case, the frequency of intrasubband plasmons

increases with the plasma frequency of electrons in QWs

!p. At the same time at small values of !p when the

Fermi energy is below the bottom of the first subband

(El
F
< E1) and the lowest (zero) subband in each QW

is only occupied by electrons, the intrasubband plasmon

spectrum contains M modes (curves 1). Nevertheless,

when the value of plasma frequency of electrons in

QWs exceeds the value of order !p � 2:68!0, the

intrasubband plasmon spectrum contains 2M modes

(curves 1 and 2). In this case, the Fermi energy is

above the bottom of the first subband but below the

bottom of the second subband and, consequently, there

are already two subbands (zero and first) in each QW

which are occupied by electrons. With a further increase

of !p, new subbands become occupied by electrons, and

each occupied subband in each QW supports its own

intrasubband plasmon. Hence, the general number of

intrasubband plasmon modes in a finite ordered array

of QWs without external magnetic field is equal to nM

(n is the quantity of subbands in each QW occupied by

electrons).

The properties of intrasubband plasmons change to

a certain extent, when the ordered array of QWs is

placed into an external magnetic field. So, at a weak

magnetic field (Fig. 2,b), the frequency of intrasubband

plasmons supported by the lowest subband (curves 1)

is increased monotonically with !p. At the same time,
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when the Fermi energy exceeds the bottom of the

first subband (and it becomes to be populated by

electrons), the intrasubband plasmons supported by the

first subbands in each QW arise in the spectrum (curves

2). The frequency of these plasmons (as distinct from the

case of the zero magnetic field, see Fig. 2,a) increases

nonmonotonically with !p. Therefore, starting with

some value of !p (in our case starting with !p � 3:55!0)
the frequency of intrasubband plasmons supported by

the first subbands is decreased with an increase of !p,

and these plasmons disappear at !p � 4:0!0. Note

that intrasubband plasmons supported by the second

subbands (curves 3) possess the same properties.

In the case of a higher magnetic field (Fig. 2,c),

the dependence of the intrasubband plasmon frequency

on the value of plasma frequency of electrons in QWs

offers the following properties. So, the frequency of

intrasubband plasmons supported by zero (curves 1),

first (curves 2), and second (curves 3) subbands depends

nonmonotonically on the value of !p. At the same time,

there are certain intervals of values of !p (in this case,

2:7!0 < !p < 3:2!0, 4:45!0 < !p < 4:9!0), in which the

intrasubband plasmons do not exist.

3. Intrasubband Plasmons in a Weakly

Disordered Array of Quantum Wires

Now we consider the spectrum of intrasubband plasmons

in a weakly disordered array of QWs, in which all QWs

have the equal 1D density of electrons N except one

defect QW whose density of electrons is equal to Nd.

Hence, the density of electrons in the l-th QW can be

expressed asNl = (Nd�N)Æpl+N . Here, p is the number

of defect QWs arranged in the plane z = pd, Æpl is the

Kronecker delta.

Fig. 3 presents the spectrum of intrasubband

plasmons (solid curves) in a weakly disordered array

of QWs for the zero external magnetic field. For

comparison the dispersion curves for the intrasubband

plasmons in a single QW with the electron densities

N and Nd are shown by dashed curves 1 and 2,

correspondingly. As seen from Fig. 3, the propagation

of intrasubband plasmons in a weakly disordered array

of QWs is characterized by the presence of the local

plasmon mode (LPM). In the zero external magnetic

field when the density of electrons in the defect QW is

less than the density of electrons in other QW (Nd < N),

the LPM lies in the lower-frequency region in comparison

with the usual plasmon modes (Fig. 3,a). Accordingly,

if Nd > N , the LPM lies in the higher-frequency region

in comparison with the usual ones (Fig. 3,b) [14]. It

Fig. 3. Disperison curves of intrasubband plasmons in a weakly

disordered array of QWs for parameters M = 5, !p = 1:5!0,

!c = 0, d = 15:0l0, p = 0 and for two values of the 1D density

of electrons in defect QW: Nd=N = 0; 5 (a), 1,5 (b). The values of

parameters are chosen in a manner that one (zeroth) subband in

all QWs is only occupied by electrons

should be poined out that, in the limit qd ! 1 as the

Coulomb interaction between electrons in adjacent QWs

is negligible, the LPM dispersion curve is close to the

dispersion curve for the plasmons in a single QW with

the density of electrons Nd (curve 2). Meanwhile, the

dispersion curves for usual plasmon modes in the limit

qd ! 1 are gradually drawn together and are close to

the dispersion curve for the plasmon in the single QW

with the density of electrons N (curve 1).

Now we consider the dependence of the intrasubband

plasmon spectrum on the 1D electron density in a defect

QW. Fig. 4 depicts the dependence of the intrasubband

plasmon frequency on the ratio Nd=N for a fixed value
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Fig. 4. Dependence of the intrasubband plasmon frequency on the

ratio Nd=N at M = 5, ql0 = 0:04, d = 15:0l0, !p = 3:0!0, !c = 0

and for three different positions of defect QW in the array: p = 0

(a), 1 (b) and 2 (c). At these values of parameters there are two

subbands in all QWs (except the defect QW), filled by electrons.

Meanwhile, in the defect QW, the number of filled subbands is

determined by the value of Nd

of the wavevector q and for different positions of the

defect QW in the array. As seen from Fig. 4, in the zero

external magnetic field the number of LPM (depicted by

bold solid curves) in the intrasubband plasmon spectrum

is equal to the number of subbands in the defect QW

occupied by electrons. As seen from the comparison of

Fig. 4a�c, the LPM spectrum is weakly dependent on

the position of the defect QW in a weakly disordered

array of QWs. That phenomenon can be explained

by the fact that almost the entire flux of the LPM

electromagnetic energy is localized in the vicinity of

the defect QW [19]. However, the spectrum of usual

plasmon modes is more sensitive to the position of the

defect QW in the array. Note that the frequency of LPM

increases with the ratio Nd=N . At the same time, the

usual spectrum of plasmon modes is characterized by

these features. As p = 0 (Fig. 4,a) with an increase

of the value Nd=N , the frequency of all usual plasmon

modes increases as well. It should be noted that the

frequencies of intrasubband plasmons supported by the

first subbands in QWs (curves 10�40) are less sensitive to

the value of ratio Nd=N as compared to the frequencies

of intrasubband plasmons supported by zero subbands

of QWs (curves 1�4). However, at p = 1 (Fig. 4,b),

the frequencies of two of the usual plasmon modes

(curves 2 and 20) do not practically depend on the

value of ratio Nd=N . For p = 2 (Fig. 4,c), there

are already four intrasubband plasmon modes (curves

1,10,3,30) which possess such a distinctive feature. The

spatial distribution of the Hartree potential for those

modes is distinguished by the fact, that the absolute

value of the Hartree potential in the vicinity of the defect

QW is negligible. Therefore, the defect QW does not

exert a significant influence on the dispersion properties

of plasmon modes [19].

The properties of intrasubband plasmons change if

a weakly disordered array of QWs is placed into an

external magnetic field. Fig. 5 presents the dependence

of the plasmon frequency on the ratio Nd=N for a fixed

value of the wavenumber q and for different positions

of the defect QW in the array. As seen from Fig. 5,

the dependence of LPM frequency on ratio Nd=N is

nonmonotonic in the external magnetic field. So, the

frequency of LPM supported by the defect QW zero

subband (curve LMP1) increases with the ratio Nd=N

in the range 0 < Nd=N < 0:39. At the same time,

as Nd=N increases in the range 0:39 < Nd=N < 0:51,
the frequency of LMP supported by the defect QW

zero subband is decreased. Meanwhile, the frequencies

of LPM supported by the defect QW first and second

subbands (curves LPM2 and LPM3, correspondingly)

also depend nonmonotonically on the Nd=N . Notice that

when a weakly disordered array of QWs is placed into
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an external magnetic field, there are certain ranges of

the 1D electron density in the defect QW (in Fig. 5,

e.g., 0:51 < Nd=N < 0:82 and 1:46 < Nd=N < 1:98), in
which the LPMs do not exist. As evident from Fig. 5, in

the external magnetic field (as in the case with the zero

external magnetic field) at p = 1 or p = 2, the spectrum
of usual plasmon modes contains intrasubband modes

(curve 2 in Fig. 5,b, curves 1 and 3 in Fig. 5,c), whose

frequencies do not practically depend on the ratioNd=N .

Conclusion

We have calculated the intrasubband plasmon spectrum

of a finite array of QWs placed into an external magnetic

field. Two types of QW arrays have been considered: an

ordered array of QWs (in which all the QWs possess the

same 1D density of electrons) and a weakly disordered

array of QWs (in which the 1D densities of electrons are

equal in all QWs except one defect QW). It is found that,

in the ordered array of QWs in the zero magnetic field,

each subband filled by electrons in each QW supports its

own intrasubband plasmon. Hence, the total quantity of

intrasubband plasmon modes in the ordered QW array

is equal to the number of QWs in the array multiplied by

that of filled subbands in QW. Nevertheless, in nonzero

external magnetic fields, the quantity of intrasubband

plasmon modes depends on the magnetic field and the

1D electron density of QWs. In particular, in a high

enough external magnetic field, there are certain ranges

of 1D electron densities, in which none of intrasubband

plasmon modes exists in the spectrum.

In the case of a weakly disordered array of QWs,

the LPMs whose properties differ from those of other

modes exist in the plasmon spectrum. We point out

that, in contrast to the case of the zero magnetic field,

the dependence of the LPM frequency on the defect

QW 1D density of electrons for a sufficiently high

magnetic field is of nonmonotone character. Moreover,

for high magnetic fields, there are certain ranges of

the 1D electron density in the defect QW, in which

LMPs do not exist. In addition, it is found that the

intrasubband plasmon modes, whose spectrum does not

depend on the density of electrons of the defect QW [19],

also exist in the case of a nonzero external magnetic

field.

To conclude, it should be emphasized that the above-

mentioned features of plasmon spectra can be used for

the diagnostics of defects in QW structures. Hence, the

LPM properties can be applied to determine the electron

density in the defect QW. At the same time, the

Fig. 5. Dependence of the intrasubband plasmon frequency on the

ratio Nd=N at M = 5, ql0 = 0:04, d = 15:0l0, !p = 3:2!0,

!c = 0:75 and for different positions of defect QW in the array:

p = 0 (a), 1 (b) and 2 (c). These values of parameters correspond to

the case where, in all QWs (except the defect one), two subbands

(zeroth and first) are occupied by electrons. The number of filled

subbands in the defect QW is determined by the value of Nd

properties of usual plasmon modes can be used to define

the position of the defect QW in the array.
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ÂÍÓÒÐIØÍÜÎÏIÄÇÎÍÍI ÏËÀÇÌÎÍÈ Ó ÑÊIÍ×ÅÍÍÎÌÓ

ÌÀÑÈÂI ÊÂÀÍÒÎÂÈÕ ÄÐÎÒIÂ, ÐÎÇÌIÙÅÍÈÕ

Ó ÇÎÂÍIØÍÜÎÌÓ ÌÀÃÍIÒÍÎÌÓ ÏÎËI

Þ.Â. Áëóäîâ

Ð å ç þ ì å

Òåîðåòè÷íî äîñëiäæåíî âíóòðiøíüîïiäçîííi ïëàçìîíè ó ìàñèâi

êâàíòîâèõ äðîòiâ (ÊÄ), ÿêèé ñêëàäà¹òüñÿ çi ñêií÷åííî¨ êiëü-

êîñòi ÊÄ, ðîçòàøîâàíèõ íà îäíàêîâié âiäñòàíi îäèí âiä îäíî-

ãî òà ðîçìiùåíèõ ó çîâíiøíüîìó ìàãíiòíîìó ïîëi. Áóëî ðîç-

ãëÿíóòî äâà âèäè ìàñèâiâ: óïîðÿäêîâàíèé ìàñèâ ç îäíàêîâîþ

îäíîâèìiðíîþ êîíöåíòðàöi¹þ åëåêòðîíiâ â óñiõ ÊÄ òà ñëàáêî-

ðîçóïîðÿäêîâàíèé ìàñèâ, â ÿêîìó îäíîâèìiðíà êîíöåíòðàöiÿ
åëåêòðîíiâ â îäíîìó äåôåêòíîìó ÊÄ âiäðiçíÿëàñü âiä êîíöåí-

òðàöi¨ åëåêòðîíiâ ó ðåøòi ÊÄ. Äëÿ óïîðÿäêîâàíîãî ìàñèâó ÊÄ,

ðîçìiùåíèõ ó çîâíiøíüîìó ìàãíiòíîìó ïîëi, ïåðåäáà÷åíî íåìî-

íîòîííèé õàðàêòåð çàëåæíîñòi ÷àñòîòè ïëàçìîíiâ âiä âåëè÷è-

íè îäíîâèìiðíî¨ êîíöåíòðàöi¨ åëåêòðîíiâ ó ÊÄ. Ó ñèëüíîìó

ìàãíiòíîìó ïîëi ïîêàçàíî iñíóâàííÿ ïåâíèõ äiàïàçîíiâ îäíî-

âèìiðíî¨ êîíöåíòðàöi¨ åëåêòðîíiâ ó ÊÄ, â ÿêèõ ïëàçìîííi ìî-

äè íå iñíóþòü. Äëÿ ñëàáêîðîçóïîðÿäêîâàíîãî ìàñèâó ÊÄ âèÿâ-
ëåíî iñíóâàííÿ ëîêàëüíèõ ïëàçìîííèõ ìîä, âëàñòèâîñòi ÿêèõ

âiäðiçíÿþòüñÿ âiä âëàñòèâîñòåé çâè÷àéíèõ ïëàçìîííèõ ìîä. Ó

ñèëüíîìó ìàãíiòíîìó ïîëi ïîêàçàíî åôåêò çíèêíåííÿ ëîêàëü-

íèõ ïëàçìîííèõ ìîä ó ïåâíèõ äiàïàçîíàõ çíà÷åíü îäíîâèìiðíî¨

êîíöåíòðàöi¨ åëåêòðîíiâ ó äåôåêòíîìó ÊÄ.
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