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The paper deals with the theoretical investigation of intrasubband
plasmons in an array of quantum wires, consisting of a finite
number of quantum wires (QWs) arranged at an equal distance
one from another and placed into an external magnetic field. T'wo
types of the arrays of QWs are under consideration: an ordered
array of QWs with equal electron densities in all QWs and a
weakly disordered array of QWs which is characterized by the
fact that the density of electrons of one defect QW is different
from that of other QWs. For the ordered array of QWs placed
into an external magnetic field, the nonmonotone dependence of
the plasmon frequency on the 1D density of electrons in QWs is
predicted. For a high magnetic field, the existence of 1D electron
density ranges, in which plasmon modes do not exist, is shown.
For a weakly disordered array of QWs, the existence of the local
plasmon modes, whose properties differ from those of usual modes,
is found. At high magnetic fields, the disappearance of the local
plasmon modes at certain ranges of the 1D electron density in a
defect QW is shown.

Introduction

Quasi one-dimensional electron systems (1DESs) or
QWs are artificial structures, in which the motion of
charge carriers is confined in two transverse directions
but is essentially free (in the effective mass sense) in the
longitudinal direction [1—3]. Usually, QWs are produced
by imposing the one-dimensional confinement to a two-
dimensional electron system (2DES). This additional
confinement is, in general, weaker than the strong
confinement of original 2DES [4]. One of the motivations
to study QWs is the fact that the mobility of charge
carriers is higher than that in 2DES, on which they are
built. The reason for this is that the impurity content
and distribution around the QWSs can be selectively
controlled, thereby producing the enhanced mobility [5].

Collective charge-density excitations or plasmons
in QWs are of great interest to physicists. Earlier,
plasmons in QWs were investigated both theoretically
[5-9] and experimentally [10-13]. It was shown in those
papers that plasmons in QWs possess some new unusual
dispersion properties. Firstly, the plasmon spectrum
strongly depends on the width of QW. Secondly, 1D

ISSN 0508-1265. Ukr. J. Phys. 2004. V. 49, N 10

plasmons are free from the Landau damping [6,9] over
the whole range of wavevectors.

From the viewpoint of practical application, the
so-called weakly disordered arrays of low-dimensional
systems are the objects of interest. Recently the
plasmons in a weakly disordered superlattice formed of a
finite number of equally spaced two-dimensional electron
systems have been theoretically investigated in the cases
where the external magnetic field is absent [14-16]
or present [17]. The weakly disordered superlattice is
characterized by the fact that all of two-dimensional
systems possess the equal density of electrons except
one (“defect”) two-dimensional system, whose density
of electrons differs from that of other two-dimensional
systems. It was found that the plasmon spectrum of
such an array contains the local plasmon mode, whose
properties differ from those of other plasmon modes.
The existence of a local plasmon mode is completely
analogous to the existence of the local phonon mode
originally obtained by Lifshitz in 1947 for the problem
of phonon modes in a regular crystal containing a
single isotope impurity [18]. Notice that practically the
entire flux of electromagnetic energy of plasmons, which
correspond to the local mode, is concentrated in the
vicinity of the defect 2DES. At the same time the
opportunity of using the plasmon spectrum peculiarities
to determine the parameters of defects in the superlattice
was indicated in [17].

Plasmons in a finite weakly disordered array of
QWs without an external magnetic field have been
investigated theoretically in [19]. It has been supposed
that the defect QW can occupy an arbitrary position in
the array. It is shown in [19] that the position of a defect
QW in the array does not strongly affect the spectrum
of the local plasmon mode but it exerts an significant
influence on the spectrum of other plasmon modes. At
the same time, when the defect QW is arranged inside
the array, the plasmon spectrum contains modes, whose
dispersion properties do not depend on the electron
density in the defect QW.
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The external magnetic field is known to cause
considerable changes in the plasmon spectrum of
low-dimensional structures. So, plasmons in single
2DES placed into the external magnetic field directed
perpendicularly to the 2DES were earlier investigated
both theoretically [20] and experimentally [21]. It was
shown that the dispersion relation for plasmons in 2DES
placed into the external magnetic field can be expressed
as

Wi = wp +w?, (1)
where wp is the frequency of a plasmon in the presence of
an external magnetic field, w. = eB/m*c is the cyclotron
resonance frequency, and w is the frequency of plasmons
when the external magnetic field is absent.

Plasmons in a single 1DES was also investigated
theoretically [22, 23] and experimentally [11, 12]. As
was shown experimentally [11], the dispersion law
for a one-dimensional plasmon in the presence of
the magnetic field can also be described by (1).
Nevertheless, another one-dimensional plasmon mode
was found experimentally in [12]. The last possesses
the negative magnetic field dispersion. At the same
time, it was shown theoretically [22] that the above-
mentioned negative magnetic field dispersion for one
dimensionality occurs in the high magnetic field only.
At a weak magnetic field, the properties of intrasubband
plasmons in a single QW depend considerably on the
one-dimensional electron density in the QW. Thus, if the
density of electrons in the QW exceeds a certain critical
value, the intrasubband plasmon frequency increases
with the magnetic field. In the opposite case where the
density of electrons in the QW is smaller than the critical
value, the intrasubband plasmon frequency decreases as
the magnetic field increases.

In this paper, we investigate intrasubband plasmons
in a finite array of QWs, placed into an external
magnetic field. We consider two types of QW array: an
array in which the 1D elecron densities are equal in all
QWs (the ordered array of QWs) and an array in which
the 1D electron density of one defect QW differs from
that of other QWs (weakly disordered array of QWs).

1. Dispersion Relation

We consider the array of QWSs consisting of a finite
number M of QWs arranged in the planes z = Id
(Il =0,...,M — 1 is the number of the QW, d is the
distance between adjacent QWs). At the same time,
we assume that the 1D density of electrons in the I-
th QW is equal to IN;. The QWSs are considered to
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be placed into the uniform dielectric medium with the
dielectric constant €. We use such a simple model (in
which the dielectric constants of the media inside and
outside the array are equal) to avoid the appearance of
a surface plasmon mode. We reckon the movement of
electrons to be free in the z-direction and considerably
confined in the directions y and z. We assume that
the array of QWs is built on ideal 2DESs by applying
an additional confining potential along the y-direction,
which is parabolic: Ueont = $m*wiy®. Here, m* is the
effective mass of an electron, wy is the classical oscillation
frequency of the electron placed in the potential Ucopt.
At the same time, we suppose that the width of all QWs
is equal to zero in z-direction. The external constant
magnetic field is taken to be perpendicular to the plane
zy along the axis z.

To obtain the single-particle wave-function of the
electron in a QW we write the expression for the vector
potential A in the Landau gauge: A = (—By,0,0). So, in
this case, the single-particle Hamiltonian of the electrons
is

N e \2
A= (p+A) +Ueoni(e,y), 2)
where p = —ihV is the operator of the momentum of
an electron. In (2), we neglect the spin splitting in the
magnetic field.

We seek an explicit form for the electron wave-
function: ¥ (x,y) = exp(ikz)d(y). In this case after some
algebra, the Schrodinger equation I;[w(a:,y) = Ey(z,y)
can be written as

0% 1

“om g H Y — okl 6) =
h2k.2 2
{5 G b o, 3)

where o = hw./m*Q?, Q? = w? +w3. The solution of (3)
is a shifted harmonic oscillator wave function. Therefore,
the expression for energy subbands and a single-particle
wave function for the electron in I-th QW reads as [24]

Epm(k) = B + (1/2m*) (w0 /Q)*12k2, (4)

i (r) = (1/20) 2% ¢ (y — ak) [6(z — 1d)]'/*. (5)
Here,

B = hQ(m +1/2),
= (2™mir 1) "% ex —i m ,
6u(s) = (2"l 710) V2 exp (~ 2 ) Hulule). (0
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m is the number of the energy subband, H,,(y) is an
Hermite polynomial, lg = (/m*Q)'/? is a typical width
of the wave function (which is merely a magnetic length,
if Wo = 0)

As evident from expression (4), in the presence of a
confining potential in the y-direction, the degeneracy of
Landau levels is broken and each Landau level forms a
subband. At the same time, the wave function (5) in
y-direction depends on the wavevector k in z-direction.
So, in the presence of confining potential and external
magnetic fields the directions z and y are coupled.

To obtain the spectrum of collective excitations,
we start with a standard linear-response theory in
the random phase approximation. Let us consider
on(r) which is a deviation of the electron density
from its equilibrium value. On applying the above-
mentioned standard linear-response theory and the
random phase approximation, the matrix element of the
electron density deviation from its equilibrium value

0Ny =(y|0n|y")=[ dripX ()i, (r)dn(r) can be related
to the perturbation as
ONyyr = v = fy Vi (7)

Ey B, +ho

Here, v = (I, m, k) is a composite index, f, is the Fermi
distribution function, V., = (y|V|y') are the matrix
elements of the perturbing potential V = Ve 4+ VH
Vex and VH are the external and Hartree potentials,
respectively.

Note that the matrix elements of the Hartree
potential can be expressed in terms of the perturbation
[6] as

dI‘:;1 | on(ry). (8)

2
Vi =< [ [ 22

Considering that

)= 3 dngg i (r)us(ry), B =(n,s,k),
BB’
we obtain
VA{I—,IY/ = Z W»YV/BB/(STLBB,_ (9)
BB’

Here,

2
W =< [ drus )y ()

d *
X/ﬁd’ﬁ’(rl)djﬁ(rl) =
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5(‘1 —q1) 2¢?

o c 6nn’6ll’vVln|mm 5,8’ (k k klakl) ( )

where
I/Vl,n|m,m’,s,s’ (k,; k: ki; kl) = /¢m(y - Ckk?)X
X¢m’ (y - ak,)¢s’ (yl - aki)‘f)s (yl

x K (q((y —y1)? +

— ozk:l)x

(11)

g = kK —k, ¢ = Kk — ki, Ko(z) is the zeroth-
order modified Bessel function of the second kind. From
(7),(9), and (10), following some algebra, we get

(I— n)2d2)1/2) dydy,,

fim'k+q — fimk ox
OMNimk,im! kg = Vi +
, Imk,im'k
" Bimiktrq — Epr, + B \ It
26 1
E dklénnskl,ns’k1+q
n,s, S

XWl,n\m,m’,s,s’ (k +4q, k; kl +q, kl)) . (12)

The factor of 2 before the summation symbol comes from
the spin degeneracy.

Collective excitations of the QW array exist when
Eq. (12) has a nonzero solution dn in the case where the
external perturbation V® = 0. Since the parameter ak
is the small value [22], we can expand the wave function
in terms of a as ¢n(y — ak) = édn(y) — akd!, (y) +
1a?k?*¢!) (y). In addition, at ¢ — 0, we can admit
a(k+q) =~ ak, a(k, + q) = ak;. Under this assumption,
we can represent (11) in the form

I/Vl,n|m,m’,s,s’ (k +q, k: kl +4q, kl) ~

NCI((:L)|mm ss( )+akcln\mm s,8' (q)+

+a2k2C

l,n|m,m’, ss()

+ aky {Bl(73|m m',s,s’ (q)+

+akBl( 73\m m',s,s’ ((])} + azk%Al,nlm,m’,s,s’ (q)v (13)
where
Lt @) = [ ) 0)6 (10)61 (1) %
x Ky (q((y - yl)2 + (- n)2d2)1/2) dydy,
Cl(,ln)\m,m’,s,s’ (q) = /¢S (y1)¢s’ (yl)x
1021
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X A{Dm (W) s (¥) + b (1) P (y) } X

x K (q((y — 1)’ + (1 - n)2d2)1/2) dydy,,

C’l(,2n)|m,m’,s,s’ ((]) = %/¢S(y1)¢s’ (yl)x
X Abm )b (y) + S (¥) P (y) +
+ 200, (Y) P (y) } X

<Ko (ally —pn)? + (1 =n)?d*)"/?) dydys,

B @)= - / D () (4) X

X {4 (1) s (Y1) + O (Y1) s (y1)} X

x Ko (ally = yn)? + (1 =n)?d*)"/?) dydys,

Bt @ = [ 1620000 )+
+ ¢Im’ () Pm (y)} X
X {0 (Y1) s (Y1) + P (Y1) s (y1) } ¥

x Ky (q((y — 1)’ + (1 - n)2d2)1/2) dydy,,

Al,n\m,m’,s,s’ (q) = %/¢m(y)¢m’ (y)X

X {9 (1) bs (Y1) + O (Y1) s (y1)+

+ 20 (y1) s (y1)} x

%Ko (ally —yn)? + (1 =n)?d*)"/?) dydys.

Substituting (13) into (12), we obtain

2¢* 1 firg = fim o
€ T Epnkrqg — Eimk + hw

0Nk im/ ktq =

<D

n,s,s’

(0)

dklfsnnskl ns' ki+q Cl,n\m,m’,s,s’ (q)+

+akc®

lL,n|m,m’,s,s’

2
(q) + a2k20,{73‘m7m,7s73, (g)+
1 2
+k {aB§7Tf‘m7m,7s7s, (@) + kB (q)} +
+O{2k%Al7n‘m7m/7s7sl (q)] .
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Multiplying both the left- and right-hand side of Eq. (14)

by 2k® (i = 0,1,2) and integrating, we get

2
Xl(\orzz,m’ = 2% Z I:{Cl(,(':z)|m,m’,s,s’ (q)Hl(\()rzz,m’+

n,s,s’

+aCl(,1n)\m,m’,s,s’ (q)Hl(ﬁr)n,m’ +
+ a2cl(,2n)|m,m’,s,s’ (q)Hl(frgz,m’ } Xglo\?s,s’—'_

@)+

lym,m’

+ {aB(l)

I,n|m,m’,s,s’

+ a*BY (')

l,n|m,m’,s,s'

+ azAl,n\m,m’,s,s’ (Q)H(O) R (2), ]
1 2e? 0 1
Xl(\rzz,m’ = ? Z I:{Cl(,n)|m,m’,s,s’ (q)Hl(\rzz,m’+

+0‘Cz(,1) (@)L, o+

nlm,m’,s,s’ lym,m’

2 3 0
+a2cl(,n)|m,m’,s,s’ (q)Hl(|r)n,m’ } XE’L‘?S,S’ +

(1) (1)
+ {aBl,n\m,m’,s,s’ (q)Hl\m,m’ +
2 p(2) (2) (1)
t+a Bl,n|m,m’,s,s’ (q)Hl\m,m’ } Xn|s,s’+

+ azAl,n\m,m’,s,s’ (Q)H(l) @) ] )

l|m,m’Xn|s,s’

2
(2 _ 2 (0) 2)
Xl\m,m’ - ? Z I:{Cl,nlm,m’,s,s’(q)HHm,m'+
n,s,s’

+aC}) ()Y

nlm,m’,s,s’ lym,m’

_|_

+a2 C’l(’i)lm’m!7sysr (q)H(4) } X(O) +

llm,m' n|s,s’

(1) (2)
+ {aBl,n\m,m’,s,s’ (q)Hl\m,m’ +
2 p(2) (3) (1)
t+a Bl,n|m,m’,s,s’ (q)Hl\m,m’ } Xn|s,s’+

+ azAl,n\m,m’,s,s’ (Q)H(2) *) ]

l|m,m’Xn|s,s’

where

(14) XS\)S,S’ = 2/dk1ki6nn5k17ns’k1+q’

(16)
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Xl(rr)n’m, = 2/dkki6nlmk,lm’k+q;

, 1 R S
Hfffnm,z—/dw L .
: T Eimik+q — Eimr + hw

intrasubband

intersubband
D
0 if m # m’, and the system of equations (15)7(17’) can
be rewritten as

We restrict our consideration to
plasmons. So, we consider that the

transitions of charge carriers are absent. Then IT

it = 2— > Uinmost X (18)
n,s,t

where

Uit = Ol oo (O

+C s @I +02CE L (@)

Uinym,s,p2 = O‘Bl,(,lrz\m,m,s,s(Q)H;er,m"—

+a?B, @I

Ui nm,s,p3 = a2Al,n|m,m,s,s(Q)Hl(f)n)%m: p=0,..2.
Equation (18) is a set of linear equations, and it has
the nonzero solution with its determinant being equal
to zero. Thus, the plasmon dispersion relation can be
written in the form:

2¢?

det |88 8 = ——Ubnmsn| = 0. (19)

Note, that as M = 1, the dispersion relation (19)
coincides with the dispersion relation for plasmons in a
single QW in the presence of an external magnetic field
obtained in [22].

At a zero temperature and within the long-
wavelength limit (where ¢ — 0), the function Hl(‘lr)mm
can be written as

W ©© () _ 0o
™, w2’ ljm,m b

H(O)

llm,m

@ _ ()2 (0 q2g

I—Il|m,m_ (g) Hl|mm_g ﬂ-m’

@ __ (9\} o) |, 429, a
Wi = = (5) Wi + 572 (05 5)

) :(9)411@ ~

lim,m
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Fig. 1. Dispersion curves of intrasubband plasmons in an ordered
array of QWs with parameters: M = 5, d = 15.0lp, N; =
N =const (I =0,...M —1), wp, = (262N/5m*lg)1/2 = 1.5wo,
we = 0.75wo

2
420w |2y (29w 4 9 (2
b w q+<ﬂ' +bq+(b) ’
where
h22 h2
a:%s + hw, b:mq, m, = m*(Q/wo)?,

1
= /2, (B~ B,

EL is a Fermi level in the [-th QW.

2. Intrasubband Plasmons in the Ordered QW
Array

Fig. 1 presents the dispersion curves for intrasubband
plasmons in a finite ordered array of QWs (in which
1D electron densities are equal in all QWSs), placed
into the external magnetic field. The y-axis gives the
dimensionless frequency w/wp, and the z-axis gives the
dimensionless wavevector glg. As the model of the QW
we use a heterostructure GaAs with the effective mass
of electrons m* = 0.067mgo (mo is the mass of a
free electron) and the dielectric constant € = 12. For
comparison, the dispersion curve for the plasmons in a
single QW with the same parameters is depicted in Fig. 1
by dashed curve 1. As seen from Fig. 1, the intrasubband
plasmon spectrum in the finite ordered array of QWs
contains M modes. Thus, the number of modes in the
spectrum is equal to that of QWs in the array [14] (it
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0,45
0.40] (3)

0,35 1
0,301
0,251
0,201
0,151
0,101
0,051 5

3
0’000,0 05 1.0 1,5 2,0 25 3,0 3,5 40 45

C()p/ )y

/0y

0,60

(b)

0,50-
0,40+

w/w00,30-

0,20+

0,10+ 3
2

005 10 1,5 2,0 2,5 3,0 3,5 40 4,5 5,0
W/

0,00

=t

0,40
0,351
0,304
0,25 2
0,20+
0,157
0,101
0,05

(c)

a)/ W

0,00+ e
0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,550 55
Wp/ Wy

Fig. 2. Dependence of the intrasubband plasmon frequency on
the plasma frequency of electrons in QW at M = 5, qlp = 0.04,
d = 15.0lp, N; = const (I =0, ..., M —1) and for three values of the
cyclotron frequency of electrons in QWs: we = 0 (a), we = 0.25wp
(b), we = 0.75wp (c)
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should be mentioned that, in the case under
consideration, the value of plasma frequency of the
electrons in QWs is chosen in such a way that only the
lowest energy subband is occupied by electrons in each
QW). Note that, with an increase of the wavenumber
q, the plasmon frequency w increases monotonically
likewise. It should be emphasized that in the limit gd —
00, when the Coulomb interaction between electrons in
adjacent QWs is negligible, the dispersion curves for
plasmon modes are gradually drawn together and are
close to the dispersion curve for the plasmon in the single
QW with the same density of electrons (dashed curve 1).

Now we consider the influence of the electron density
value on the properties of intrasubband plasmons in the
ordered array of QWs. Fig. 2 shows the dependence
of the plasmon frequency on the plasma frequency of
electrons in QWs for a fixed value of the wavevector
q and for different values of the cyclotron frequency of
electrons. The y-axis gives the dimensionless frequency
w/wp, and the z-axis gives the dimensionless plasma
frequency of electrons in QWs wp/wp. We consider
first the case where w. = 0 (Fig. 2,a), i.e. when the
external magnetic field is absent. Fig. 2,a shows that,
in this case, the frequency of intrasubband plasmons
increases with the plasma frequency of electrons in QWs
wp. At the same time at small values of w, when the
Fermi energy is below the bottom of the first subband
(E%, < Ei) and the lowest (zero) subband in each QW
is only occupied by electrons, the intrasubband plasmon
spectrum contains M modes (curves I). Nevertheless,
when the value of plasma frequency of electrons in
QWs exceeds the value of order w, =~ 2.68wy, the
intrasubband plasmon spectrum contains 2M modes
(curves 1 and 2). In this case, the Fermi energy is
above the bottom of the first subband but below the
bottom of the second subband and, consequently, there
are already two subbands (zero and first) in each QW
which are occupied by electrons. With a further increase
of w,, new subbands become occupied by electrons, and
each occupied subband in each QW supports its own
intrasubband plasmon. Hence, the general number of
intrasubband plasmon modes in a finite ordered array
of QWs without external magnetic field is equal to nM
(n is the quantity of subbands in each QW occupied by
electrons).

The properties of intrasubband plasmons change to
a certain extent, when the ordered array of QWs is
placed into an external magnetic field. So, at a weak
magnetic field (Fig. 2,b), the frequency of intrasubband
plasmons supported by the lowest subband (curves 1)
is increased monotonically with w,. At the same time,
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INTRASUBBAND PLASMONS IN A FINITE ARRAY

when the Fermi energy exceeds the bottom of the
first subband (and it becomes to be populated by
electrons), the intrasubband plasmons supported by the
first subbands in each QW arise in the spectrum (curves
2). The frequency of these plasmons (as distinct from the
case of the zero magnetic field, see Fig. 2,a) increases
nonmonotonically with w,. Therefore, starting with
some value of w,, (in our case starting with w, ~ 3.55wy)
the frequency of intrasubband plasmons supported by
the first subbands is decreased with an increase of w,
and these plasmons disappear at w, ~ 4.0wy. Note
that intrasubband plasmons supported by the second
subbands (curves ) possess the same properties.

In the case of a higher magnetic field (Fig. 2,c),
the dependence of the intrasubband plasmon frequency
on the value of plasma frequency of electrons in QWs
offers the following properties. So, the frequency of
intrasubband plasmons supported by zero (curves 1),
first (curves 2), and second (curves 8) subbands depends
nonmonotonically on the value of w,. At the same time,
there are certain intervals of values of w;, (in this case,
2.7Twy < wp < 3.2wp, 4.45wp < wp < 4.9wp), in which the
intrasubband plasmons do not exist.

3. Intrasubband Plasmons in a Weakly
Disordered Array of Quantum Wires

Now we consider the spectrum of intrasubband plasmons
in a weakly disordered array of QWs, in which all QWs
have the equal 1D density of electrons N except one
defect QW whose density of electrons is equal to Ny.
Hence, the density of electrons in the [-th QW can be
expressed as Ny = (Ng—N)d,+N. Here, p is the number
of defect QWs arranged in the plane z = pd, dp; is the
Kronecker delta.

Fig. 3 presents the spectrum of intrasubband
plasmons (solid curves) in a weakly disordered array
of QWs for the zero external magnetic field. For
comparison the dispersion curves for the intrasubband
plasmons in a single QW with the electron densities
N and Ny are shown by dashed curves I and 2,
correspondingly. As seen from Fig. 3, the propagation
of intrasubband plasmons in a weakly disordered array
of QWs is characterized by the presence of the local
plasmon mode (LPM). In the zero external magnetic
field when the density of electrons in the defect QW is
less than the density of electrons in other QW (Ngq < N),
the LPM lies in the lower-frequency region in comparison
with the usual plasmon modes (Fig. 3,a). Accordingly,
if Ny > N, the LPM lies in the higher-frequency region
in comparison with the usual ones (Fig. 3,b) [14]. It
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Fig. 3. Disperison curves of intrasubband plasmons in a weakly
disordered array of QWs for parameters M = 5, wp = 1.5wo,
we = 0, d = 15.0lp, p = 0 and for two values of the 1D density
of electrons in defect QW: Ny/N = 0,5 (a), 1,5 (b). The values of
parameters are chosen in a manner that one (zeroth) subband in

all QWs is only occupied by electrons

should be poined out that, in the limit gd — oo as the
Coulomb interaction between electrons in adjacent QWs
is negligible, the LPM dispersion curve is close to the
dispersion curve for the plasmons in a single QW with
the density of electrons Ny (curve 2). Meanwhile, the
dispersion curves for usual plasmon modes in the limit
gd — oo are gradually drawn together and are close to
the dispersion curve for the plasmon in the single QW
with the density of electrons N (curve I).

Now we consider the dependence of the intrasubband
plasmon spectrum on the 1D electron density in a defect
QW. Fig. 4 depicts the dependence of the intrasubband
plasmon frequency on the ratio Ny/N for a fixed value
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Fig. 4. Dependence of the intrasubband plasmon frequency on the
ratio Ng/N at M =5, gqlp = 0.04, d = 15.0lp, wp = 3.0wp, we =0
and for three different positions of defect QW in the array: p = 0
(a), 1 (b) and 2 (c¢). At these values of parameters there are two
subbands in all QWs (except the defect QW), filled by electrons.
Meanwhile, in the defect QW, the number of filled subbands is
determined by the value of Ny

of the wavevector ¢ and for different positions of the
defect QW in the array. As seen from Fig. 4, in the zero
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external magnetic field the number of LPM (depicted by
bold solid curves) in the intrasubband plasmon spectrum
is equal to the number of subbands in the defect QW
occupied by electrons. As seen from the comparison of
Fig. 4a—c, the LPM spectrum is weakly dependent on
the position of the defect QW in a weakly disordered
array of QWs. That phenomenon can be explained
by the fact that almost the entire flux of the LPM
electromagnetic energy is localized in the vicinity of
the defect QW [19]. However, the spectrum of usual
plasmon modes is more sensitive to the position of the
defect QW in the array. Note that the frequency of LPM
increases with the ratio Ng/N. At the same time, the
usual spectrum of plasmon modes is characterized by
these features. As p = 0 (Fig. 4,a) with an increase
of the value N4/N, the frequency of all usual plasmon
modes increases as well. It should be noted that the
frequencies of intrasubband plasmons supported by the
first subbands in QWs (curves 1'—/') are less sensitive to
the value of ratio Ng/N as compared to the frequencies
of intrasubband plasmons supported by zero subbands
of QWs (curves 1—/). However, at p = 1 (Fig. 4,b),
the frequencies of two of the usual plasmon modes
(curves 2 and 2') do not practically depend on the
value of ratio Ngq/N. For p = 2 (Fig. 4,c), there
are already four intrasubband plasmon modes (curves
1,1',3,3") which possess such a distinctive feature. The
spatial distribution of the Hartree potential for those
modes is distinguished by the fact, that the absolute
value of the Hartree potential in the vicinity of the defect
QW is negligible. Therefore, the defect QW does not
exert a significant influence on the dispersion properties
of plasmon modes [19].

The properties of intrasubband plasmons change if
a weakly disordered array of QWs is placed into an
external magnetic field. Fig. 5 presents the dependence
of the plasmon frequency on the ratio Ng/N for a fixed
value of the wavenumber ¢ and for different positions
of the defect QW in the array. As seen from Fig. 5,
the dependence of LPM frequency on ratio Ng/N is
nonmonotonic in the external magnetic field. So, the
frequency of LPM supported by the defect QW zero
subband (curve LMP1) increases with the ratio Ng/N
in the range 0 < Ng/N < 0.39. At the same time,
as N4/N increases in the range 0.39 < Ny/N < 0.51,
the frequency of LMP supported by the defect QW
zero subband is decreased. Meanwhile, the frequencies
of LPM supported by the defect QW first and second
subbands (curves LPM2 and LPM3, correspondingly)
also depend nonmonotonically on the Ng/N. Notice that
when a weakly disordered array of QWs is placed into
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an external magnetic field, there are certain ranges of
the 1D electron density in the defect QW (in Fig. 5,
e.g., 0.51 < Ny/N < 0.82 and 1.46 < N4/N < 1.98), in
which the LPMs do not exist. As evident from Fig. 5, in
the external magnetic field (as in the case with the zero
external magnetic field) at p = 1 or p = 2, the spectrum
of usual plasmon modes contains intrasubband modes
(curve 2 in Fig. 5,b, curves I and 3 in Fig. 5,¢), whose
frequencies do not practically depend on the ratio Ny/N.

Conclusion

We have calculated the intrasubband plasmon spectrum
of a finite array of QWs placed into an external magnetic
field. Two types of QW arrays have been considered: an
ordered array of QWs (in which all the QW' possess the
same 1D density of electrons) and a weakly disordered
array of QWs (in which the 1D densities of electrons are
equal in all QWs except one defect QW). It is found that,
in the ordered array of QWs in the zero magnetic field,
each subband filled by electrons in each QW supports its
own intrasubband plasmon. Hence, the total quantity of
intrasubband plasmon modes in the ordered QW array
is equal to the number of QWs in the array multiplied by
that of filled subbands in QW. Nevertheless, in nonzero
external magnetic fields, the quantity of intrasubband
plasmon modes depends on the magnetic field and the
1D electron density of QWSs. In particular, in a high
enough external magnetic field, there are certain ranges
of 1D electron densities, in which none of intrasubband
plasmon modes exists in the spectrum.

In the case of a weakly disordered array of QWs,
the LPMs whose properties differ from those of other
modes exist in the plasmon spectrum. We point out
that, in contrast to the case of the zero magnetic field,
the dependence of the LPM frequency on the defect
QW 1D density of electrons for a sufficiently high
magnetic field is of nonmonotone character. Moreover,
for high magnetic fields, there are certain ranges of
the 1D electron density in the defect QW, in which
LMPs do not exist. In addition, it is found that the
intrasubband plasmon modes, whose spectrum does not
depend on the density of electrons of the defect QW [19],
also exist in the case of a nonzero external magnetic
field.

To conclude, it should be emphasized that the above-
mentioned features of plasmon spectra can be used for
the diagnostics of defects in QW structures. Hence, the
LPM properties can be applied to determine the electron
density in the defect QW. At the same time, the
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Fig. 5. Dependence of the intrasubband plasmon frequency on the
ratio Ny/N at M = 5, gqlo = 0.04, d = 15.0lp, wp = 3.2wo,
we = 0.75 and for different positions of defect QW in the array:
p =0 (a), 1 (b)and 2 (c¢). These values of parameters correspond to
the case where, in all QWs (except the defect one), two subbands
(zeroth and first) are occupied by electrons. The number of filled
subbands in the defect QW is determined by the value of Ny

properties of usual plasmon modes can be used to define
the position of the defect QW in the array.
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BHYTPIINIHBOIIII30HHI IIJTASMOHU vV CKIHYEHHOMY
MACHUBI KBAHTOBUX JPOTIB, POSMIIITEHUX
Y 30BHIITHHEOMY MATHITHOMY IIOJII

10.B. Baydos
Pesmowme

TeopeTHYHO JOCIi KEHO BHYTPIMIHBONIA30HH] JIA3MOHU Y MaCHBL
kBarToBux aporis (KJI), sxuil ckiramaerses 31 CKiHYeHHO! Kiab-
kocti K/I, po3TamoBanux Ha OJHAKOBIN BigCTaHi OIWH BiJ OIHO-
ro Ta pO3MileHUX y 30BHINIHBOMY MarHiTHOMY moJi. Byso pos-
IJISHYTO JBA BHIUA MACHBIB: yIOPSIKOBAHHI MAaCHB 3 OJHAKOBOIO
OJHOBUMIiPHOIO KOHIIEHTPAIi€l0 enekTpoHiB B ycix K/I Ta ciabko-
PO3YIIOPSIIKOBAHUN MACHUB, B SKOMY OJHOBHMIipHA KOHIIEHTPAILisT
eJIeKTpOHIB B onHOMYy medexkTHOoMYy KJI Bimpisusmachk Bij KOHIEH-
Tpauil eexkrponis y pemri K/I. /s ynopsaakosanoro macusy K/,
PO3MillleHuX ¥ 30BHINIHHOMY MAarHITHOMY IOJi, mepeabadeHo HeMO-
HOTOHHHMH XapakTep 3aJIeXKHOCTI 9aCTOTH IJIA3MOHIB BiJ BeJIWYH-
HH OJHOBUMIipHOI KOHIeHTpamil emrektpoHiB y KJI. ¥V cunbrHOMY
MAar"iTHOMY NOJIi MOKA3aHO ICHYBAaHHS IEBHUX [ialla30HIB OIHO-
BUMipHOI KoHIeHTpalii enekTpoHiB y K/, B aKUX NIa3MOHHI MO-
nu He icHyioTh. /s cnabroposynopsigkosamoro macuBy K/I Busis-
JICHO iCHyBa.HHﬂ JIOKAQJIbPHUX IIJIA3MOHHUX MOJ, B.TIa.CTI/IBOCTi AKHUX
BiIPI3HAIOTHCS BiJ BJIACTUBOCTEH 3BUYAMHUX MJIA3MOHHUX MOM. Y
CHJIBHOMY MArHITHOMY IOJIi MOKAa3aHO e(deKT 3HHKHEHHS JIOKAJIb-
HEX IJIA3MOHHUX MOJ| Y EBHUX Tiala30HAX 3HAYEHb OJHOBHMIPHOL
KOHIEHTpail exexTponis y gedexranomy K/I.
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