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We present a theoretical study of the force of light on a two-
level atom in the field of counter-propagating trains of short
light pulses with constant and stochastic phases. By the example
of a beam of He* atoms that crosses the light beam with the
Gaussian distribution of intensity, it is shown that, in the counter-
propagating trains of light pulses, a variation of the atom velocity
along the laser beam may considerably exceed the maximal
variation of the velocity that could be obtained under interaction
of the atom with the field of a travelling wave with the same
interaction time.

Introduction

The possibility of overcoming the limit of maximal light
pressure in the field of a travelling wave Fy, = %hky (k
is the wave vector, v = 1/7y, is the reciprocal lifetime
of an excited atom) was mentioned for the first time
in [1,2]. The main idea of those proposals is to arrange
the processes of absorption and stimulated radiation of
the light by atoms. At this, the atom absorbs a photon of
one of the counter-propagating waves and emits it into
another one. In the first case, those are two subsequences
of counter-propagating m-pulses and, in the second case,
they are the pulses with the area much larger than
. The frequency of the last pulses passes through the
resonance during the time of interaction of the atom with
each pulse adiabatically fast. As the result of interaction
of the atom with a pair of counter-propagating pulses,
the atom momentum changes by 2hk. The average force
of the light pressure acting on the atom equals 2hk/T
(T is the period of pulses). Apparently, this force could
be considerably larger than Fy, if T < 1/7.
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After publishing papers [1, 2], there were proposed
another schemes of interaction of atoms with light
waves propagating in counter directions. The process of
alternative absorption of photons of one of the coun-
ter-propagating waves by the atom and the stimulated
radiation into the second wave results in a considerable
increase of the light pressure force on the atom. The very
promising is the scheme of interaction of the atom with
the bichromatic field of two standing waves that could be
considered as two counter-propagating waves with the
amplitude modulation. In particular, it may be the short
m-pulses of light. Such a scheme was proposed in [3, 4]
and experimentally realized for the first time in [5]. It
permits to stop the cesium atom beam at a distance of
10 cm [6] and possesses the velocity dependence that is
acceptable for the atom retardation and cooling [4,6-8].
In the another scheme, whose particular case is the
fast adiabatic passing through a resonance [2], the
atom interacts with two counter-propagating frequency-
modulated waves [9,10]. In this case, the light pressure
force may be considerably larger than Fy, in a wide range
of velocities essentially larger than «/k. Apparently, the
dependence of light pressure on the atom on its velocity
plays the key role in a possible implementation of one or
another scheme of the interaction of light with atoms or
molecules for the governing of their motion.

In spite of the fact that the pressure on molecules
in the field of trains of counter-propagating pulses
was registered experimentally [11], the possibility of
controlling the atom or molecule motion by the trains
of pulses is not enough studied yet. Keeping in mind
the technical complexity of the m-pulses generation,
in [12], it was embarked the theoretical study of the light
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pressure sensitivity on the deviation of the area of pulses
from 7 for the two-level atoms. It was shown that, for the
small velocities of atom v < 7/k, the sensitivity weakly
depends on the pulse area. A dependence of the light
pressure force on velocities of atom for the pulses with
area different from 7 was not studied yet. Our paper is
devoted to elucidation of this problem.

We consider the interaction of two-level atoms with
the counter-propagating trains of pulses of the same
area within the framework of the quasiclassic theory
of interaction of atoms with the electromagnetic field.
It is shown that the velocity dependence of the light
pressure force has the resonance character with maxima
at kv = 2am/(nT), where m and n are integer numbers.
This dependence gets smoother for the phase of light
pulses distributed randomly. In this case, the interaction
time with the field, which is needed to change the
atom momentum by a required value, decreases. As an
illustration, we calculated the velocity variation of a
helium atom that crosses the laser beam with the radial
rectangular or Gaussian distribution of intensity.

1. Main Equations

We consider the two-level atom with a difference
hwo between the excited |2) and ground state |1)
that interacts with two periodic trains of light pulses
propagating along the z-axis in opposite directions. The
pulses of these trains and propagation periods 7' are
being the same. Let the atom under the spontaneous
radiation from the excited state could transit only into
the ground state. Then, in the dipole approximation, the
equation for the density matrix of the atom in an electric
field E takes the form

0 IE

— =—(d —d

i P11 7 (d12 p21 21 P12) + VP22

0 IE 5y

—_— = —_— d —_ d 7 _— =

ot P12 7 ( 12 P22 12 p11) + wwop12 2p12 )
pritpa=1,  pa=(p12)". (1)

Here, d12 = (d21)* are the matrix elements of the
atom dipole moment that may be considered as real
without the loss in generality. We set further di;; =
d>; = d. To simplify the denotations, we do not indicate
a dependence of the electric field E and density matrix
on coordinates and time.

The system of equations (1) is written in the
coordinate system connected with the atom. We consider
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the case where the carrying frequencies of pulses are
equal in the laboratory coordinate system and exceed
wo by A. For the moving atoms w; = wy + A — kv,
ws = wp + A + kv, where v is the projection of atom
velocity on the 0z axis. We present the electric field
strength in the form

E = e E(t)cos (wit — kz + ¢1(t)) +

+eaEs(t) cos (wat + kz + ¢a(t)) , (2)

neglecting a difference between the wave vectors of
counter-propagating waves in the atom coordinate
system. Here, the units vectors e; and e, describe the
polarization of counter-propagating waves

Ey(t) = g f: §(t —nT),

d—61 n=—oo
My
Balt) = 5o D dt—nT—1), (3)

n=—oo

where n is an integer, 6; and 0, are the area of pulses, the
phases 1 (t) and p2(t) describe the possible variation of
phases of the counter waves in the pulse repetition time.

Solving equations (1) in the rotating wave
approximation, we find a connection between the Bloch
variables w(t), u(t), s(t)

w(t) = pa2 — p11,

iu)()t

+ p21€ )

7iUJ0t

u(t) = proe

S(t) = (p216iwot _ p12e—iwot) (4)

at the moments of time before the beginning of the
n-th pulse of wave 1, t, = nT — 0, after its end,
ty = nT + 0, before the beginning of the n-th pulse of
wave 2, t. = nT + 7 — 0, after its end, t4 =nT + 7+ 0,
and before the beginning of the n + 1-th pulse of wave 1,
te = nT + T — 0; 7 is the time shift between the trains
of pulses of waves 1 and 2. This chain of equations takes
the form

w(ty) = w(ty) cosfy — [s(ty) cos By — u(t,) sin @q]sinb ,

1 — cosb;

s(ty) = w(t,)sin @y cos &, + :

u(ty) sin 2@ +
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1 —cosb;

1+ cos 6
T 2

5 s(ta) — s(tg) cos 2@y ,

1-— 0
u(ty) = —w(t,)sin by sin @y + %u(ta) cos 2®, +
1 0 1-— 0
- (;OS . (ta) %s(ta) sin 2@, ,

w(tq) = w(t.) cos s — [s(t.) cos Py — u(t.) sin Po]sin by,

1—cosé
s5(tq) = w(t.)sin s cos @y + %u(tc) sin 2@+
1 0 1-— 0
+costh s(te) — oS s(tc) cos 2®
2 2
. . 1 —cosb
u(tq) = —w(t.)sinfy sin &y + fu(tc) cos 285+
1 0 1-— 0
G 1ol gy 4 2T ) sin 2@,
2 2
w(te) = [1+w(ty)]e " -1,
s(te) = s(ta)e 2777,
u(te) = u(ta)e 277, (5)
where
nT
&, =nTA - k/vdt+<,01(nT) +kz,
0

nT+1
‘1)2:(nT+T)A+k/Udt+(,O2(TLT+T)+k2’. (6)
0
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For the sake of definiteness, we assume that the atom
begins to interact with the field at a moment of time
t=0.

The force acting on the atom is defined by the
expression [13,14]

OFE
F:d(p12+p21)a- (7)

Passing to the variables w(t), u(t), s(t) and using (5),
we easily obtain

F = M ) — wlta) +w(te) - w(ta)]. 8

This formula has a clear physical meaning. According to
1

the definition of w(t), a combination fw(ty) — sw(t,)
equals the average number of photons absorbed by
the atom (or emitted by the atom in the process of
spontaneous radiation if this combination is negative)
during the interaction with a pulse of wave 1. The
expression $w(ty)— sw(t.) describes the average number
of photons that were absorbed by the atom during the
interaction with a pulse of wave 2. Taking into account
that absorption or radiation of one photon results in a
variation of the atom momentum by %k and that waves
1 and 2 propagate in the opposite directions, we obtain

expression (8).

2. Pressure of Light on Atoms in the Field of
One Set of Pulses with Chaotic Phases

In the case of one set of pulses (f; = 6, §2 = 0) and
p1(nT) = const, the quasi-stationary solution of the
system of equations (5) and the light pressure on the
atom F have been found in [12]:

_ hk (1—eT) (1 —cosb)
2T 14677 — coskoT (1 + cosf) e= 37T

(9)

This force is a periodic function of the atom velocity and
the pulse area.

Average (5) for stochastic phases ¢1(nT) gives a
relation between average values of the Bloch variables
at the time moments t,, tp, t¢, tg- Obviously, for a quasi-
stationary solution, these averages are periodic with
period T. Simple computations give a magnitude of the
stochastic force as

_ hk (1—e ") (1 - cosh)

B, o=
CTOAT T (1—e T cosh)

(10)

As could be anticipated, the average force acting on the
atom in the case of the stochastic phase of pulses does
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not depend on the velocity. At high frequencies of the
pulses T~! >> « and rather large pulse areas 6 > /AT,
F approaches Fy.

Fig. 1 shows the light pressure force for constant
and stochastic phases ¢ (nT). It is easy to see that Fy
considerably exceeds the averaged F' with respect to the
velocity. Apparently, the minimum in the dependence
of F' versus velocity at 8 # m is connected with the
preservation of the coherence of the variables u(¢), w(t)
during the period of pulses. The appearance of the
stochastic phase destroys the coherency and approaches
F to Fy, (for m-pulses, these variables equal zero and the
dependence of F on v is leveled).

3. Light Pressure on Atoms in the Field of
Two Counter-Trains of Pulses

The expression of the averaged force for pulses of an
arbitrary area for two counter waves, when the quasi-
stationary solution of Egs. (5) exists, was obtained in
[12] in the limit kv < 1/7. Unfortunately, it does not
allow one to analyze the possibility of acceleration or
retardation of atoms in the field of counter trains of
pulses. The exception is an ideal case of m-pulses, where
the light pressure force does not depend on the velocity.
Generally speaking, the analytic expression of the light
pressure force may be obtained only if kvT'/(27) = n/m
is a rational number. In this case, the quasi-stationary
solution of (5) with the period of mT is realized and the
corresponding expression of the light pressure force can
be found for every combination of n,m.

Now we consider the criteria of existence of the quasi-
stationary solution for the pulses with area close to .
It was already noted that the light pressure force on the
atom in the ideal case of m-pulses is maximal and close to
2Rhk/T. This allows us to estimate variations of ®; and
®, due to the time dependence of the velocity during
the time of establishing the quasi-stationary solution 7:
A® ~ kAvtys ~ hk>72/(mT), where m is the atom
mass. Assuming 745 ~ 1/ and requiring A® < 1, we
obtain the condition of existence of a quasi-stationary
solution of Eqgs. (5), (6):

hk?

YT > —. (11)
ym

If criterion (11) holds true (for example, for atoms
with m ~ 100 a.u.m, the wave length of laser radiation
A ~ 1000 nm, time of propagation of pulses T ~ 1 ns,
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Fig. 1. The light pressure on atoms in the field of one train of
pulses. The parameters: yT' = 0.1, 7 = 0.17", # = 0.87. The curves
are obtained by calculation: the continuous line — formula (9),
dashed line — formula (10). The line formed by bold dots presents
the average force of light pressure acting on the atom in the case
of stochastic phase of pulses (calculated in a time of 1007 after

establishing the quasi-stationary solution)

time of spontaneous radiation of atoms in the excited
state Tgp ~ 10 ns, the left part of (11) exceeds the right
one by 3 orders), then we may speak about a dependence
of the light pressure force on the atom velocity. In the
opposite case, a variation of the atom momentum per
unit time depends not only on its velocity but also
on the history of its interaction with the field. It is
necessary to note that the criterion holds true for pulses
with the area that is rather close to 7. In the opposite
case, a variation of the atom velocity during time 1/7 is
considerably smaller, and the Bloch equation may have
a quasi-stationary solution.

Here, we consider the dependence of the light
pressure force on the atom velocity for constant phases
v1(nT) and @2 (nT + 7) only numerically. The case of
random phases will be analyzed analytically.

Like for an atom in the field of a train of pulses with
chaotic phases, averaging (5) over phases ¢;(nT) and
w2 (nT + 1), using the periodicity of Bloch variables with
period T' and (8), and assuming 6; = 6> = 6, we obtain
the expression for the light pressure force on atoms in
the field of two counter trains of light pulses:

ik (1—cos8)? (e7T=7) —e77)

F, =
ST 9T el — cos2 6

(12)

Fig. 2 illustrates the dependence of the light pressure
force on the atom velocity along the pulse propagation
direction computed according to formulas (5), (6), (8)
after establishing the quasi-stationary solution for the
constant and stochastic phases ¢ (nT') and o (nT + 1),
and the sane dependence for stochastic phases computed
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Fig. 2. The light pressure on atoms in the field of two counter-
propagating trains of pulses. The parameters: y7T' = 0.1, 7 = 0.17.
The curves obtained by calculations: the continuous line [§ = 0.8,
formulas (5), (8) after establishing the quasi-stationary solution];
the dashed line in the upper part of the graph (f = 7, the same
formulas and regime); the line formed by circles presents the
average force of light pressure acting on the atom in the case of
the stochastic phase of pulses [calculated in a time of 1007 after
establishing the quasi-stationary solution, # = 0.87); the dashed
line on the graph bottom (the same force calculated according to

(12)]

according to (12). Comparison of the results obtained for
stochastic phases with the help of (12) and by the Monte-
Carlo method by using (5), (8) for the stochastic phases
(uniformly distributed over the interval 0.27) shows that
they are in good agreement.

We note that the light pressure force for stochastic
phases for the parameters specified in Fig. 2 is close
to the light pressure force averaged over the velocity
at constant phases obtained by integration of the
continuous line unlike the case of one train of pulses
considered in the previous section. Keeping this in mind
and taking into account that the time of increasing the
velocity from vmin tO ¥max iS determined mostly by a
minimal value of the force in the interval [Umin, Vmax]
and not by its maxima (narrow “Doppler” resonance
conditioned by multiphoton transitions induced by the
counter waves), we may expect that, at this interval, the
trains of pulses with stochastic phases are more favorable
for governing by the motion of atoms and molecules than
the trains of pulses with constant phases.

4. A Numeric Simulation of the Light
Pressure on He* Atoms

Let us consider the light pressure action in the field
of trains of counter pulses on atoms with account of
the velocity variation during their interaction with the
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Fig. 3. The velocity variation of a He* atom along a direction
of propagation of the laser beam versus the pulse area. Curves
1, 3 — the atom initial velocity along the laser beam v = 0.
2 — v = 100 m/s; Curves 1, 2 — calculation for fixed phases ¢,
@2 according to formulas (5), (6), (8); Curve 3 — calculation for
stochastic phases @1, 2 (circles denotes the results of calculation
according to formulas (5), (6), (8); the dashed line is the calculation
according to formula (12)). The duration of atom — field interaction
is 10 microseconds in the

text)

(other parameters are specified

field. For simulation, we choose the lightest atoms He*
in a metastable state that are used in the experiments
with light pressure [14]. Let helium atoms come out of
a supersonic nozzle and cross the laser beam formed
by the counter trains of light pulses with the velocity
vo = 1000 m/s. Let the wavelength of laser radiation be
1083.33 nm that corresponds to the transition frequency
235) — 2P, in *He (the lifetime of the state 23Py is
Tsp = 98.04 ns). Under the absorption or stimulated
radiation of one photon, the atom velocity changes by
9.2 cm/s. Let the pulse repetition frequency be T' = 1 ns,
7 = 0.1 ns, and duration time ~ 1 ps. Thus, we may
neglect the relaxation processes during the action of
pulses on atoms.

Substitution of these parameters in (11) shows that
Egs. (5) for the pulses with area close to 7 do not have a
quasi-stationary solution. While solving these equations
numerically and computing f(f vdt' in (6), we take into
account that the dependence of the atom velocity on
time is of a ladder type; after the interaction with a light
pulse, the atom velocity changes instantly by a definite
value and stays constant if the light pulses do not act
on the atom.

Firstly, we consider the interaction of helium atoms
with fields with the rectangular distribution of intensity
along the beam radius. This means that He atoms
interact with the light pulses of a fixed area 6. Assume
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that, during the interaction with the field, atoms are
at a distance 2rg = 1 cm. A resultant variation of the
velocity of atoms as a function of € is shown in Fig. 3.
As seen from the graph, the variation of velocity along
the laser beam considerably depends for small 8 on its
initial velocity at fixed ¢; and @». Apparently, at the
initial velocity that corresponds to one of the maxima
in Fig. 2, the atom velocity variation during the short
interaction time is much larger than in cases where the
initial velocity corresponds to one of the minima. We
note a good agreement of the calculation results of the
velocity variation for the stochastic phases ¢; and s
according to (12) and for the averaged force acting on
the atom in the case of the stochastic phase according
to formulas (5), (6), (8). A minor deviation of these
results and the corresponding calculation for fixed phases
allow one to use formula (12) for calculation of the atom
variation velocity in the fields of train pulses with area
close to .

Now we consider the interaction of helium atoms
with the fields with the Gaussian distribution of
intensity in the radial direction. Assume that the pulse
area equals 6y at the beam center and decreases by e
times for atoms at a distance ro = 5 mm from the center.
Therefore, the atoms that cross the laser beam through
its center interact with the train of counter pulses with
area that varies in time as

(t—t0)2>
0 = 0y exp (—7 :
T}

where Ty = 79/vg = 5 microseconds, to is the time of
the atom flight from the beginning of interaction with
the field (¢ = 0) to the laser beam center.

Fig. 4 depicts the dependence of the atom velocity
variation along the laser beam propagation direction
on an initial velocity of atom in the same direction.
In computations, we set t; = 37y and assume that
the atom has been the same time in the laser beam
(after passing the beam center). Averaging over the
atom initial coordinate was carried out for the counter-
propagating trains of pulses rather than for one train of
light pulses. In the latter case, the result does not depend
on the atom initial coordinate.

We note, first of all, a large, approximately 30 times,
variation of the atom velocity under interaction with
two counter-propagating trains of light pulses comparing
with one train of light pulses. For comparison, we
indicate the velocity change of a He atom under action of
the same force Fyp during the same time, that is 14 m/s.

As seen from Fig. 4, the atom velocity variation
practically does not depend on its initial velocity along

(13)
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Fig. 4. The velocity variation of He* atom along a direction of the

laser beam versus its initial velocity in this direction for g = «
(other parameters are specified in the text). Continuous line 1 is
calculated according to formulas (5), (6), (8), (13) for an atom in
the field of counter-propagating trains of pulses and fixed @1, @2;
Curve 2 is the same for one train of pulses, circles correspond to
calculations according to the same formulas for an atom in the field
of counter-propagating trains of pulses with stochastic phases 1
and 2. The straight line shows the velocity variation of an atom
in the case of stochastic phases pjand @2 obtained by integration
of (12) with the pulse area time dependence given by (13)

the laser beam for counter-propagating pulses and
considerably depends on it for one train of pulses.
A minimum of the latter dependence coincides with
w/(kT) in accordance with (9). Concerning the
dependence of the atom velocity variation on the initial
velocity, we note that the calculations carried out
indicate approximate limits of the velocity variation. A
sensitivity of the result obtained to the initial conditions
is so large that averaging over an initial coordinate
cannot be carried out with the accuracy required for
construction of a smooth curve. Taking into account
a considerable variation of the atom velocity during
interaction with the field, we could expect that the
relevant result may be obtained assuming that phases
p1 and @9 are stochastic. In fact, as seen from Fig. 4,
the velocity variation in the field of counter pulses with
chaotic phases is very close to its variation in the field
with fixed 1 and .

The case of chaotic phases when 6, is close to =«
provided that yT' < 1 may be studied analytically. Here
we consider only the case 6y = 7 when the velocity
variation is close to the maximum allowed. Noting that
force (12) has a sharp maximum at § = 7. Making the
variable change t — ¢ + to and expanding cosf in (13)
into a series in ¢, we obtain the light pressure force

—1
T-2 2p4
F= 2hk7% <7T + "—) :

T (14)
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350
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Fig. 5. The velocity variation of a He* atom along the laser
beam propagation line versus the pulse maximum area 6y for
an initial velocity of atom v = 0. The continuous line shows
the atom velocity variation in the case of stochastic phases 1
and @9 obtained by integration of (12) with the pulse area time
dependence given by (13). Calculations according to formulas (5),
(8), (13), (6) for the atom in the field of counter-propagating pulses
and fixed ¢1 and @2 are shown by bold dots (the parameters are
the same as in Fig. 4)

By integration of (14) within the limits (—o0,00), we
get the atom momentum variation during the time of
passing through the laser beam:

ap =200 oo (15)
A calculation of the velocity variation AP/m of a helium
atom during the time of crossing of the laser beam
according to (15) agrees with the results given in Fig. 4
for the stochastic phases with 1% accuracy.

Now we consider a sensitivity of the atom velocity
variation to a variation of a maximal pulse area 6y. The
results reported above show that the velocity variation
of a He* atom, as a result of its durable interaction with
the field of counter pulses, may be satisfactory described
with the help of expression (12) for the force acting on an
atom in the field of stochastic pulses and expression (13)
for the law of variation of the pulse area (what the atom
“sees” while crossing the laser beam). Fig. 5 demonstrates
a dependence of the velocity variation of a He* atom
along the laser beam direction on a maximum pulse area
0y calculated in such a way that results correspond to
those made with the help of formulas (5), (6), (8), (13)
for the atom in the field of counter-propagating trains
of pulses and fixed ; and .

We mark two important conclusions that could be
made from Fig. 5. Firstly, a maximum of velocity
variation is not realized at 6y = m but at a little bit larger
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fo. Apparently, this is a result of a longer interaction
time of the atom with pulses whose areas are close to
7 while crossing the laser beam. Secondly, a sufficiently
high “pedestal” between 6y = 7 and 6y = = (Fig. 5)
is favourable for observation of an action of the light
pressure on atoms. Thus, at 6y, far from optimal choice,
the velocity variation of a He atom in the field of two
trains of counter-propagating pulses is by one order
larger than that in the field of one train (compare with
Fig. 4) or under action of the force Fy, in one travelling
wave. The appearance of this pedestal is conditioned by
the fact that, for any 6y > 7, the atom passes through
some parts of the laser beam where 6 is close to (2n+1)7
(where n is an integer) that results in a considerable
variation of its velocity.

Conclusions

The light pressure force on an atom in the field
of counter-propagating short trains of light pulses
depends on its velocity resonantly with narrow maxima
(their width is much smaller than +/k) at velocities
2r2(kT)~", where m, n are integers. The light
pressure force practically does not depend on the atom
velocity for the fluctuating phases of pulses. This may
considerably decrease the transferring time of a definite
momentum from the field to an atom.

We calculated the velocity variation of excited He*
atoms that cross the laser beam with the Gaussian
distribution of intensity in the field of counter-
propagating trains of light pulses for the parameters
typical of possible experiments. It is shown that it may
considerably exceed a maximum velocity variation for
the same duration of interaction with the travelling wave
field and achieve 300 m/s. A requirement that the area
of pulses must be close to 7w (at the laser beam center)
is not critical for observation of the light pressure on
atoms. Even for the pulse area ~ 27 at the center of the
laser beam, there is a considerable excess of the light
pressure in the field of counter-propagating light pulses
over the light pressure in the field of one travelling wave.

The author thanks L.P.Yatsenko for a fruitful
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THUCK CBITJIA HA ATOMN V¥ ITOJII 3YCTPIYHUX
HOCJIJIOBHOCTEN KOPOTKHUX CBITJIOBUX
IMITYJIBCIB

B.I. PomaHeHko

Pesmowme

TeopeTHYHO JOCTIXKEHO CHIY CBITJIOBOTO THCKY Ha JBOpPiBHe-
BHiI aTOM y mOJi 3yCTPIiYHHX IIOCiJOBHOCTEH KOPOTKHX CBITJIO-
BHUX IMIIyJIbCIB 3 OCTIMHUMHE Ta cTOXacTUIHHMHU dazamu. Ha mpu-
kimazni mydka aromiB He®, mo meperuwnae sja3epHuili npomins 3
rayCCOBHM PO3IOIIJIOM iHTEHCHBHOCTI, MOKA3aHO, 10 [JIst 3yCTPid-
HHUX MOCJiIOBHOCTe} CBITJIOBUX IMIYJIBCIB 3MiHA HIBHJIKOCTI aTO-
Ma B3JOBXK HAIPSAMKY JIa3€PHOrO MPOMEHS MOXKEe 3HAYHO IIe-
PEBHIIYBATH MAaKCHMAJbHY 3MiHYy IIBHIAKOCTI, sIKa JOCATAETH-
Cs 3a TakKol K TPHBAJOCTI B3aemomil aroma 3 mojiem OixKydol
XBHJII.
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