
THEORETICAL DESCRIPTION OF ELASTIC
SCATTERING OF 700 MeV DEUTERONS BY 40Ca AND 58Ni
V. I. KOVALCHUK,    V. K. TARTAKOVSKY,    O. I. IVANOVA

UDC 539.171

‰ 2003 

Taras Shevchenko Kyiv National University, Faculty of Physics
(Academician Glushkov Prosp., 6, Kyiv 03022, Ukraine)

We propose the method of calculation of the cross section of

diffraction deuteron-nucleus scattering at intermediate energies in
the quasi-classic approximation. The deuteron wave function was

chosen as a Hu
..

lten one, the Coulomb interaction and nuclear
surface diffuseness of targets were taken into account. The

calculated cross sections of elastic scattering of 700 MeV deuterons

by 4 0Ca and 5 8Ni satisfactorily fit the experimental data.

Introduction

The modern diffraction theory of nuclear reactions is
a power instrument of the investigation of various nuc-
lear processes that allows one to research both elastic
and nonelastic reactions, excitation and breakup of
nuclei, etc. The diffraction phenomena arise when the
de Broglie wave length of a projectile become less than
the characteristic dimension of the interaction region
that corresponds to 10 ¯ 15 MeV per nucleon and
more (for medium and heavy targets). The purpose
of the given paper is the theoretical description of ex-
periments on the elastic scattering of 700 MeV deu-
terons by nuclei [1]. At such energies, as is known
[2], the movement of a scattered particle in the nuclear
field of a target nucleus can be considered as quasi-
classic. Earlier, by using the diffraction approach, we
performed the preliminary calculations of the differen-
tial cross sections of 700 MeV deuteron elastic scat-
tering by 40Ca [3]. However, the deuteron wave func-
tion was chosen as Gaussian and the Coulomb interac-
tion was not considered which gave no opportunity to
receive enough the good agreement with experiment.
In this work, we use Hu

..
lten deuteron wave function

which has good asymptotic behavior both on small and
large proton-neutron distances, and the Coulomb
interaction influence also is taken into account.

1. Formalism

Assuming that targets have spherical form, in the non-
spin approximation and without taking into account

the deuteron D-wave, let’s start with the known general
formula for the amplitude of deuteron-nucleus elastic
scattering [4]

F (q→ ) =  
ik
2π  ∫  d  (3) r→ ∫  d  (2) ρ→ ψ 0

2 (r) e iq
→ ρ→ [ ω1 ( ρ1) +

+  ω2 ( ρ2) −  ω1 ( ρ1) ω2 ( ρ2)] ,    ρ→ =  ( ρ→1 +  ρ→2)/ 2, (1)

where q→ =  k
→

 −  k
→

 ′  is the momentum transferred (all
our further calculations are carried out for the c.m.
system and h− =  c =  1), k

→
 (k

→
 ′ ) is the incident

(scattered) momentum of a deuteron, ψ0 (r) is the
intrinsic wave function of relative motion of deuteron
clusters. Here ωj ( ρj) are the nucleon-nucleus profile
functions ( j =  1 is the neutron number, j =  2
corresponds to a proton) which are expressed, in terms
of the impact parameter ρ→j =  { ρj,  ϕj}, through
scattering phases δ ( ρj)

ωj ( ρj) =  1 −  exp [ 2 i δ ( ρj)] .

From common reasons, it is clear that, as deuterons
have relativistic energy, the Coulomb contribution to
the differential cross section of the reaction will be
insignificant excepting the regions of small scattering
angles and diffraction minima. However, as will be
seen from the results of our calculations, this
contribution may appear essential even for such
energies of incident deuterons and leads to an
improvement of the experiment fitting. But all over
again, let’s consider the deuteron-nucleus scattering
without taking into account the Coulomb interaction.

As is known [2, 5], the quasi-classic phase
δN  ( ρj) of a scattered nucleon can be expressed through
the nucleon-nucleus potential VN  (r) as

δN  ( ρj) =  −  
1
υ ∫  

0

∞
ds VN  (r),     r =  √ρ j

2 +  s 2,
(2)
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where υ is the relative speed of the incident nucleon
and target nucleus at the infinite distance between
them. At relativistic kinetic energies of the nucleon
E , the potential VN  (r) can be presented as [4]

VN  (r) ≡  VN  (r,  E) =  −  
2π

E  +  M
 f (0) ρN  (r),

∫  d  (3) r→ ρN  (r) =  A, (3)

where M is the nucleon mass, ρN  (r) is the density
of nuclear substance of a target which has A nucleons
(we supposed that A >> 1), f (0) is the amplitude of
0-angle scattering,

f (0) =  
kN  σtot

4π  (i +  γ),

where kN  is the nucleon momentum, σtot ≡  σtot (E) is
the total NN  cross section, γ ≡  γ (E) =  Re f (0) /

/  Im f (0) is the real parameter. As a radial distribution
ρN  (r), we used the expression [6, 7]

ρN  (r) =  ρN0 


1 +  exp 
r −  R

∆




− ξ
,   R  =  r0 A1/ 3 +  ∆  ln ξ,

where ρN0 is the normalization constant, ∆  is the
diffuseness parameter of the nuclear surface. The
potential of a similar kind (3) was found to be useful
during the analysis of experimental data on 4He elastic
scattering from nuclei both at low [8] and intermediate
energies [9]. Thus, the usual geometry of the Woods¯
Saxon potential was modified in the surface layer of
a target nucleus to that with the asymmetry parameter
ξ ≠  1. The similar potential was used also in [10] for
the calculation of some general nuclear characteristics
within the framework of a microscopic model. Earlier,
within the diffraction model framework [11], we have
shown also that the introduction of the additional
parameter ξ in the Woods ¯ Saxon potential allows
one to improve the agreement with experiments on
elastic nucleon-nucleus scattering.

After the integration  over the polar angle ϕ1 (or
ϕ2), it is possible to present (1) as

F (q) =  i k 



Φ (−  q / 2) ∫  

0

∞
dρ1 ρ1 ω1 ( ρ1) J0 (qρ1) +

+  Φ (q / 2) ∫  
0

∞
d  ρ2 ρ2 ω2 ( ρ2) J0 (q ρ2) −

−  ∫  
− ∞

∞
dz ∫  

0

∞
dρ1 ρ1 ω1 (ρ1) ∫  

0

2π
d  ϕ12 ∫  

0

∞
d  ρ2 ρ2 ω2 ( ρ2) ψ 0

2 ×

×  (√z 2 +  ( ρ→1 −  ρ→2)2  ) J0 
 



q
2

 ⋅  | ρ→1 +  ρ→2 |








, (4)

where ϕ12 is the angle between ρ→1 and ρ→2 and
Φ (g) is the structural formfactor of a deuteron:

Φ (g→  ) =  ∫  d  (3) r→ ψ 0
2 (r) e ig

→ r→,    Φ (0) =  1

If ψ0 (r) is choosed as Gaussian, i.e.,

ψ0 (r) ≡  ψ 0
G (r) =  





2 λ
π





3/ 4

 exp [ −  λ r 2 ] , (5)

then the quadruple integral in (4) can be reduced to
a triple one; the corresponding formfactor is

Φ G (g) =  exp (−  g 2 /  8λ).

Fig. 1. Relations of differential deuteron-nuclear cross sections σ to the
Rutherford ones σR. Experimental data were taken from [1]
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Nevertheless, by choosing ψ0 (r) as a Hu
..

lten function,

ψ0 (r) ≡  ψ 0
H (r) =  √α β (α +  β)

2π ( β −  α)2
 
e − αr −  e − βr

r
,

α =  √M ε ,     β ≈  7 α,     ε =  2.23  MeV, (6)

we carry out the quadruple integration, and the form-
factor is calculated in explicit form:

ΦH (g) =  
β ( β +  α)
( β −  α)2 ζ

 ×

×  arctg 
( β −  α)2 ( β +  α) ζ

β ( β +  α)2 +  α (3α2+  2αβ+  3β2) ζ 2+  4α3 ζ 4
,

ζ =  
g

2α.

2. Results of Calculation and Discussion

The computed relations σ/ σR for the elastic scattering

of 700 MeV deuterons by 40Ca and 58Ni are shown
in the figure. There, σ =  | F (q)| 2 is the differential
cross section and σR =  (2kn)2/ q4 is the Rutherford one,

where n  =  Ze 2/ υ is the Coulomb parameter, Ze  is the
charge of a target nucleus, q =  2k sin (θ/ 2) is the
modulus of momentum transfer, θ is the scattering
angle. The dotted curves are calculated by using the
deuteron wave function (5), the dashed ones
correspond to (6). The chi square method was used
as a criterion of the fitting, thus the optimal values
of parameters of potential (3) were found as

γ =  0.25,  ξ =  2.27,  r0 =  1.11 fm,  ∆  =  0.42 fm

for 40Ca (dotted),

 γ =  0.25,  ξ =  2.27,  r0 =  1.04 fm,  ∆  =  0.69 fm

for 40Ca (dashed),

γ =  0.24,  ξ =  2.30,  r0 =  1.11 fm,  ∆  =  0.40 fm

for 58Ni (dotted),

γ =  0.24,  ξ =  2.30,  r0 =  1.07 fm,  ∆  =  0.65 fm

for 58Ni (dashed). (7)

The values of σtot in (3) were taken from [12 ¯
14], the structural parameter in (5) is defined as

λ =  (3/ 16) 〈r d
2 〉− 1,  where  〈rd

2 〉1/ 2 is the root mean
square radius of a deuteron [15, 16].

The Coulomb interaction can be taken into account
if we add the Coulomb phase [4]

δC ( ρj) =  
Ze
υj

 ln 




1
2

 k ρj




,    kR  >> 1,

to δN  ( ρj) of a proton ( j =  2). It is necessary to note
that as is known [17], the resulting phase for two
potentials of interaction (the nuclear potential and the
Coulomb one) does not equal in general to the sum
of phases for each of the potentials separately. But
for intermediate energies of projectiles, when it is
possible to use the quasi-classic approximation, the
specified procedure of simple algebraic addition of
phases justifies itself, as the phase in the given
approximation depends linearly on the potential of
interaction. The proposed approach leads to substantial
simplifications of computation as compared with the
methods used in [18].

The solid curves on the figure, which correspond
to taking the Coulomb interaction into account, are
calculated for the same set of parameters (7) by using
the Hu

..
lten wave function of a deuteron. The features

of these curves consist in increasing the cross section,
especially for regions of the first diffraction maximum
θ ≤  7°, and in filling the diffraction minima. Thus,
the satisfactory description of the experimental
differential cross sections of deuteron-nuclei elastic
scattering at intermediate energies can be reached if
one takes into account

1) correct radial asymptotics of the intrinsic wave
function of a deuteron;

2) real part of the nucleon-nucleus potential together
with its imagine one (with the assumption that
γ ≠  0);

3) diffuseness of the target nuclear surface;
4) Coulomb interaction of deuterons with nuclei.
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