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The important role of two-particle correlation measurements in
modern ultra-relativistic heavy ion collisions is discussed as well
as the latest results from RHIC and SPS. Possible hadronization
of supercooled QGP created in such reactions is studied within
the Bjorken hydrodynamic model. Such a hadronization should
be a very fast shock-like process, which, hadronization coincides
or is shortly followed by freeze-out, could explain a part of the
HBT puzzle, i.e., the flash-like particle emission. HBT data also
show that the total expansion time before freeze-out is very short
(~ 6 — 10 fm/c). Here, we discuss the question of supercooled
QGP and the timescales of the reaction.

1. HBT Radii and Their Interpretation

Two-particle interferometry has become a powerful tool
for studying the size and duration of particle production
from elementary collisions (e*e™, pp and pp) to heavy
ions like Au+Au at RHIC or Pb+Pb at SPS [1—3]. For
the case of nuclear collisions, the interest mainly focuses
on the possible transient formation of a deconfined state
of matter. This could affect the size of the region from
where the mesons (mostly pions) are emitted as well as
the time for particle production.

The two-pion correlation function measures the
coincidence probability P(p;,p2) of two (identical)
bosons with momenta p;, p2 relative to the probability
of detecting uncorrelated particles from different events,

P(P17P2)
Po0P(p) @

We denote K* = (pf' + pb)/2 and ¢* = p{ — ph.
Then assuming that the particle source is chaotic and

Ca(p1,p2) =
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sufficiently large,
C2(p1,p2) = 1+
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is the single inclusive momentum distribution, f(z) =
(e* —1)7! is the pion distribution, and u* is the fluid
4-velocity. The integrals run over some unknown ad hoc
freeze-out (FO) hypersurface — therefore, the further
results are model dependent.

The normalized correlation functions are fitted by a
Gaussian:

02 ((7) =1+ /\exp(_RﬁmgqfOng_

_Rs2ideqs2ide - Rgutq?)ut - 2R§utlongq0utqlong)v (4)
with Riong, Rside, Fout being the Gaussian source radii,
or HBT radii, and A the correlation strength. The cross-
term Rgutlong appears as a consequence of space-time
correlations in non-boost-invariant systems.

In a very simple case of the Bjorken longitudinal
boost-invariant model, the measured HBT radii can
receive a straightforward physical meaning. For the
Bjorken cylinder geometry, it is useful to restrict the
consideration to particles emitted at midrapidity, K* =
¢ = 0. Rotational symmetry around the z-axis in
central collisions makes it possible to choose the avera-
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Fig. 1. HBT radii for pion pairs as a function of kr measured
at mid-rapidity for various energies from E895 (\/syny =
4.1 GeV), E866 (\/syn=4.9 GeV), NA44, WA98 (\/syn=17.3
GeV), STAR, and PHENIX (,/syn =130 GeV). The bottom plot
includes fits to A/ /mg for each energy region. The data are for
7~ results except for the NA44 results, which are for 71. From
[PHENIX Collaboration, Phys. Rev. Lett. 88, 192302 (2002)]

ge transverse momentum as K; = (K,0,0), and
consequently, C (K, gout, side) 1S a function of three
independent variables only. The so-called out and
side projections of the relative momenta are qous =
(Qout,0,0), dside = (0,¢side,0). As shown in [4, 3]
the width, 1/Rsiqge, of the correlation function in gsiqe
is a measure of the transverse decoupling or the
freeze-out radius, while the width 1/Ryy¢ of the gout
correlation function is also sensitive to the duration of
hadronization, A7:

RZ, = Rige + 0° AT . (5)

In the general case for a longitudinal boost-invariance
system, Riong can be connected to the lifetime 7, of the
system, the time elapsed between the onset of expansion

and the kinetic freeze-out, 7vo, by [6]

Riong(mz) = 1r0 (Tro/mi)?, (6)

where Tro is the freeze-out temperature, m; is the
transverse mass.

In the general case (if we do not assume boost-
invariance), the physical interpretation of the HBT
radii Riong, Rside, Rout is much more less
certain. Nevertheless, this is a believe in the HBT
physics society that the above-mentioned interpretation
within theBjorken model captures the main tendency
and, therefore, R,.; is used to be associated with
the geometric freeze-out radius. From transverse mass
spectrum of the Rjong, one extracts 7ro, and Rout/Rside
is used as a measure of the hadronization time.

Calculations show that a strong first-order QCD
phase transition within continuous hydrodynamical
expansion would lead to long lived gradually hadronizing
QGP. Such a system behaviour would manifest itself as
a large Rout/Rside ratio. This scenario is not supported
by experimental data [5], which show that Rout/Rside
is close to 1 or even smaller than 1(!)! — see Fig. 1. This
suggest very fast flash-like hadronization.

Comparing the recent data [5] from RHIC with SPS
data, one finds a “puzzle” [7]: all the HBT radii are pretty
similar although the center of mass energy is changed
by an order of magnitude (see Fig. 1). Discussions at
“Quark Matter 2002” [8] lead to the conclusion that the
duration of particle emission, as well as the lifetime of the
system before freeze-out, appears to be shorter than the
predictions of most of the models at the physics market.

An alternative possibility, discussed in [12—16], is
the hadronization from the supercooled QGP (sQGP).
This is expected to be a very fast shock-like process.
If the hadronization from sQGP coincides with freeze-
out, like it was assumed in [15], then this could explain
a part of the HBT puzzle, i.e. the flash-like particle
emission (Rout/Rside = 1). In this work, we are asking
the following question — can the hadronization from
sQGP explain also the another part of the HBT puzzle,
i.e. a very short (~ 6[17] — 10[8, 18] fm/s) expansion
time before freeze-out?

2. Shock Hadronization of the sQGP

Relativistic shock phenomena were widely discussed
with respect to their connection to high-energy heavy
ion collisions (see, for example, [19]). In thermal
equilibrium by admitting the existence of the sQGP

IThese results principally question our understanding of the space-time evolution of A + A!
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and the superheated hadronic matter (HM) we have
essentially richer picture of discontinuity-like transitions
than in standard compression and rarefaction shocks.
The system evolution in relativistic hydrodynamics
is governed by the energy-momentum tensor TH¥ =
(e + p)utu” — pg"¥ and conserved charge currents (in
our applications to heavy ion collisions, we consider
only the baryonic current nu*). They consist of local
thermodynamical fluid quantities (the energy density e,
pressure p, baryonic density n) and the collective four-
velocity u* = /1 — v2(1,v). Continuous flows are the
solutions of the hydrodynamical equations:

O T" =0, Ounu* =0, (7)

with specified initial and boundary conditions. These
equations are nothing more than the differential
form of the energy-momentum and baryonic number
conservation laws. Along with these continuous flows,
the conservation laws can also be realized in the form
of discontinuous hydrodynamical flows which are called
shock waves and satisfy the following equations:

T*do, = T"do,, noubdo, =nutdo,, (8)

where do* is the unit 4-vector normal to the
discontinuity hypersurface. In Eq. (8), the zero index
corresponds to the initial state ahead of the shock front
and quantities without index are the final state values
behind it. A general derivation of the shock equations
(valid for both space-like and time-like normal vectors
do*) was given in [21].

The important constraint on transitions (8)
(thermodynamical  stability  condition) is  the
requirement of nondecreasing entropy (s is the entropy
density):

sutdo,, > soufydoy, . 9)

To simplify our consideration and make our
arguments more transparent, we consider only one-
dimensional hydrodynamical motion. To study the shock
transitions at the surface with space-like (s.l.) normal
vector (we call them s.1. shocks), one can always choose
the Lorentz frame where the shock front is at rest. Then
do* = (0,1) at the surface of shock discontinuity, and
Eq. (8) in this (standard) case becomes:

Tgl =701 , TO11 =T , nou(l) =nu' .

Solving Eq. (10), one obtains [14]:

(10)

(
5 (p—po)(e+po)
vy = —)

(e —eo)(eo+p) ’

2 — =)o +p)
(e — €0)(¢ + po)

(11)

and the well known Taub adiabat (TA) [22]

n? X% —ndX§ — (p—po)(X +Xo) =0,

where X = (e + p)/n?.2

For discontinuities on a hypersurface with a time-
like (t.l.) normal vector do* (we call them t.l. shocks),
one can always choose another convenient Lorentz frame
(“simultaneous system”) where do* = (1,0). Equation
(8) is then

T =T | Ty =T | nouf = nu®. (13)
Solving Eq. (13), we find
7 = (e—e)lo+p) > _ (e—eo)(e+po) (14)

(p—po)(e+po)’ (p —po)(€o +p)

where we use the “ ~" sign to distinguish the t.1. shock

case (14) from the standard s.l. shocks of (11). Another
relation contains only the thermodynamical variables. It
appears to be identical to the TA of Eq. (12). Egs. (14)
and (11) are connected to each other by simple relations
[14]:

#?=l (15)

These relations show that only one kind of transition
can be realized for a given initial state and final state.
The physical regions [0,1) for v3,v? (11) and for ¥, 92
(14) can be easily found in the (e—p)-plane [14]. For a
given initial state (eg, po), they are shown in Fig. 2. For
supercooled initial QGP states, the TA no longer passes
through the point (ep,pp) and new possibilities of t.l.
shock hadronization transitions to regions III and VI in
Fig. 2 appear.

2Tt has been shown in a series of works [23], that freeze-out through the space-like hypersurface leads to a nonequilibrium post FO

distribution.

ISSN 0503-1265. Ukr. J. Phys. 2003. V. 48, N 8

797



V. MAGAS, L.P. CSERNAI, M.I. GORENSTEIN, L.L. JENKOVSZKY

P

Pol————— _

80 pO £
Fig. 2. Possible final states in the (energy density—pressure)-plane
for shock transitions from the initial state (eop,po). I and IV are
the physical regions for s.l. shocks, IIT and VI for t.1. shocks. II and
V are unphysical regions for both types of shocks. Note that only
states with p < € are possible for any physical Equation of State
in the relativistic theory

3. Hadronization of the sQGP within Bjorken
Hydrodynamics

For a study of the expanding QGP, we have chosen a
framework of the one-dimensional Bjorken model [24]
(actually our principal results will not change if we
use a 3D Bjorken model). Within the Bjorken model,
all the thermodynamical quantities are constant along
constant proper time curves, 7 = +/t2 — 22 =const.
The important result of Bjorken hydrodynamics (which
assumes a perfect fluid) is that the evolution of the
entropy density, is independent of the Equation of State
(EoS), namely

s(r) = S(Tini;—)Tinit '

(16)

In the Bjorken model, the natural choice of a freeze-out
hypersurface is the 7 =const hypersurface, where the
normal vector is parallel to the Bjorken flow velocity,
v = z/t. Thus, do¥ = (1,0) in the rest frames of each
fluid element. This leads to the simple solution of the t.1.
shock equations (13):

~2
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Fig. 3. Different ways for a system to go from Q state (sQ)
to H state (sy) are presented on {s,7} plane. Subplot A
shows continuous expansion, which takes time 7z, Eq. (19).
Subplot B presents flash-like particle emission, i.e. simultaneous
hadronization and freeze-out; which takes time T}_ID, Eq. (20).
Subplot C shows several possibilities according to scenario 2 with
shock-like hadronization into superheated HM. Time 7—}({2), Eq.
(22), can be smaller or larger than Tg), depending on details of
the EoS, but always larger than 7
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The entropy condition (9) is reduced to

$>5p - (18)

Now let us try to answer the main question of
this work — can QGP expansion with t.1. shock
hadronization of supercooled state be faster than the
hadronization through the mixed phase? The initial state
is given at the proper time Ty, = 7@, when the local
thermal equilibrium is achieved in the QGP state @ =
(€Q,P@,sq)- The final equilibrium hadron state is also
fixed, by experiment or otherwise, as H = (ey, pu, Su).
For the continuous expansion given by Eq. (16), the
proper time for the  — H transition is (see Fig. 3
— subplot A):

s5Q7Q

(19)
SH

TH =
If our system enters the sSQGP phase and the particle
emission is flash-like, i.e. the system hadronizes and
freezes out at the same time, then Eq. (16) is also valid
all the time with final t.1. shock transition to the same H
state. We call this as a scenario number one (see Fig. 3 —
subplot A). Our system should go into the supercooled
phase to the point where e(()l) = eH,n(()l) = ng, as it
is required by Eq. (17). At this point, our sQGP has
entropy density s(()l). Its value depends on the EoS, but
the t.l. shock transition is only possible if s(()l) < sy
according to Eq. (18). Thus, for the proper time of the
Q — H transition according to the first scenario, we
have:
SRR
So

TI(;) = (20)

We can also study a scenario number two when
our system supercools to the state (6(()2),]3(()2), s((f)), then
hadronizes to a superheated HM state (e(2),p(?), s(?),
and then this HM state expands to the same freeze-out
state H = (ey,pu, su)- (see Fig. 3 — subplot C). At the

point of the shock transition, one has:

=% (21)

RO

)

Then we have a t.1. shock transition satisfying Eq. (17),
and, following the HM branch of the hydrodynamical
expansion, we find:

(2) (2) (2)
(2) _ S To _ SQTQ 929
T SH SH 5(()2) Z TH , ( )
since s > 882) due to the non-decreasing entropy

condition (18). In this second scenario, the value of the

ISSN 0503-1265. Ukr. J. Phys. 2003. V. 48, N 8

entropy density 882) of sSQGP can be both smaller and
larger than the HM final value sg. Depending on details
of the EoS, the proper time 7'1(5,2) (22) of the @ — H
transition can also be smaller as well as larger than TI(; )
(20), but always larger than 7.

Conclusions

The conclusion of our analysis seems to be a rather
general one: the system’s evolution through the
supercooled phase and time-like shock hadronization
can not be shorter than a continuous expansion within
the perfect fluid hydrodynamics independently of the
details of EoS and the parameter values of the initial,
Q, and final, H, states. Although we may achieve a
flash-like particle emission in such a way, supported
by the HBT data, the expansion time becomes longer,
making it harder to reproduce the experimental HBT
radii.

And, in fact, we do not see any physical process
which would help us to achieve a shorter freeze-out
time than the minimal one coming from the (very fast)
Bjorken expansion via thermal and phase equilibrium.
Any delay in the phase equilibration (see assignment 9
in [25]) or/and any dissipative process in our system
lead to the entropy production, what increases the
time needed to reduce the entropy density to sog <
SH.

The construction of a full reaction model,
which simultaneously describes data on two-particle
interferometry, hadron spectra, and hadron abundances
is a formidable task which is still ahead of
us.
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AJIPOHIBAIIIS IIEPEOXOJIOIXKEHOI
KBAPK-I'VIFOOHHOI IIJIABMU
B VJIBTPAPEJISITUBICTCHKIUX
3ITKHEHHSX BAYKKHNX IOHIB

B. Mazac, JI.II. Yepnai, M.H. I'opernwmetin, JI.JI. Enkoscoruti
Peszmowme

OOBroBOpeHo BaKJIUBY POJIb BHMIpDIOBAaHb JBOYACTHHKOBHX KODE-
NANifl B yJIbTPapesATUBICTCHKUAX 3iTKHEHHAX BAXKKHX IOHIB Ta
ocrauHi JaHi, orpuMaHi Ha HaiicydacHimux nmpuckoposadax RHIC
Ta SPS. JlocnmigkeHO MOXKJIMBY aJPOHI3allil0 ME€PEOXOIOIKEHOT
KBapK-TJIFOOHHOI IJIa3MH, CTBOPEHO! B TaKUX peakiisix, y O#op-
KeHIBCbKi#t mozesni. Taka ajgponizauis Oysa 6 Hag3BUYAWHO IIBH/I-
KHM IIOKOIOAIOHUM IIPOIIECOM, fAKHil, AKIIO 3aMOPOXKYBaHHSA 30i-
ra€rbCs B 4aci abo HacTae Bigpas3y 3a aJpOHI3AI€I0, MOXKE [TOSICHU-
Tu dactuHy “3aragku HB'T”, a came cnasaxonozibHe BHIPOMiHIO-
Bamus wactuHOK. Jlami HBT takoxx moxa3dyiorb, 0 3arajbHUit
Yac pO3IINPEHHs HAA3BHYANHO KOpPOTKHi. Y miif pobori mu 006-
rOBOPIOEMO IUTAHHS, OB si3aHi 3 a/POHI3AIIEI0 TEPEOXOJIOIKEHOT
KBAPK-TJIFOOHHO! [JIA3MH Ta XapPAKTEPDHUMH YaCaMU PEAKILii.

AJIPOHUBAIINS TEPEOXJIAYK IEHHO
KBAPK-TJIIOOHHOI ILJIA3MBI

B VJLTPAPEJISTUBUCTCKIX
CTOJIKHOBEHUSIX TSAYKEJIBIX

MOHOB

B. Mazac, JI.II. Yeprau, M.U. I'openwmetin, J1.JI. Enkoscrud
Peszmowme

O0cyK1aeTcss BaKHAs POJIb U3MEPEHHH JBYXYaCTHIHBIX KOPpe-
JNANUI B yIBTPAPETATUBACTCKUX CTOJIKHOBEHUSAX TSXKEJIbIX HOHOB
U 1mocjegHue pe3ysbTaTbhbl, IIOJYYEeHHbIE Ha CaMbIX COBPEMEHHBIX
yckopuresisix RHIC u SPS . M3ygaercst BO3MOXKHasI aJpPOHU3AIUS
MepeoxXIaXK IeHHON KBapK-IVIIOOHHOW ILTa3Mbl, 00pa30BaBIIeiicsa B
TaKUX PEaKIuaX, B ObepPKeHOBCKOI Mmomenu. Takas agpoHu3arus
Obly1a OB OY€HBb OBICTPBIM MIOKOIOJZOOHBIM IIPOIECCOM, KOTOPBIi,
€CJIH 3aMOPA’KUBAHKE COBIAJAET HJIM CJIEAYET BCKODE IOCIEe af-
pOHHUBAIUK, MOXKET 00bACHUTH dacThb “3aragku HBT”, a mmenno
BCHOBIIIKOOOpa3Hoe ucmyckanue dactun. HBT-gannsie Takyke yka-
3BIBAIOT Ha OYeHb KOPOTKOE 00Iee BpeMs pacliupeHus. B qanHoi
pabore MBI 00CYy2K/1aeM BOIIPOCHI, CBSI3aHHBIE C aJPOHH3AIIHEH Ie-
PeoxJIaXKJeHHOM KBAapK-IJIIOOHHON IIa3Mbl M XapaKTEePHBIMH Bpe-
MEHAaMH DeaKIIHH.
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