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The Davydov—Chaban model is generalized to the case of
superdeformed nuclei. The deformational nuclear motion with
the asymmetric potential having two minima is considered
quasiclassically. Theory of the decay out of superdeformed
rotational levels is built taking into account simultaneously both
the residual and electromagnetic interactions. We generalized
the two-level model of Stafford and Barrett to the case where
a superdeformed level is coupled with the infinite equidistant
spectrum of normal states.

Introduction

Davydov’s models [1—4] played an important role
in understanding the low-lying collective excitations
of deformed nuclei. These models are based on the
equation derived by Bohr and Mottelson (see [3, 4]),
who treated a nucleus as a liquid drop having a shape
slightly deviating from a sphere. In other words, the
Bohr—Mottelson equation was derived, assuming that
the quadrupole deformation parameter 8 < 1. This
is a good approximation for nuclei with normal (V)
deformation, whose equilibrium shape is characterized
by Bo ~ 0.2 + 0.3. The calculations by Strutinsky [5]
revealed that the nuclear potential energy, as a function
of the deformation parameter 5, may have the second
minimum (see Figure) corresponding to a superdeformed
(SD) shape with f ~ 1. Since then, hundreds of
superdeformed rotational bands have been observed (see,
e.g., [6—26]). Their energies are calculated usually with
the aid of the cranking model [27]. However, the cranking
model deals only with static nuclear deformations which
may, in principle, change from level to level. It is
the Bohr—Mottelson equation that takes into account
the relation of nuclear rotation to shape vibrations.
Therefore, its generalization to the case of arbitrary
deformations seemed to be actual. This task was solved
in [28, 29] for axially symmetric nuclei (y=0), treating
the nucleus as an ensemble of nucleons, but not as a
liquid drop. We used the exact formula for the kinetic
energy operator of the nucleus, expressed in terms of
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the independent set of collective variables, which was
proposed in [30]. A similar derivation of the standard
Bohr—Mottelson equation for f <« 1 was performed
previously in [31]. Starting from the generalized Bohr—
Mottelson equation, we shall build a nonadiadatic model
like the Davydov—Chaban one, which will be applied
further to SD bands. In doing so, we assume the nucleus
to be completely located in the SD potential well.

The deformational motion of the nucleus is governed
by a one-dimensional Schrédinger equation to determine
the deformational wave function ¢;(5). Usually, the
potential energy depending on S is assumed to be
a parabola. In the case where the potential has N
and SD minima, the motion in both of them may be
treated as independent harmonic oscillations only when
the barrier separating N and SD potential wells is
infinite. In reality, there is always a tunneling through
such a barrier, ensuring the mixing of the N and SD
wave functions and the repulsion of the corresponding
vibrational levels. The wave function ¢;(3) is then
the solution of a one-dimensional Schrédinger equation
with asymmetric potential energy having two minima.
Previously, this task with symmetric potential has been
solved quasiclassically (see, e.g., [31]). Similar results
for the asymmetric case will be provided below. The
wave function ¢ys(f) is a coherent superposition of the
functions ¢§N) (B) and <p§5) (8) with amplitudes ¢y and
cs, which describe vibrations in N and SD wells. This
solution will be used further for the description of the
decay out of the SD levels into normal states.

The main feature of the « spectra corresponding to
de-excitation transitions between SD rotational levels is
that, at some small spins I ~ I, /; of nuclei, the intensity
of these transitions abruptly falls down and the spectrum
quenches [13—26]. These observations were explained by
the so-called statistical model [32—35], which assumes
that, at spins around I, /5, the collective SD levels mix
with normal excited configurations decaying into lower-
lying normal states. At high spins due to centrifugal
barrier, the SD potential well lies lower than the normal
one, while it is lifting relative to the N well at low
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spins. So the SD level lies much higher at low spins
than the normal yrast line. Therefore, it turns out to
be imbedded into the “sea” of excited configurations |a)
of a normally deformed nucleus, so that their mixing
becomes essential.

Unfortunately, the original statistical model [32—34]
dealt only with nonoverlapping levels. This shortcoming
was eliminated by Stafford and Barrett [36], who
analyzed the case where the SD level is mixed with a
single close-lying configuration and treated both their
mixing and radiative decays on the equal footing. We
shall generalize such a straightforward approach to the
case of an arbitrary number of configurations |a). In the
weak-coupling case, we shall give a simple expression for
the decay width of the SD level into normal states.

1. Generalized Nonadiabatical Model

Following [30,31], we shall specify, first, collective
nuclear coordinates. As usually, two coordinate frames
are introduced with the origins coinciding with the
center of mass of the nucleus. One of them, z,y, z, is
the laboratory coordinate system and another, & 7,(,
is the moving one with the axes directed along the
principal axes of the inertia tensor of the nucleus. Then
the projections of the Jacobi vectors of the nucleons q;
on these axes satisfy the following constraints:

Aol A1 Aol
> dictin =Y Gictic = Y dindic =0, (1)
i=1 i=1 i=1

where A is the number of nucleons in the nucleus.

Rotation of the nucleus is identified with rotation
of the coordinate frame &,7,( , whose orientation with
respect to x,y,z is determined by the Euler angles
60 = {6:,602,05}. Equation (1) is formally considered
as the orthogonality condition for three vectors A¢ =
{q1§7 qz¢,- - - >QA71,§}; An = {q1177 q2n,-- - quLn}; and
A: = {qic,q2¢,---,94-1,¢} In an abstract (4 — 1)-
dimensional space with basis orts ey, es,...,e4_1. Such
a notion enabled us [30,31] to introduce an independent
set of variables. Three of them are defined as the lengths
of these vectors:

a= ’qugv b= [Zq?n, c= /quzg (2)

Others are generalized Euler angles, which determine
the orientation of the vectors A¢, A, A¢ in the abstract
space.
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Nuclear potential energy with two minima at low spins versus the
deformational parameter 3

The kinetic energy operator written in such collective
variables reads [30]:

f BP0 (|
T 2m | 0a®  Ob2 D¢ a2 =02  a2—¢2
+ A—-4\ 0 n 2b n 2b A—-4\ 0 n
a da b2 —a? b2 —c? b ob
n 2c 4 2c A—-14 ﬁ
c?—a*  c—b? c dc
A—4 14 14 1.
- 2 la—sn ¥ pzlaek t Fla-k | T
P+ o, -
(B2 —2)? (Ig +]‘%‘*27A*1) B
A+a? (s o
(2 — a?)? (In +JA—17,473) -
a2 + bz 72 “ 4bc N
(@ —b2)? ( ¢ +JA—3,A—2) - m&]A—z,A—l—

\ 4ab LN
_m[n]A—l,A—3 — WIUA—3,A—2} , (3)

where fg,fn,fg are the spin projections (in units of )
on the axes &,7,( ; jix are some infinitesimal operators
of rotation in the abstract space. Below we shall analyze
only the collective motion neglecting both the intrinsic
rotation and the Coriolis coupling. The coordinates a, b, ¢
determine the shape of the inertia ellipsoid. For a nucleus
with uniform density within the volume, confined by an
ellipsoidal surface with half-axes R¢, R,, R¢, one has

a=Re/V5, b=R,/V5, c=R/V5 . (4)
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The volume of such a nucleus equals
4 4 4
V= ?WRERHRC = ?ﬂ53/2abc = ?FRS, (5)

where Ry is the radius of a sphere with the same volume
V. The variables a, b, ¢ should be expressed in terms of
the nuclear hyper-radius p = va2 + b2 + ¢? and familiar
coordinates 8 and v to determine the nuclear shape.

Passing to p, 3,7, we should keep in mind that
weakly excited nuclei conserve their volume, i.e.
V' =const at any value of the deformation parameter
B, which varies from 0 to oco. At small 3, our definition
should correlate with the classical notation [3,4]. The
only possibility to satisfy both these conditions is

a= Lexp (ﬂcos(7+ 2%)) ,

V3
b= Leew <BCOS(7 - %”)) ,
c= %exp (Bcos7), (6)

where 0 < p < 00, 0 < v < 7w/6. We see that, at
p = po, the product abc = (po/v/3)?, so that the volume
V =const. As § — 0, definition (6) reduces to that given
in [31].

For nuclei, which can be treated as a liquid uniform
drop, Eq.(6) corresponds to the following expansion in
harmonic functions of the radius-vector directed from
the center of the nucleus to its surface:

R(ﬁa QS) = RO exp [Z CVZMYEL (197 ¢)] ) (7)

where ay,, are the parameters related by the well-known
formulas to 8,7 (see [3, 4]). For nuclei with small
quadrupole deformation ( f <« 1), Eq.(7) transforms to
the standard expression [3, 4]:

R(ﬁa QS) = RO

L4 Y5, (9, ¢5)] : (8)

o

Substituting relation (6) into Eq.(3), one can rewrite
the collective part of the kinetic energy operator in the
form

K1 9 d

. o) (i +

T =56 75 05" D5 5B (L ) *
B2 10 ( 0 1

“m,3F l‘;a—v (va,)+ E] ’ )
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where we used the following notations:

2

B,(8) = B(0)e ™, B(0) =",

F(B) =3 (e7?+2¢), B(B) =B0)f(B),
(€8 + ¢26)

(6—5 — 625)2 ' (10)

o(B) = 3% (e + 2%)

The mass parameters B(f) and B,(8) for § and vy
vibrations depend, respectively, on the deformation
parameter 5. When § — 0, both B(3) and B, (3) tend
to the same constant value B(0) in correspondence with
the Bohr—Mottelson model |3, 4|. Besides, g(3) — 3*
and a(8) = 1if 8 — 0.

The Hamiltonian of the problem reads

H=T+V(8,7), (11)
where the potential energy may be written as [3]

- Bs
V(B,7) = V(B) + 3 V() (12)

32
where [y determines a minimum of the effective

potential V5 (3), which is given below by Eq.(17).
In order to find a solution of the Schrédinger equation

HY(B,7,0) = E¥(B,7,0),

we shall neglect the dependence of the quantities f(5),
B, (B) and «(f) on B, putting 8 = Bo. Then the wave
function is factorized as

(13)

U(B,7,60) =g (B)e(BIIMK)x(v), (14)
where the function

[IME) = 167T22(Il_:-150K) (DkM(e)_‘_
+(—1)IDIKM(9)> (15)

describes the rotation of an axisymmetric rigid rotator
with spin I, its projection M on the axis z, and
projection K on the symmetry axis { of the rotator.
Besides, DL ,,(0) are the Wigner functions depending
on the Euler angles. The function ¢(8) describing (-
vibrations satisfies the equation

R (OB A T OB (16)
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where we put B = B(fy). The effective potential energy
is
2

Vi) = Vo(6) + gz T +1) a7)
where

o vl | (L) 22
a=a(), V&) =ve)+] |(555) gaw] as)

The difference of Eqs.(16), (17) from the corresponding

equations of the Davydov—Chaban model [2, 3] is that

a = 1 in the latter. One can approximate Vi (3) by a

parabola, following [2, 3]. It seems to be more useful to

take

) = o5 (5% -2 )+
262 B ’

where the constant Cjp determines the potential well

depth.

Introducing the notations

3 —4h_2 —1/9 -
) 00 — BC: w = B: m=
4 4

1
Z=pu"?, 125[\/I+F+§I(I+l)—l], (20)

(19)

BOO

(= By’

B
Boo

one can rewrite equation (16) as

8_2 B I(l+1) 2Z B

{8C2 2 + R + 26} »(¢) =0, (21)
where

e =(E - Cp)/hw. (22)

The parameter (g9 stands for the amplitude of [
vibrations in the ground state of a § oscillator, and pu
is the softness parameter.

We see that (21) is formally the equation for the
radial part of the wave function of a charged particle
bound in the Coulomb potential. This enables one to
get the analytic formula for energies:

hw 22
2 n?
where n =ng+1+1; and ng = 0,1,2, ... indicates the
number of phonons for  vibrations. Note that n and [

are not integers.
The function x(v) describing 7 vibrations obeys the

equation
n 1o oy, ],
2B,33 | oy \oy) T Ay
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Epng = — + Co, (23)

1
+ 350~ B fat) =0, 21)

Excited v vibrational states are specified by two
quantum numbers n, = 0,1,2,3,... and K =0,2,4,...
Their energies are [3]

1
E,=FEkn, =hw,y (2n,+-K+1), w, = ﬁ.(%)
g 2 B,

Thus, the nuclear levels are given by

EIKanM, = EInB + EKna,- (26)

Dealing with a superdeformed vibrational-rotational
band beginning from the state with spin I and ng =
ny = K = 0, one must calculate the relative excitation
energies

AErkngn, = Erkngn, — Ery000 - (27)
They are given by
hw 1 1
AE ngny — 5.6 -
1nans = 95 {(lo IS ) ER Cop ey
1
+hw- {Qny + §K} (28)

with [y corresponding to Iy and [ to I. Respectively,
for the normal bands, we must take Ij7 = 0 for the
ground state of even-even nuclei. Expressions for the
wave functions ¢(3) and x(7) are provided by [3, 4].

Energies (28) depend on two fitting parameters w and
u. The calculated energies for a number of SD bands are
compared with experimental data in Tab.1. Everywhere
the energy of the lowest observable SD level is taken to
be zero.
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2. Tunneling between Asymmetric Potential
Wells

Let us solve quasiclassically the Schrodinger equation
(16) with the potential V;(8) having two minima (see
Fig.1). The attenuating WKB solution in the region
B < ayis

a1
c 1
o1 = exp | 5 [ 19las |, (29)
Vpl h
B
where
p(B) = V2B(Er — Vi(B))- (30)
T a b le 1. Superdeformed rotational bands
158y 156 fp
AFEexp [9] AFtheor AFEexp [10] AFiheor
I+ w=2370keV | I+ w =417 keV
©w=0.195 w=0.164
16 0.0 0.0 22 0.0 0.0
18 769.6 769.7 24 802.8 803.1
20 1578.2 1543.4 26 1649.0 1662.3
22 2443.0 2398.7 28 2528.2 2561.7
24 3371.8 3354.0 30 3430.7 3447.2
26 4366.4 4342.5 32 4323.3 4327.4
28 5426.7 5417.3 34 5257.0 5243.2
30 6554.1 6553.2 36 6237.5 6210.7
32 7748.8 7752.1 38 7268.8 7301.2
34 9012.4 9030.7 40 8353.4 8356.1
36 10346.9 10371.4 42 9492.9 9498.3
38 11755.3 11759.8 44 10687.6 10669.0
40 13240.9 13238.2 46 11937.4 11893.2
42 14807.7 14793.1 48 13243.0 13240.8
44 16459.1 16437.2 50 14605.0 14594.7
46 18199.1 18175.4 52 16022.8 16001.3
48 20032.4 20004.7
196Pb 148Gd
AE‘(-‘:XP [11] AE1the0r AE‘(-‘:XP [12] AEtheor
It w =500 keV | I't w = 180 keV
©u=0.101 ©n=0.082
8 0.0 0.0 32 0.0 0.0
10 171.4 172.1 34 830.3 831.4
12 387.0 387.4 36 875.8 875.1
14 646.5 647.7 38 925.7 921.2
16 949.5 951.4 40 976.8 968.7
18 1295.3 1298.0 42 1028.8 1017.6
20 1682.9 1686.4 44 1080.6 1067.8
22 2111.4 2115.7 46 1133.4 1119.4
24 2580.8 2585.0 48 1186.1 1172.4
26 3089.3 3093.1 50 1239.8 1226.7
28 3636.2 3638.9 52 1293.8 1282.4
30 4220.4 4221.3 54 1347.0 1339.5
32 4841.0 4839.1 56 1395.9 1397.9
34 5495.9 5491.1 58 1436.3 1457.6
36 6184.7 6176.0 60 1445.9 1518.3
38 6904.8 6892.7
40 7656.9 7640.0

764

It is matched with the function

B
o 2CN 1 ™
oi() = "Fcos | 3 [ o5 = ()
fora; < B < by.
Introducing the notations
b1 b2
_ ! df _1 d
d)l — ﬁ D ) ¢2 - ﬁ p B;
AVo = Vi(BY) = Vi(BY), (32)

and approximating the potential between the turning
points in the N and SD wells (a12) < 8 < by(z)) by
parabolas

Vi(B) & Buwis) (B = BNis) /2, (33)
one has

o 7TE[ _ W(E[—AVO)
d)l - tha (ng — hOJS . (34)

Continuing the matching procedure at the turning points
a;, b; and imposing the evident condition that the
wave function ¢r(8) attenuate as f — oo, we find the
following constraint [37]:

dctggictgps = exp(—24), (35)
where A is determined by the integral
1 f
A= [w@)as. (36)
by

Approximating the barrier by an inverse parabola with
frequency wp, we come to the well-known formula

W
=— 37
T (37)
where the barrier height is given by
— oy _g
Wr=Vi(Bg") - Er. (38)

For the wave function inside the SD potential well, one
has the expression

bo
oi(p) =22 eos | o=, (39)
B
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where the amplitude
cs = cn(sin ¢y / sin ¢)e 4. (40)

We assume a small transparency of the barrier,
exp(—2A) <« 1. Then condition (35) is fulfilled if

or/and
¢2 =~ (ny +1/2)m, (42)

where n; = 0,1,2,3,.... Exact equalities (41), (42) are
familiar Bohr—Sommerfeld conditions for binding the
particle with mass B in one of the potential wells in the
absence of tunneling through the barrier, when A = oc.
In view of (34), exact conditions (41), (42) yield the
energy levels of harmonic oscillators in the N and SD
wells:

€1 :th(n1+1/2), €2 :AVO+7LWS(H2+1/2) (43)
If the angles

e

o hWN(S)

AN(S) — 07 (44)
where Ae = €; — €3, one can tell about the resonance
between the vibrational levels €; and e2. Then, from (35),
we get the quadratic equation for the energies Ey, of the
deformational motion in the potential with two minima:

E? - (e1 + €)E + €169 — v? = 0, (45)

where

n={ni,ns}, wy=wnws,

The solution of Eq.(45) is
EE) = (e + @)/2 £ (1/2)y/[Be)? + 402,

This formula coincides formally with that for the
energies of two levels coupled by the interaction v (see,
e.g. [32]). In the case considered, however, v means the
tunneling strength.

The wave function may be written in accordance
with (31), (39) as

e(B) = ene™(B) + s 9 (B),

where the nonoverlapping functions (™ and (%) are
localized in the N and SD wells, respectively. In the
resonance case (|ay(s)| < 1), the functions © ™) and

(47)

(48)

(%) approximate the oscillator functions with phonon

ISSN 0503-1265. Ukr. J. Phys. 2003. V. 48, N 8

v = (hwo/2m) exp(—A).(46)

numbers ny and ns, respectively, while the ratio of the
amplitudes is

(en/es)e = (1)t Wy fwg) V2 (B — e2) /0. (49)

Since v <« Hhwp, such a resonance is a very rare
event. Nevertheless, it appears to occur in **Nd, where
repulsion and mixing of two couples of states with spins
I =17/2% and I = 19/2%, which belong to N and SD
rotational bands, have been observed [17, 18]. Previously
[18], their energy levels were calculated with the aid of
the same Eq. (47), but there v meant a matrix element
of the interaction between bands. Bazzacco found that
v=22keV for I =17/2% and v= 11 keV for I = 19/27.
It would be more natural to explain such effects by
the tunneling under the barrier separating the N and
SD wells. Using Eq.(46) and taking hwy = fiwp= 0.6
MeV, we found the barrier heights: W;7,,=0.28 MeV
and W19/2:0.4:1 MeV.

Far from the vibrational resonance |ay(s)| ~ 1, the
wave function is mainly localized in one of the wells,
having only a weak tail due to the tunneling to another
one. In particular, if |ay(s)| ~ 1, the wave function

s(B) consists of two components apgN) (8) and ¢§S) (8)

with the amplitudes

e—A

cy = (=1)mT (50)

2sinay
The corresponding energy Ej ~ e5. In the off-resonance
case, the function <p§5> (8) approximates the oscillator
wave function, describing vibrations in the SD well with
ns phonons, while the function ¢§N) (B) is represented by
a series in terms of the oscillator functions with phonon

numbers n; =0,1,2,....

3. Decay out of SD Levels

Here we shall analyze the decay out of an SD level, which
is formed at the moment ¢ = 0, taking into account
its mixing with normal states. The Hamiltonian of the
system (nucleus + electromagnetic field) may be written
as

H= I:Io + ‘7, (51)
where the unperturbed Hamiltonian H, is the sum of
the Hamiltonian of the electromagnetic field ﬁrad and
the Hamiltonian of the nucleus H ~, which includes
both collective terms and the terms describing the
independent motion of nucleons. The perturbation
operator is

V=V +V, (52)
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where V, is the interaction operator of the nucleus with
the electromagnetic field. When the nucleus is in the
initial SD state, the system is described by the wave
function

|s) = ¥,(0) = ¢15(B)|IMO)®|0), (53)

where ®( describes the ground state of the nucleons
and |0) is the vacuum state of the field. Substituting
decomposition (48) into (53), one has

|s >= cyIN) +¢5l5), (54)

where the function |N) and |S) are determined by
Eq.(53) with ¢r5(3) replaced by apgN) (8) and <p§5> (8),
respectively. The eigenvalue of Hy corresponding to |s)
will be E;. The SD level with low spin is surrounded by
the dense spectrum of excited configurations @, of the
normally deformed nucleus. The corresponding states
and energies of the system will be denoted by |«) and
E,. The wave function of the system at any subsequent
moment ¢ > 0 is

o0
1 ) N
U, (t) = —— [ dee “/PGH(e)T,(0), (55)
271
where Green’s operator
GTe)=(e+in-H)™', 15— +0. (56)

So Green’s matrix completely determines the evolution
of the system. Specifically, the probability of finding the
nucleus after its decay in any SD state is given by [36,
37]

FOO
_1s + (22
&—%/%@xw (57)

The probability of the decay into IV states Fy = 1— Fs.
The Green’s matrix is determined by a system of

and |a). They are easily solved [37], when all the normal
states |a) have the same radiative width 'y and their
strength of coupling to the SD level, v/ = (oz|f/|s),
does not depend on a. We assume moreover that |a)
form an equidistant spectrum E, = Ey + aDy, where
a=0,x1,£2,... and Ey denotes the energy nearest to
E;. Then we find the following Green’s function:

1

Gl = g T /2 +i(T/2)ctgz’ (58)
where

z=m(e — Eg +il'n/2)/Dn, (59)
and

[ =2m"”/Dy (60)

is the spreading width. The coupling strength becomes

o' = ex(alV'IN), (61)

since the normal functions |a) overlap only with |V).
Let us assume that
'y > T, v K

A? 4+ (T'n/2)2, (62)

where I'y is the radiative width of the SD level, A =
Ey — E,. These inequalities hold for nuclei having mass
numbers ~ 190 [36]. In such a weak-coupling limit,
Green’s function (58) reduces to a single resonant term:

1
e—Es+i(ls+T4)/2’

G, (e) (63)

where the width T'* determines the decay rate of the SD
level into normal states. For it, we derived the following
expression:

f ,UIZFN

lgebrai tions f lappi ¢ level = 3 ) (64)
algebraic equations for overlapping resonant levels |s) (Cn/2)2 + (Dn/7)%sin®*(rA/Dy)
T a b 1 e 2. Parameters characterizing the decay of nuclei with mass ~ 190
I FS FS I'n Dy 7 vllnin Ullnax W Whin Whax
h (meV) (meV) (eV) (eV) (meV) (eV) (MeV) (MeV) (MeV)
192[g-1 [36] 12+ 0.87 0.116 10.3 34 0.16 0.21 0.45 2.86 2.65 4.12
192 g1 [36] 10t 0.09 0.054 10.3 30 1.51 1.18 2.19 2.43 2.36 3.79
194Hg-1 [26] 12+ 0.60 0.108 21 344 3.41 0.62 6.41 2.27 2.15 3.92
194Hg.1 [26] 10t 0.03 0.046 20 493 30.04 2.73 42.83 1.85 1.79 3.64
194Hg-3 [35] 15+ 0.90 0.230 4.0 26.5 0.20 0.16 0.68 2.81 2.57 4.17
194Hg-3 [35] 13+ 0.84 0.110 4.5 19.9 0.32 0.15 0.43 2.74 2.66 4.18
194Hg-3 [35] 11+ < 0.07 0.048 6.4 7.2 0.41 1.02 0.72 2.78 2.57 3.83
194ph1 [35] 8+ 0.62 0.014 0.50 2200 64.12 0.01 95.79 1.73 1.62 4.46
194ph-1 [35] 6+ < 0.09 0.003 0.65 1400 66.45 0.04 106.21 1.74 1.63 4.33
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which transforms to the result in [36], when |A| < Dy
and only one nearest configuration plays a significant
role. Substituting (63) into (57), one has the branching
ratios

T, r+

“ram TR am (65)

Fs
We obtain the same simple expressions (63) and (65)
with I'* replaced by a standard spreading width I' in
the case of greatly overlapping normal levels with 'y >
Dy. In both these cases, the decay of the SD state
becomes exponential, while, generally, there are Rabi
oscillations of the probabilities of finding the excited
nucleus in the SD or |a) state.

The ratio Fs, which determines the relative intensity
of in-band electromagnetic transitions, is measured
experimentally. Using experimental data on Fs, one can
find v'. Since A lies between —D/2 and D/2, we get
the interval (v];,, V,ax) Of possible values for v'. Then,
substituting (37), (50) into product (61), we can estimate
barrier heights Wr. For this aim, we accept ay = 7/2
and hwg = hwp = 0.6 MeV. Besides, following [3§],
we put |(a|V’|N)| ~ 1 MeV. The values of parameters
Fs,T's, Dy are taken from [26, 35, 36]. Averaging Fn
over A, we obtained also the most probable magnitudes
of v' and the barrier heights designated by v’ and
W7, respectively. All these estimations are presented in
Tab.2.
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OCOBJINBOCTI OBEPTAJIbHUX PIBHIB
CYIEPJE®OPMOBAHUX AJTEP

A.A. JI3106aur, B.B. Ymiooic

Peswowme

Mogens [laBugoBa — Yabana y3araJbHEHO HA BHUIAJO0K CyIep-
nedopMOBaHUX afep. AaepHuit pyx cynepredOpMOBaHHX dAlep i3
ACHMETPHUIHUM IOTEHIAJ0M, IO MA€ JBa MiHIMyMH, pO3IJISHY TH
y KBa3iKyslacuYHOMY HabJsmkeHHi. Teopiro po3nagy cynepredopmo-
BaHUX 00ePTAILHAX PiBHIB MOOYZOBAHO HA OCHOBI OZHOYACHO JBOX

B3aEMOAi#f — 3aaumkoBol # enexrpomarHiTHOl. Mu y3arasmsHumn
nBopiBHeBy Mogenb Craddopna i Bapperra Ha BUna 0K, KOTH Cy-
nepaedopMoBaHuUil piBeHb, 3MIMIYETHCS 3 BEJIUKOIO KiIBKICTIO HOP-
MaJIbHUX CTaHIB eKBIJMCTAHTHOI'O CIIEKTDA.
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A.YA. DZYUBLIK, V.V. UTYUZH

OCOBEHHOCTH BPAIIIATEJ/IbHBIX YPOBHEM
CYIIEPJE®OPMUPOBAHHBIX AJIEP

A.A. JI3106aur, B.B. Ymiooic
Peszwowme

Mogens JlaBbigoBa — Yabana o6obumieHa Ha ciaydail cynepge-
GOPMUPOBAHHBIX AMep. flaepHoe nBUXKeHUEe CynepaedOpMUPOBaH-
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HBIX $7ep C ACHMMETPUYHBIM [IOTEHIHUATIOM, UMEIOIIUM JIBA MH-
HUMyMa, PACCMOTPEHO B KBAa3UKJIACCUYECKOM pubsvkenun. Te-
OpHIO pacrnaga cynepaedOpMHUPOBAHHBIX BPAI[ATEIbHBIX yPOB-
He#l mOCTPOMJIK, B3SB 33 OCHOBY OJHOBDEMEHHO ABA B3AUMOIEH-
CTBUSL — OCTQTOYHOE U djIeKTpoMarHuTHOoe. Mbl 0000muIn AByX-
ypoBHeBy0 Mozenb Craddopna um Bapperra Ha cioydail, Ko-
rga cynepaedOpMUPOBAHHBIA YPOBEHb CBSI3bIBAETCS C OOJIBIIUM
KOJIMIECTBOM HOPMAJBHBIX COCTOSHUN SKBUJUCTAHTHOIO CIEK-
Tpa.
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