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A family of Coulomb kernels smoothed with even order
polynomials is studied in the framework of the multilevel approach
to the calculation of the interaction energy between particles. It is
shown that the Ewald decomposition of the Coulomb potential is
close to the polynomial softening with the order 8 < 12. It follows
from the multilevel estimation of the Madelung constant, that,
for a small cut-off radius, the better accuracy can be attained by
using polynomials of smaller order. Therefore, these polynomials
are computationally inexpensive to evaluate in the fast summation
methods.

Introduction

A general problem in the evaluation of the energy
of a many-body system with the Coulomb interaction
between particles is the calculation of a conditionally
convergent sum. Conditional convergence means that
the final result depends on the particular order of adding
up the terms. From the physical point of view, this
implies a special spatial arrangement of the charges in
the system. In particular, such a situation is realized in
ionic crystals [1]. The local electroneutrality condition
implies a certain charge average ordering in liquid
electrolytes [2, 3].

Nevertheless, even if the electrostatic energy of
a charge system is defined, a straightforward naive
summation of particle contributions is very slow and
impracticable. The earliest effective methods, allowing
to avoid this problem, had been worked up by Madelung
[4] and Ewald [5] for the evaluation of the electrostatic
energy of ionic crystals. The Ewald approach, it seems,
is the most widely used in recent years. It is very
close to the Kummer acceleration of the convergence
of series [6] and consists of two successive stages. The
Coulomb interaction potential is split into short-range
singular and long-range smooth parts. Contributions to
the electrostatic energy of the short-range interaction
are directly calculated in the real space. The remaining
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sum of smooth potentials is evaluated in the reciprocal
space using the Fourier transformation. The smoother
the potential, the faster the convergence. A number of
modifications to the standard Ewald method have been
devised to ensure the efficient calculation of just this
smooth contribution to the electrostatic energy (see, e.g.
[7-9]).

A general multilevel approach to the calculation
of integral transforms and particle interactions with a
smooth kernel was developed in [10]. It was successfully
applied to the evaluation of a smooth part of the
electrostatic energy [11, 12]. At the same time, the
accuracy and efficiency of such calculations depend on
the splitting method of the Coulomb potential. Our
goal is to study the family of smoothed kernels in the
framework of the multilevel approach.

1. Splitting of the Coulomb Potential

In order to reduce the Coulomb potential 1/r of a point
charge, it is necessary to surround it by a screening
charge distribution of opposite sign. In case the charge
distribution is spherical, the definition of the electric
field E follows from the Gauss law [13]:

T

P’E=1- /p(T)T2dT, (1)

0

where p(7) is the screening charge distribution and the
integral depicts the charge inside the sphere of a radius
. Requirement of the electroneutrality leads to the
following restriction on the charge distribution:

o0

/p(T)Tsz =1 (2)

0
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In accordance with (1), the screened potential ¢(r)
at distance r from the point charge is defined by:

_ 1-—rG(r)

o(r) — (3)
where
G(r) :/i—f/p(ﬂ#dr (4)

Screening of the Coulomb potential is described in
(3) by the function

S(r)=1-rG(r) (5)

which can be treated as the switch function.

One can see from (2) and (4) that potential (3) can
approach zero faster than that in the case of a bare point
charge. The proper choice of the charge distribution
allows one to neglect its value (or make it exact zero)
beyond some cut-off radius Rcy¢-

Thus, the Coulomb potential of a point charge can
be split into two parts:

% = ¢(r) + G(r). (6)

Its first singular term rapidly decays and the second one
is the slow decaying non-singular long-range part.

For example, in the framework of the Ewald
approach, the charge distribution is chosen in the form
of spherical Gaussian:

p(x) = 4m€_a “, (7)
where « is the free parameter which defines the
shape of charge distribution curve. Evaluating (4) with
substitution of (7) yields:

G(r) = M, (8)
r
where erf(z) is the error function.

The trivial, in the case of a lonely point charge,
decomposition (6) is very useful if one intends to find
the electrostatic potential u(7;) produced by the system
of N charges:

S g 7 - )+

J#4, | 7?1 - F] |< Rcut

N
+ 3 4G 7 -7 ), (9)

J#i
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here g; is a point charge and 7 is a radius-vector of this
point. The first sum in (9) can be calculated directly and
this operation is not computationally expensive. The last
sum concerns all charges and represents the potential of
their compensative charge distributions. On the other
hand, (6) can be treated as the result of the splitting of
the potential instead of the charge density. Therefore,
one can consider the long-range contribution in (9) as a
transformation with smooth kernel. The problem is how
to evaluate this sum taking into account the smoothness
property of the kernel.

2. Outline of the Multilevel Summation
Method

In order to evaluate the smooth part of potential (9), we
start with the arrangement of charges along a line, in
which case that part is given by:

Usmooth(mi) = ZG(| Ty — Ty |)qj7 (10)
i
where charges q; = =1 are, in general, arbitrarily

located.

In the framework of the multilevel approach [10], the
space is covered by a uniform grid which is defined by a
set of gridpoints X;, the meshsize being H. Assuming
the kernel G(| z; — x; |) is a smooth function of
its arguments, it is possible to use the polynomial
interpolation from that grid with O(e) error:

Gl wi—v; ) = 3 LG mi — X )+ O). (11
k=0

Here the interpolating Lagrange polynomials of order p
are defined by

LE(x) = f[ o (12)
R ..
i=0, i#£k
Substitution of (12) in (10) yields:
P
Usmooth(mi) = Z G(| z; — Xy |)Qk + 0(6)7 (13)
k=0
where {Qr} is the set of charges at gridpoints:
Q=2 Li(z)q;- (14)

J#i
In contrast to the interpolation from the grid, operation

(14) is the coarsening of the charges to the grid and is
called adjoint interpolation, or anterpolation [10].
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Fig. 1. Long-range smooth part of the Coulomb kernel for different
polynomial orders. Comparison is made to the Ewald splitting (8)
with a = 2.5

Next, the value of the kernel in (13) at the point z;
can be interpolated from the grid

14

D> L

=0

G(lai — Xk |) = G(] Xi — Xk [) + O(e). (15)

Applying (15) to the kernel in (13), one obtains that

P
Usmooth mz ZL Xl + O( ) (16)
1=0
where the following potential is introduced:
=> G| X1 - Xi Qs (17)
k
Definition of potential (17) is close to (10). It fixes

the potential at a gridpoint produced by anterpolated
charges at all gridpoints.

The entire algorithm for the calculation of the long-
range smooth part of the potential consists of following
steps:

(i) Anterpolation of all charges (for the simplicity
of calculations with the term i = j) to the coarse-level
grid using (14). The erroneous contribution of the self-
interaction caused by the charge ¢; should be removed
at the last step.

(ii) Calculation of the potential at coarse-level
gridpoints defined by the lattice sum (17).

(iii) Interpolation of the potential from the coarse-
level grid to the particle position (16). In order to correct
the obtained value of the potential, the single charge
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Fig. 2. Switch functions. For the Ewald splitting, S(z) = erfe(ax)

¢; is anterpolated to the coarse-level grid, then the
potential at gridpoints is evaluated, and the result of
the interpolation to the finer level is subtracted from
the former result corresponding to the contribution of
all charges.

If charges are arranged on the plane or in
the three-dimensional space without restrictions, the
anterpolation and the interpolation are performed by the
one-dimensional operation at a time.

The important feature of the multilevel fast
summation method is the possibility to calculate
potential (17) at the step (ii) by recursion. A number
of coarser grids with the increasing meshsize are
introduced. At each level, the potential is split into
the short-range part and the long-range part which
is smooth on the scale of the meshsize. Short-range
contributions are calculated directly at the given level,
the long-range part of the potential is interpolated from
the coarser level. The recursion is performed until such
a coarse grid is reached that calculation of potential (17)
with its use needs a small amount of the computational
work or the coarsest level potential is so smooth that the
difference between values at gridpoints can be neglected.

3. Softening of the Coulomb Potential

As follows from (2) and (4), the smooth part of the
Coulomb potential can be defined in different ways.
In general, in order to remove the singularity of the
potential, it is enough to soften it in the vicinity of
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the origin only. This means that a screening charge
distribution should be located inside a sphere of some
radius Ry¢- In this case, the smooth long-range part of
potential (4) is written as follows:

_ GL(T)a r < Reys,
G(r) = { 1/r, > Reyt-

If the softened potential is chosen in such a form, the
screened potential (3) is exact zero outside the sphere of
the radius Ry and is really the short-range potential.

It is convenient to consider an arbitrary function
G (r) as the polynomial of order 2m:

(18)

m
Gy(e) = ara, (19)
=0
where = r/Re, is the dimensionless variable.

Coefficients a; are determined so that kernel (18) and
its m derivatives are continuous functions at the point
r = Reut (x = 1). Coefficients for the first polynomials of
family (19) derived under these conditions are presented
in the Table.

The Coulomb potential softened in accordance with
(18) for different orders of polynomials (19) is shown
in Fig.1. Smooth part of the Ewald splitting (8) as
the function of the dimensionless variable is plotted for
a = 2.5. One can see from Fig.1 that, in this case, the
behavior of (8) is close to (18).

Switch functions in cases of the Ewald splitting and
the polynomial softening (19) are shown in Fig.2. Charge
distributions corresponding to the screened potentials
(3) can be restored in accordance with (1) and (4). The
result is presented in Fig.3.

One can see from these pictures that the Ewald
decomposition of the Coulomb potential is close to the
polynomial softening with the polynomial order 2m =
8 = 12. At the same time, the larger m the smaller the
contribution to the short-range part of the energy from
charges placed near R.,: (see Fig.2). This means that
the softening with polynomials of low orders can be more
effective for the calculation of the short-range interaction
energy. Therefore, the polynomial order in (19) serves
as the additional degree of freedom comparatively with
the Ewald splitting procedure, and the optimal softening
of the Coulomb potential should be studied on the
numerical examples of charge systems.

4. Multilevel Estimation of the Madelung
Constant

An ionic crystal is the simple example of a many-body
system with the Coulomb interaction. The potential
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Fig. 3. Screening charge distributions

electrostatic energy per ion created in an infinite lattice
by point charges ¢; = £e may be defined by [1]:

62

— 7 2
s (20)

Ujon = —

where h is the minimum distance between unlike charges
and Zy; is the Madelung constant.

If the meshsize of the coarser-level grid equals
the length of the unit cell in the same direction,
anterpolation (14) of all lattice point charges results
in the electroneutral coarse-level gridpoints [12]. This
inference doesn’t depend on the anterpolation order and
the position of the coarse-level grid. Therefore, it is
convenient to shift the coarse-level grid in order to
simplify calculations. The reasonable disposition of the
coarse-level grid is as follows: a gridpoint is placed above
the ion ¢, for which the energy is to be calculated. Defini-

Coefficients of polynomials (19)

m | 1|

o | 3 | 4 | 5 | 6

a0 3 15 35 315 603 3003

2 8 16 128 256 1024

a 1 5 35 105 _ 1155 3003

2 1 16 32 256 512

s 3 21 189 603 9009

3 16 64 128 1024

as _5 _5 _495 215

16 32 128 256

ay 35 385 5005

128 256 1024

as _&  _8lo

256 512

231

a6 1024
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tion of the Madelung constant, estimated in the

framework of the multilevel summation method, results
from (9), (17), and (20) [12]:

Zulpe) = 3 (L= Glow) +GO0),

i#j, pij<pecut

(21)

where p = r/h is the dimensionless distance.

A one-dimensional ionic lattice consists of alternating
positive and negative point charges with the distance
h (p = 1) between unlike charges and the distance 2h
(p = 2, the meshsize of the coarser-level grid is set to this
value) between like charges. In this case, the Madelung
constant is defined by (20):

- (1)
Iy = —2 —. 22
; ; (22)

The sum in (22) can be calculated analytically,
the exact value of the Madelung constant is Zy =
21n2. Therefore it is reasonable to test the softening
of the Coulomb potential with the use of (21) for
the one-dimensional ionic lattice. Calculation errors are
presented in Fig.4. One can see that for sufficiently
large values of peyt the polynomial softening (19) with
m = 4 + 6 and Ewald splitting of the long-range part
of the Coulomb potential (8) give the estimation of the
Madelung constant with compatible high accuracy. At
the same time, the reasonable accuracy can be attained
at smaller peyt (and less computational work in the
calculation of the short-range contribution in (21)) by
using polynomials of smaller order in (19).
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Conclusion

Fast summation methods yield the energy for systems
with long-range (Coulomb or gravitational) interaction
between particles in computational work that scales
linearly with a number of particles. At the same time,
the cost of the calculation per particle depends on
the splitting of the interaction kernel (6). Though
the common Ewald approach defines the very smooth
long-range part of potential (8), it is computationally
expensive, moreover, the short-range part (3) is
not finite-range (the error of the short-range energy
calculation depends on the value of the parameter «).

The polynomial softening (19) yields the truly
short-range part of the potential and reproduces
the Ewald splitting when the polynomial order is
relatively small. This means that function (8) possesses
“superfluous” smoothness properties. Estimation of the
Madelung constant in the framework of the multilevel
fast summation method shows that the splitting of
the Coulomb potential considered in this work is
computationally efficient. Such a method with the
polynomial softening of the interaction potential can
be easily incorporated into the Monte Carlo method
(ordinary [14] or multilevel [15] approach) where the
energy calculation should be as fast as possible at
reasonable accuracy.
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POBKJIAJTAHHSA AJIPA KYJIOHIBCHKOI B3AEMO/IIT
YV BATATOPIBHEBOMY METO/II
HIBUAKOT'O IIJJCYMOBYBAHHS

H. I'nockoscvra, B. Lavin
Peszwowme
Y wmexax 0araTopiBHEBOro miaxXogy 4O PO3PAxyHKY eHepril

B3a€MOZil MiXK JaCTHHKAMHU BHBYEHO CiMEHCTBO s7ep KYyJIOHIBCh-
KOT B3a€MO/il, 3IVIQJ2KEHUX i3 BUKOPUCTAHHSIM MHOTOYJIEHIB map-
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HUX cremneHiB. [lokazaHo, mo po3kyagaHHda KEBaabaa KyJIOHIB-
CbKOI'O MOTEHI[AJy A€ pe3yJibTaTH, CXO0XKi 3 [OoJjiHOMiaJIbHUM
3rIaKyBaHHAM cTermeHsa 8—12. 3 ominkm cranoi MagnesmyHra
3a JI0IOMOrOK 0araTOpPiBHEBOrO METOJY BHILJIMBAE, IO [JIsSI Ma-
X pajiyciB oOpi3aHHS [MiABUINEHHS TOYHOCTI MOXKHA, JOCSI-
TH, BUKOPHCTOBYIOYH MHOIOYJIEHH HUMKIUX CTeleHiB. Takum wu-
HOM, IIi MHOrOWIeHH € e(EeKTHBHUMH 3 OOUHCIIOBAJIBHOI TOU-
KH 30py OpH 3aCTOCYBAHHI y METOJAX IIBHIKOLO IIiJCYMOBYBAH-
HHA.

PABJIOKEHUNE AA/JPA KYJIOHOBCKOI'O
B3AUMOJIENCTBUS B MHOIOYPOBHEBOM
METOJE BBICTPOI'O CYMMUPOBAHUA

H. I'nockosckasn, B. Uavun
Peszmowme

B pamkax MHOrOypOBHEBOIO MOAXOZA K PACUETy SHEPIUU B3AU-
MOIEHUCTBHA MeXKIy YaCTHIAMH H3YyIeHO CeMeHCTBO fAmep KyJmo-
HOBCKOT'O B3aUMOJEHCTBHUS, CIVIAXKEHHBIX C HCIOJb30BAHHEM MHO-
rOWIeHOB 4YeTHBIX cTemeHeil. [[okazano, 4To passioxkeHHe DBaJIb-
13 KYJIOHOBCKOI'O IOTEHIHAJA JAET CXOLHBLIE PE3YJIbTATHI C IIOJIH-
HOMHUAJIBHBIM CrylaKuBaHueM creneHu 8—12. VI3 omeHKHu n0CTOsH-
HOil MagesyHra mpu IOMOIIM MHOTOYPOBHEBOTO METOIA CIeIyeT,
9TO UL MAJIBIX PAJUYyCOB OOPE3aHUs IOBBIMIEHUSI TOYHOCTH MOXK-
HO JOCTHYb, HCIOJb3ys MHOIOUJIEHHI Oojlee HU3KHX cTemeHei. Ta-
KuM 00pa30M, 3TH MHOIOWIEHB 3(P(MEKTUBHBL C BEIYUCIUTEILHON
TOYKH 3peHHS IPHMEHHTEIbHO K MeTOZaM OBICTPOro CyMMHPOBa-
HHAS.
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