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Recently, kinetic equations with partial fractional derivatives
have attracted attention as a tool for the description of anomalous
relaxation and diffusion phenomena. We present a short review
on the modern status of fractional kinetic equations. The topics
considered are as follows:

— derivation of fractional kinetic equations with space fractional
derivative;

— anomalous diffusion and relaxation;

— non-Boltzmann stationary states.

Applications of the general theory to plasma physics problems are
proposed.

Introduction

Recently, kinetic equations with fractional space
and time derivatives have attracted attention as a
tool for the description of anomalous diffusion and
relaxation phenomena, see, e.g., [1, 2 and references
on earlier studies therein]. In these phenomena, the
laws of normal diffusion (ordinary Brownian motion)
are altered, e.g., the mean squared displacement no
longer increases linearly with time but instead grows
slower (subdiffusion) or faster (superdiffusion) than the
linear function. Furthermore, in contrast to exponential
relaxation, which is the distinctive feature of ordinary
Brownian motion, fractional kinetics may exhibit non-
exponential slow relaxation. Another distinctive feature
of fractional kinetics is non-Boltzmann stationary states
which occur in the open systems far from equilibrium.
Thus, fractional kinetics covers a large area of anomalous
dynamics called also “strange kinetics”, the term
which was introduced in [3] and originally referred
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to the dynamics of Hamiltonian systems displaying
superdiffusion in the limit of weak chaos [4]. Now,
the term “strange kinetics” is employed in a general
sense implying a variety of topics which are connected
with deviations from exponential or Gaussian laws, and
deviations from fast decaying correlations [5]. Here,
one is faced with the existence of long-range time and
space correlations, disorder and cooperativity, shared by
systems studied by physicists, chemists, engineers, and
many more. We refer to the Special Issue of Chemical
Physics, Vol.284, Nos.1-2 (November 1, 2002) which is
exclusively devoted to the topic “Strange Kinetics”.

Theoretically, strange kinetics and anomalous
dynamics are intimately connected to the description
based on random walks in continuous time, generalized
master, Langevin and Fokker—Planck equations.
Recently, it has become clear that many of these
theoretical tools are mathematically related to the
expanding area of fractional differential equations.
It was found that fractional kinetic equations may
be viewed as the long-time and long-space limit of
continuous-time random walks, a model that was
successfully applied to describe anomalous diffusion
phenomena in many areas, e.g., turbulence [6],
disoreder media [7], intermittent chaotic systems
[8], underground water pollution [9], etc. However,
the kinetic equations have two advantages over the
random walk approach: first, they allow one to
explore various boundary conditions (e.g., reflecting
and/or absorbing) and, second, to study diffusion
and/or relaxation phenomena in external fields. Both
possibilities are difficult to realize in the random walk
schemes.
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The different way to obtain fractional Kkinetic
equations is the use of the Langevin equations. In present
review, just this approach is used.

There are three types of fractional kinetic equations:
the first one, describing Markovian processes, contains
equations with fractional space or velocity derivative;
the second one, describing non-Markovian processes,
contains equations with fractional time derivative; and
the third class, naturally, contains both fractional space
and time derivatives, as well. The recent review [1]
was devoted mainly to time fractional kinetic equations
which are used for studying relaxation and diffusion
phenomena close to equilibrium. In the present paper,
we deal mainly with space and velocity fractional kinetic
equations which are believed to describe a certain class
of diffusion and relaxation phenomena in open systems
far from equilibrium.

1. Derivation of Fractional Kinetic Equation

1.1. Lévy noises

In what follows, we will start from the Langevin equation
with a white Lévy noise. Various models of dynamical
systems driven by non-Gaussian Lévy noises obeying
the Lévy statistics are used for the description of
anomalous random processes and related anomalous
diffusion phenomena [10—14, 35]. These models are
based on Generalized Central Limit Theorem, according
to which Levy stable probability distributions are the
limit ones for properly normalized sums of random
variables with diverging variance [15, 16]. It implies that
just Lévy distributions, similarly to the Gaussian one,
naturally occur when the evolution of a system or the
result of an experiment are determined by the sum of a
large number of random factors.

Lévy stable probability density functions (PDFs) are
classified by their Lévy index o which lies between 0 and
2. The case a = 2 corresponds to the Gaussian PDF.
For Levy indices ranging in the interval 0 < a < 2, the
Lévy stable PDFs possess power-law tails of the form
o |#|7®~! This means that moments of order ¢ > «
diverge. Therefore, there exist large “outliers” or peaks
in the Lévy noises which appear due to "fat” tails of the
PDFs, see Fig.1. On the contrary, these peaks do not
exist in the Gaussian noise, since they are prohibited
by rapidly decaying tails of the Gaussian PDF, see the
bottom sample. Because of such a drastic difference
between two types of the noises, the statistical
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Fig. 1. Lévy noises with the Lévy indices (from top to bottom) «
~ 0.50, 1.00, 1.50, and 2.00

behaviours of the systems driven by them differ greatly
one from the other.
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1.2. Kinetic equation for ordinary Lévy motion

Before getting a space fractional kinetic equation, it
is expedient, from a methodical viewpoint [17], to get
an equation for the probability density function (PDF)
f(z,t) of the random process called a-stable process
or ordinary Lévy motion. This is a non-stationary
process, whose increments are self-affine, stationary,
independent and distributed by the Lévy stable law [18].
A characteristic function has the form

— 00

Pk, 1) = / def (. 1) exp(ikz) = exp(~D K| 1), (1)

o0

where a is the Lévy index, 0 < a < 2, D > 0, and D'/
is called a scale parameter. Here we restrict ourselves
with one-dimensional stable processes with symmetric
PDFs. The generalizations see in [19—21]. At a = 2, we
arrive at the particular case of the Wiener process, or
ordinary Brownian motion. It follows from Eq.(1) that

f(k, t) obeys the equation

o _ _puwpet,

in f(k,0)=1. (2)

We use the Riesz fractional derivative which may
be defined, for a 7sufficiently well-behaved” function
¢(z),z € R, as the (pseudo-differential) operator
characterized in its Fourier representation by

o0
(67

[ @ exp(ikx)dfTM(x) = K (),

keR, a>0 (3)

(for the rigorous definition of the Riesz fractional
derivative in terms of Riemann—Liouville derivatives,
see, e.g., [22]. Note that d2/d|z|* = d2/dz* , but
d/d|z| = d/dz ). Now, with the use of Eqgs.(1)—(3), the
evolution equation for the PDF of the a-stable process
can be written as

of _oof
ot~ Do 4

For a = 2, Eq.(4) is the usual diffusion equation. For
0 < a < 2, it describes anomalous superdiffusion, see
Sect.3 below.

716

1.3. Fractional FEinstein—Smoluchowsk:

Equation

We start from the integral equation for the PDF of a
Markovian stochastic process,

Flo, t+A%) = / d(Az) f(r— Az, ) (3— Az Az, AL),(5)

where ¢ (x; Az, At) is the transition probability, that is,
the probability for z(¢) to get an increment Az during
an interval At . The starting Langevin equation is

dx 1 dU

AR W ()
dt mydm+ ®) (©6)

where U is the potential energy, m is the particle mass,
v is the friction coefficient, and Y, (t) is a stationary
white Lévy noise. Similarly to the definition of a white
Gaussian noise, white Lévy noise can be defined such
that an integral of Y, (t) over some time lag is an
a—stable process with the characteristic function given
by Eq.(1). Then, we get from Eq.(6), by integrating
during a time interval At, which is shorter than
time intervals during which physical parameters change
appreciably:

t+At
/ avy (). (7)

At dU
Ar=——— + L(A
T e dz + L(AY),

L(At) =

The transition probability follows from Eq.(7),

Y(z; Az, At) =
/ 9 p [ ik <A:1; + ﬁ%) - D|k|“At} L ®)

We insert Eq.(8) into Eq.(5), expand the left- and right-
hand sides of the equation in Taylor series in At and
then take the limit At — 0. As the result, we get FESE,

of _ @ <dU/d:1;f> .

il o

9o f
Dy ©)

ot Oz

which is reduced to the known Einstein-Smoluchowski
equation at a = 2. We also note that, in [14], by using
the analogous procedure, the fractional Fokker—Planck
equation (FFPE) was obtained, which contains the
term with velocity fractional derivative, thus describing
anomalous diffusion in the phase space.
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2. Anomalous Superdiffusion

Let us turn to Eq.(4). The characteristic function of the
solution is given by Eq.(1). In the real space, the Lévy
stable PDFs are expressed in terms of Fox’ H functions
[23]. Such a representation of all stable PDFs was
achieved in [24]. Mathematical details on H functions are
presented in [25, 26]. However, in the present paper, we
do not touch a real space representation for an arbitrary
a.

Since the variance and higher moments of integer
order diverge for the stable PDFs, as statistical means
characterizing the properties of these processes, the
moments of fractional orders can be used [10, 27]. In
order to guarantee the reality, they must be defined for
the modulus of a stochastic variable. Therefore, in case
of force-free relaxation, the moments of fractional orders
are

oo

M) = [ defel £ (20 =
— 00
={ (DY /v)1C(g;e), 0<g<aco, ¢>a }(10)
for 0 < a < 2, whereas
D)4/
M, (t;q,2) = %C(q; 2) (11)
for @ = 2 and an arbitrary ¢, where
T d
Z .
Claia) = [ doaloal? [ G exp(-izizs = fou]")

The coefficient C(g; ) can be evaluated with the use of
generalized function theory [10]:

C(g;a) = qu sin (%) L1+ ¢)T (1 — %) ,

0<g<a. (12)

Equations (10)—(12) have a direct physical consequence
for the description of anomalous diffusion. Indeed, for
ordinary Brownian motion, the typical displacement
0z (t) of a particle may be written through the second
moment as

Sx(t) = MY2(t;2,2) o t1/2,
One may note from Eq.(11) that, for normal diffusion,

M;/q(t; q,2) o t'/%at any ¢ and, thus, any order of the
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moment can serve as the measure of a normal diffusion
rate:

dx(t) m My/(t;q,2) o /2,

if one is interested in the time-dependence of the
characteristic displacement, but not in the value of
the prefactor. We recall that usually just the time-
dependence, but not the prefactor, serves as an indicator
of normal or anomalous diffusion [7]. In analogy with the
Brownian case, it follows from Eq.(10) that the quantity
le/q(t;q,a) at 0 < a@ < 2 and any ¢ < « can serve as
the measure of an anomalous superdiffusion rate:

Sx(t) ~ MM(t;q,0) <t/ 0<g<a<?2 (13)

We give a remark on the above, which is
concerned with alternative ways for characterizing the
rate of superdiffusion. Indeed, instead of introducing
displacement Az, there exist two similar ways.

In [28], as a measure of the width of a diffusion
packet, the length R,(t) of a segment containing fixed
probability p is used,

f(z,t)dz = p.
le|<Rp(t)
Using the characteristic function of a 1-dimensional

Lévy stable process with symmetric PDF and changing
variables, we get

/ dx / %exp(—ikx— |k|*) = p.
2m

le|<Rp(t) 0

Since the right-hand side of this equation does not
depend on t,
Ry(t) o 112, (14)

which is in accordance with Eq. (13).
Another way to extract the scaling operationally is
enclosing the ”walker” in an “imaginary growing box”
[13]:
thl/a
(2 () ~ dea? f(x,t) o 22

thl/a

(15)

This procedure has been also implemented numerically

[13]. Of course, the scaling result (15) should not be

confused with the mean square displacement, which is

infinite. However, for a > 1, the squared absolute mean
2

— 00

(Jf?) = / dwzf(z, )

o0
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Fig.2. Force-free relaxation in the framework of FESE. The

moment My versus ¢t at different values of moment exponent q.

The Lévy index a is 1

converges and is proportional to /%, which is also in
accordance with (14), (15).

Thus, all three ways of extracting anomalous scaling
give the same result.

The numerical simulation is based on the solution
of the Langevin equation (6). Here and below, the
stochastic source Y, (t) is represented in numerical
simulation as a discrete approximation of a “white
Lévy noise”, that is, as a stationary consequence of
independent identically distributed variables having
symmetric stable PDF with the Lévy index a and the
scale parameter equal to 1. The model of white Lévy
noise is described in [29] in more details. In a force-
free problem, we estimate numerically the moments
M, (t;q,«) by averaging over realizations of x(t). The
details of simulations are described in [14].

In Fig. 2, we show M,(t;q,1) versus t at different
g on a log—log scale. At ¢ < a = 1, the dependence is
well fitted by a straight line whose slope allows one to
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define the diffusion exponent. At ¢ > «, the theoretical
value of the moment is infinite, and the moment strongly
fluctuates in numerical simulation, thus it is unable to
get the diffusion exponent.We note that the increase of
the number of trajectories does not lead to the damping
of fluctuations seen in the top figure.

3. Harmonic Lévy Oscillator

Let U = az?/2, a = mw? in Eq.(9) which is solved with
the initial condition f(z,0) = 6(z). The corresponding
equation for the characteristic function has the solution
[13]

~

f(k,t) = exp(=Dosc(t) |k]*), (16)
where
Dy (t) = % <1 — exp <—QTW2t>> . (17)

It follows from Eqs.(16) and (17) that () is
asymptotically stable at small times, t << 7, = v/aw?.
At large times, ¢ >> 7, , the process z(t) becomes
stationary with the stable PDF possessing the following
properties: PDF is unimodal with a maximum being at
the origin, and (ii) it has a slowly decaying tail such that
the variance diverges.

The fractional moments are used to characterize
relaxation and diffusion phenomena:
(J«]7) = D ()C(g; ), (18)
where C(g;a) is determined by Eq.(12). Numerical
simulation of the relaxation of a harmonic Lévy oscillator
is based on the numerical solution of the Langevin
equation(6) with a subsequent estimation of the g¢-
th moment [14]. The results are shown in Fig.3 in
dimensional variables for different values of w, ¢ =
025, = 1,7 = 1. The values obtained in the
numerical simulation are shown by black points whereas
the solid line demonstrates the result obtained with
Eqs.(17), (18). Vertical arrows show ,, after which
the process z(t) becomes stationary. The results of the
numerical simulation based on the Langevin approach
agree with the theory based on the kinetic equation
on both the non-stationary and stationary stages of
evolution. Another linear stochastic system, namely, a

plane rotator driven by the Lévy noise was considered
in [36].
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4. Quartic Lévy Oscillator

Let us consider the simple example of a non-linear
quartic Cauchy oscillator with the potential U = bx*/4
and the Lévy index a = 1. In the dimensionless variables
@ = x/xo,t = t/to such that zg = (myD/b)'/3 tg =
xo/D, the stationary PDF can be easily obtained from
Eq.(9):

flx) =711 -2 + 271 (19)

Note that f(z) has two important properties: (i) bimodal
structure, that is, the PDF has a local minimum at
Tmin = 0 and two maxima at Zgax = il/ﬂ, and
(ii) the PDF has steep power-law asymptotics at & —
+o0, f(x) o« 7%, hence, the variance is finite. These
properties are drastically different from the properties
of stationary solutions for both a Brownian quartic
oscillator and harmonic Lévy oscillator. It was shown
in [33] that the steep power-law asymptotics and the
bimodality are inherent in quartic Lévy oscillators with
all a’s such that 1< a < 2. Moreover, this result
was generalized in [32], namely, it was shown that,
for symmetric potentials of the general form U(z) o
2?2 /(2m +2), m = 0,1,2,..., the PDFs display a
distinct bimodal character and have power-law tails
which decay as

fo) ~ o

N e (20)
where C,, = 77'I'(a) sin(m/2) is a "universal” constant
in the sense that it does not depend on m. This property
of the PDFs is illustrated by Fig.4, which represents the
results of numerical modelling based on the solutions of
the Langevin equations. In the left column, the potential
energy functions with different m indices are shown by
solid lines. The dotted lines indicate their curvatures.
In the middle and in the right columns, the typical
sample paths are shown for oscillators driven by the
Gaussian noise (Brownian oscillator) and the Lévy noise
with @« = 1 (Cauchy oscillator), respectively. Each
row corresponds to the oscillator with the index m
indicated in the left column. It is seen that the typical
sample paths for all Brownian oscillators are nearly the
same, consisting of small increments of the coordinate
during each time step. This is the consequence of the
exponential shape of stationary Boltzmann PDF's, which
prohibits large increments. In contrast, Lévy flights with
large increments are clearly distinct in the figures of the
right column. These flights appear due to the power-law
asymptotics of the stationary PDF's, which permit large
values of increments to occur. The longest flights are
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Fig.3. Relaxation of a harmonic Lévy oscillator: g-th moment

versus t on a double logarithmic scale

realized in case of a harmonic Lévy oscillator,
m = 0, because the PDF of a harmonic oscillator
has the fattest tail. As follows from Eq.(20), with
m increasing, the power-law asymptotics become
steeper, therefore, the flights become shorter, that
is, long flights occur more rarely. This effect is
clearly seen in the right column, when comparing, for
example, sample paths for a linear oscillator (at the
top) with a strongly non-linear oscillator in the bottom.
The quantitative relations for the family of non-linear
Lévy oscillators were studied in [32] in detail. In [34],
the peculiarities of the unimodal — bimodal transition
during time evolution were studied for a quartic Lévy
oscillator.
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Fig.4. Left column: the potential energy functions U = z>™%2/(2m 4 2) (solid lines) and their curvatures (dotted lines) for different

) 260 400

values of m: m = 0 (linear oscillator), and m = 1,2, 3 (strongly non-linear oscillators). Middle column: typical sample paths of Brownian

oscillators, a = 2, with the potential energy functions shown on the left. Right column: typical sample paths of Lévy oscillators, a = 1

5. Anharmonic Lévy Oscillator

Since a harmonic Lévy oscillator has unimodal
stationary PDF, and a quartic Lévy oscillator has
bimodal stationary PDF, one might expect that, for an
anharmonic Lévy oscillator with the potential energy
function U = ax?/2 + bx'/4, a > 0, b > 0, the
bimodal-unimodal transition exists in a stationary state
if the parameters a and b vary. We show it for a
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Cauchy anharmonic oscillator. Introducing the same
dimensionless variables as in the previous Sections,
setting a' = ato/my and omitting primes, we arrive
at the equation for the characteristic function of the
stationary PDF on the right semi-axis:

Ef k) df ()

dk3 dk =f (k)a f(O) =1,
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df (0)

== =0, f(k=00) =0.

(Note that, in dimensionless variables, we deal with
the potential energy function U = ax?/2 + 2*/4; thus,
only one parameter, a, remains.) The solution is f(k) =
(—ze** + ze***) (z — 2*)7!, where z is the complex
root of the characteristic equation 23 —az — 1 = 0,
that is, z = —(u 4+ w)/2 + iV3(u — w)/2, where

w = (14 /T 4a327) 2, 0* = (1= /T—4a7]27) /2.
We are interested in the unimodal-bimodal transition
when the parameter a varies. Let a. be the critical
value, which we determine by using Eqgs.(4.6)—(4.9).
The condition for the transition is d*f(0)/dz*> = 0, or
equivalently, defining J(a) = [3° dkk*f (k), J(a.) = 0.
If J > 0, the stationary PDF is unimodal; if J <
0, it is bimodal. Then, sgnJ = sgn (2*+2*?) and,
defininig ¢ = 4*/3a,./3, we get

(22)

¢ = (1 + M)m + (1 - m)m

The solution of Eq.(22) is ¢ = 0.420 and therefore a. =
0.794. For a > a., the quadratic term in the potential
energy function prevails, and the stationary PDF has
one maximum at the origin. In contrast, for a < a., the
quartic term dominates and dictates the shape of the
PDF. As a result, the bimodal stationary PDF appears
with a local minimum at the origin. Returning to the
dimensional variables, we can rewrite the condition of
transition in terms of a critical value b, of the quartic
term amplitude:

be = a®/0.7943(myD)?. (23)

This relation implies that increasing noise requires
smaller anharmonicity to cause the bimodal stationary
PDF. Thus, the bimodality results indeed from the
combination of the Lévy character of the noise and the
anharmonicity of the potential well. In Fig.5, the profiles
of stationary PDFs are shown for an anharmonic Cauchy
oscillator for different values of the coefficient a, from
top to bottom: a =0, 0.2, 0.4, 0.6, 0.8, and 1.0. The
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Fig. 5. Profiles of the stationary PDF’s (obtained by the inverse

Fourier transformation) are shown for an anharmonic Cauchy

oscillator

PDFs are obtained by the inverse Fourier
transformation of characteristic functions. It is clear
that the bimodality is most pronounced for a = 0 , that
is, for the quartic Cauchy oscillator. As the parameter
a increases, the bimodal profile smoothes out, and,
finally, it turns to a unimodal one. The generalization
for arbitrary a was considered in [32].

6. Fractional Kinetics for Relaxation and
Superdiffusion in a Magnetic Field

The various processes in space and thermonuclear
plasmas could serve as important applications of
fractional kinetics. Indeed, many of the current
challenges in solar system plasmas as well as in plasmas
of thermonuclear devices arise from fundamentally
multiscale and nonlinear nature of plasma fluctuation
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Fig. 6. Numerical solution to the Langevin equations (24).
Trajectories on (vz,vy) plane: a) for a = 2.0, b) for a = 1.2

and wave processes, see, e.g., recent references on
self-organized criticality, originally applied to plasma
physics problems in [30], measurements of space
plasma wave properties [31], measurements of chaotic
transport in analogous geophysical and plasma systems
showing anomalous diffusion and Levy statistics [37],
data analysis of plasma edge fluctuations in different
thermonuclear devices [38—40], etc. Very recently, it
was shown that the fluctuations of the ion saturation
current and floating potential measured in the boundary
plasma of a Torsatron “Uragan 3M” can be described
within the framework of non-Gaussian Lévy statistics
[41]. Anomalous diffusion and plasma heating, particle
acceleration and macroscopic transfer processes require
to go beyond the “traditional” plasma kinetic theory.
Fractional kinetics can be useful for describing such
processes, just as it occurs in other fields of applications.
Recently, a phenomenological fractional kinetic equation
was proposed, which governs the distribution of density
fluctuations in a tokamak [42]. In this Section, we

722

consider a test charged particle with mass m and the
charge e, embedded in a constant external magnetic field
B and subjected to a stochastic electric field e (t). We
also assume, as in the classical problem for a charged
Brownian particle [43], that the particle is influenced
by the linear friction force —vmv, v is the friction
coefficient. For this particle, the Langevin equations of
motion are

dr

at -

dv e e

i %[VXB]—IJV-FES. (24)

The statistical properties of the field e(t) are
assumed to be as follows.

1. € (¢t) is homogeneous and isotropic.

2. £(t) is a stationary white Lévy noise.

The first assumption is the usual one when dealing
with the motion of a charged particle in a random
electric field. The second assumption provides us with
a simple and straightforward possibility, at least, from
the methodical viewpoint, to consider abnormal diffusion
and non-Maxwell stationary states, both properties are
inherent in strongly non-equilibrium plasmas of the solar
system and thermonuclear devices. Thus, if a < 2, then,
by applying the procedure described in detail for the
one-dimensional case in [14], we arrive at the fractional
Fokker—Planck equation for a charged particle in the
constant magnetic field and random electric field:
of , of of

5t va—i—ﬂ[vxez]a—vz

0
=v— — D (=A,)*? 25
vae (V) = D (=A™ £, (25)
where Q = eB/mc, D = e® D, /m® and (—Ay)*/? is the
fractional Riesz derivative with respect to the velocity.
This operator is defined through its Fourier transform
as

(A2 f(r,v, ) + K[ f (5K, t), (26)

where f is the characteristic function,

fskt) = //drdv exp (ikr + ikv) f(r,v,t). (27)

An explicit representation of the Riesz derivative is
realized through a hypersingular integral, see [22]
containing the detailed presentation of the Riesz
differentiation. We also note that, at a = 2, Eqgs. (25),
(26) are reduced to the Fokker—Planck equation for the
Brownian motion.
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FFPE (25) is studied in detail in [35]. It is found, in
particular, that the stationary states are essentially non-
Maxwellian ones and, at the diffusion stage of relaxation,
the characteristic displacement of a particle grows
superdiffusively with time and is inversely proportional
to the magnetic field:

Ar o< 1 > /9B, (28)

In [35], the analytical results are also compared
with those of the numerical simulation based on the
solution of the Langevin equations (24). As an example
of numerical simulation, in Fig.6, we present the
trajectories of a particle on the (v;,v,) plane for a)
charged Brownian particle, @« = 2, and b) charged Lévy
particle, & = 1.2. Large “Lévy flights” are clearly seen in
Fig.6,b. For quantitative results, see [35]

7. Summary

Let us summarize briefly the results reviewed above:

(i) fractional kinetic equations appear as a natural
generalization of the basic kinetic equations of the theory
of Brownian motion;

(ii) they have a solid probabilistic mathematical

justification based on Generalized Central Limit
Theorem;
(iii) space and/or velocity fractional kinetic

equations can be a convenient tool for studying systems
— far from equilibrium,
— in external fields,
— with boundary-value problems;

(iv) the systems governed by fractional kinetic
equations demonstrate “unusual”’ relaxation properties
and non-Boltzmann stationary states,

thus giving

(v) interesting predictions for experiments far from
equilibrium.

The problem is how to determine the value
of the Lévy index and/or the order of fractional
derivative. In some cases, it may be determined either
from experimental data or from semiphenomenological
supporting models. At the same time, the development
of a consistent theory of essentially non-Gaussian
fluctuations, leading to a “microscopic” justification of
fractional kinetics, is of considerable interest. Finally, we
mention that more involved fractional kinetic equations
were recently proposed, which employ so-called
distributed-order fractional derivatives and describe, in
particular, the diffusion phenomena characterized by
diffusion exponent varying with time [44].
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JTPOBOBA KIHETUKA AHOMAJIBHOI JTU®VY3Ii
TA PEJIAKCAIIIT

A.B. Yeukin, B.FO. I'onuap
Peswowme

Kinernuni piBHAHHSA B YaCTHHHUX APODOBUX IOXIJHUX HEIOIAB-
HO IpuBepHyJH A0 cebe yBary sK 3aci®é ONHCAHHS aHOMAJIBHHUX
penakcaniiinux ta gudysiiaux sBuml. HaBeneHo KOPOTKUi oruisij
CYy4YaCHOrO CTaHy KiHETHYHHUX ApOOOBUX PiBHSHBL. PO3riigHyTO Taki
IIMTAaHHSA:

—O/Iep2KAHHA APOOOBUX KiHETUIHUX PIBHSIHDL 3 MPOCTOPOBOIO IPO-
GOBOIO IOXIiIHOIO;

— aHOMaJIbHI nudysisa i penakcaris,

— uebonbIMaHIBChKI cTamionapHi crans.

3aIponoHOBaHO KiJbKA 3aCTOCYBAaHb 3arajbHOI Teopil 1o mpobiem
bizuku maasmu.

JIPOBHASI KUHETUKA AHOMAJIBHOM AN®DY3UN
" PEJJAKCAIIUN

A.B. Yeuxun, B.FO. I'onuap
Peszmowme

Kunerudyeckue ypaBHEHHS C JACTHBIMHU APOOHBIME IPOU3BOIHBI-
MU I[IPDUBJIEKJIA HEJAaBHO BHUMAHUE KaK HHCTPDYMEHT OIIHCAHUA
AHOMAJIBHBIX PEJIAKCAIIMOHHBIX U AuddY3UOHHBIX sBIeHHil. /lan
KpaTKuii 0030p COBPEMEHHOI'O CTaTyCa APOOHBIX KUHETHUYECKHX
ypaBHeHHi. PacCMOTPEHBI CJIeIyIOmTie BOIPOCHL:

— mosiydueHue APOOHBIX KHHETHIECKUX YPABHEHHH C IPOCTPAHCT-
BEHHOM JpOOHOI MPOU3BOIHOM;

— aHOMaJbHbIE JUdY3UT U PeTaKCAIUs;

— He6GOIBIIMAHOBCKHAE CTAIIMOHAPHLIE COCTOSHUS.

IIpennoxken psg nIpuIoKeHu# obieil Teopun K mpobisemam husu-
KU ILJIa3MBI.
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