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We report on the application of Davydov solitons to explain delayed

luminescence (DL) arising from simple biological systems. The

soliton model describes self-trapped localized electron or exeiton

states in biological quasi-one-dimensional macromolecules and

provides support for charge and energy transport for macroscopic

distances. We have chosen alga Acetabularia acetabulum (A. a.) for

the experimental and theoretical study as a model system due to

the fact that this is a unicellular organism in which the cytoskeleton

contains macromolecular structures (actin filaments, microtubules,

etc.) of a lenght of several hundreds of angstroms and more.

Namely in these structures, many-soliton coherent states can exist.

We studied DL in the presence of an external source of light at a

relatively high intensity of illumination. Kinetics and quantum yields

of the DL from the system after its exposition for a finite time to

a light source were calculated. It was found that the total number

of photons emitted, is a non-linear function of the irradiation

intensity, time of exposition, and dose of illumination. The quantum

yield of DL first increases with the dose and then reaches

saturation. The analytical results provide good fit of the

experimental data obtained for A. a. in a large range of incident

dose, up to saturation. We retain that further investigations, taking

into acoount inhibition of the photosystem at a very high intensity

or a dose of illumination, are necessary.

Introduction

The phenomenon of DL consists of photo-induced light
emission for a long time (seconds and more) after
illumination of a sample and was proved to exists not
only in conventional solid state systems but also in
biological ones [1]. A big amount of experimental data
has been accumulated in the last twenty years [2¯12]
from which it emerges that DL possesses a number
of characteristic properties which are sensitive to the
chemical, physical, and physiological state of a system,
and can give the global information on the organism.
Among these, we recall the main:

a) the correspondence of the DL kinetics in a long
time interval to the phenomenological Becquerel law,
given by the hyperbolic time dependence:

I (t) =  
I0

(1 +  t  ⁄ τ)a
 ,

(1)

which becomes linear on a long-log scale;
b) the same time trend of the different components

of the DL emission spectrum;
c) the non-linear dependence of the initial intensity

of DL from the intensity of impinging light.
In literature, there are two basic historical

hypotheses about the origin of DL.
The first one [13] retains that DL arises from some

minor imperfections in the photochemical mechanism
of primary charge separation, generated by charge
recombination. The second one [14, 15] assumes that
DL in biological systems is connected to the key
property of coherence of states and fields in living
matter. However, neither of the two hypotheses
provides the correct trend given by (1) and no
previsions are made about properties b) and c).

Besides these hypotheses, a new model [16, 17]
based on the Davydov soliton concept was proposed
in the last two years, which seems to provide
explanation of properties a) through c) and a good
fitting of the experimental data. Indeed, the long
duration of DL from biological systems appears as a
property strictly connected with the existence of states
much more stable than conventional excitons. The
model assumes that DL is connected with the formation
of autolocalized exciton and electron states created by
the pre-illumination of the sample. In particular, in
a biological cell, according to A. Davydov [18, 19],
such autolocalized (self-trappped) states can be formed
in low-dimensional macromolecular structures due to
the electron-phonon interaction in polypeptide chains.
They are described by systems of nonlinear differential
equations, which admit solition-like solutions, and,
therefore, such autolocalized electron states are called
solitons or electrosolitons [18, 19] or, after A. Scott,
Davydov solitons. It has been first suggested in [16]
that these self-trapped electron states can participate
in the process of delayed luminescence of biological
systems.

Similarly, another model for DL was developed in
[17] which is valid for systems with strong correlation
between electrosolitons, e.g., at their high
concentration. For the experimental and theoretical
study, the alga A.a. was chosen as a model system
due to the fact that it is a unicellular organism that
contains a photosystem, and whose cytoskeleton
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contains macromolecular structures (actin filaments,
microtubules, etc.) of a length of several hundreds of
angstroms and more.

Both the non-correlated and correlated models
describe the kinetics of the DL after the  external
irradiating light source is switched off. In order to
study the DL at a high intensity and a dose of
illumination, it is  necessary to generalize the model
in such a way that the process is observed from the
very beginning, when the external light source is
switched on. In the present paper, we have developed
such a model.

1. The Model

It is known [20] that, from the point of view of electron
structure, proteins possess the semiconductor-like
energy band structure with a filled valence band and
an empty conducting band. Solitonic states in biological
macromolecular structures like the ones in algae A.a.,
which are energetically favoured as compared with the
conduction band electron states, are characterized by
an energy level in the conventional forbidden band.
Moreover, the process of charge separation due to
external illumination takes place in specific protein
complexes, the reaction centers, which have also energy
states in the forbidden band. Electrons released at the
ionized reaction centers are excited in the conduction
band and, with a certain probability, are self-trapped
in macromolecules. The luminescence arises from the
decay of these localized states into the conduction
electron band with a following fast transition to the
ionized reaction centers. A comparison of the
experimentally measured fluorescence and DL
emission spectra [22] reveals no energy shift, therefore
the probability of direct transition of electrons from
the self-trapped state to the reaction centers is
neglected. The spatial arguments support this model
as well: a soliton localizes within a few lattice sites
and can transit to a distant reaction center via the
conduction band by the back reaction.

According to the above, the electron-hole
recombination determines the intensity of DL

I =  −  
dn
dt

 , (2)

and the kinetics of DL is described by the following
system of equations:

dn
dt

 =  −  pr Nn  +  Y , (3)

dN
dt

 =  pd ν −  pr Nn  −  pl N  (ν0 −  ν) +  Y , (4)

dν
dt

 =  −  pd ν +  pl N  (ν0 −  ν) .
(5)

Here, n  is the number of ionized reaction centers, N
is the number of (excess) electrons in the conduction
band, ν is the number of localized electrons; pl,  pd,
pr are the probabilities per unit time (or equivalently
the rates) of electron localization, soliton dissociation,
and electron-hole recombination, respectively.
Furthermore, the condition for neutrality is expressed
by the equation

n  =  N  +  ν, (6)

and the probability of electron localization pl is propor-
tional (with the coefficient α) to the energy of the
localized states, which is split from the energy of the
conducting band bottom by the value Es, and, gene-
rally, depends on the number of localized states ν:

pl (ν) =  
αEs (ν)

h− . (7)

When solitons are non-correlated (at very small
concentrations, in not long enough macromolecules,
etc.), electrons localize in the independent (bi)soliton
states, and the probability of localization is inde-
pendent of the soliton concentration [15]. On the
contrary, when the soliton correlation is essential, the
energy of localized states depends on the soliton
concentrarion, that is restricted by the maximum
available value δ0, above which solitons do not exist
[21]. Therefore, in this case, the probability of
localization, which is proportional to the energy of
localization (7), has the form [21] 

pl =  p0 


1 −  
ν
ν0





, (8)

where

p0 =  
α J  g 0

2

3 h− ,     ν =  2δ. (9)

In the above relations, g and J  are the dimensionless
electron-phonon coupling constant and the resonance
interchange parameter of the polypeptide chain,
respectively, and ν0 =  2δ0. Finally, the parameter Y
is the yield of illumination and represents the number
of ionized reaction centers (the number of excess
electrons generated per unit time by illumination). We
remark that Y  is, in general, a non-linear function
of the intensity of illumination I ill and the number of
ionized reaction centers. However, we study linear
pumping here and set

Y  =  Y 0, (10)

where Y 0 is a constant proportional to I ill.
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In the following, it is convenient to introduce
dimensionless variables as follows:

τ =  pd t, (11)

x  =  
ν
ν0

,     y =  
N
ν0

,     z =  
n
ν0

, (12)

γ =  
p0

pr
. (13)

In this system of units, Eqs. (2) ¯ (6) take the form:

I (τ) =  −  
dz
dτ, (14)

dz
dτ =  −  a y z +  P (z), (15)

dy
dτ =  x  −  a y z −  a γ y (1 −  x)2 +  P (z), (16)

dx
dτ  =  −  x  +  a γ y (1 −  x)2, (17)

z =  x  +  y,

where:

a =  
pr ν0

pd
, (19)

and, according to (10), we have to put:

P (z) =  P0. (20)

2. Steady State Regime

It is possible to assume that, due to the fact that the
probability of (bi)soliton dissociation is much less than
the probability of electron decay from the conduction
band [23], the quasi-stationary (steady state) regime
is valid:

dy
dτ << 

dx
dτ .

(21)

Under this approximation, we get from Eq. (16) taking
into account Eq. (19):

y =  
z +  P0

a [ z +  γ (1 −  z)2 ]
 ,

(22)

and, substituting Eq. (22) into Eq. (15), we obtain

dz
dτ =  

P0 −  2zP0 +  


P0 −  
1
γ





 z2

1 +  




1
γ  −  2





 z +  z2
. (23)

The latter equation together with Eq. (14) describe
the whole process of light emission from the sample,
both during the illumination by the external source
(P0 > 0) between the times τ =  0 and τ =  τill and during
the process of DL, after  the source is switched off
(P0 =  0), for τ > τill. Integration of Eq. (23) between
τ =  0 and τ =  τill gives the total quantum yield, that
is, the total number of photons emitted by the sample.
It is easy to obtain the explicit relation for z (τ):

τ =  
γ

P0 γ −  1
 z +  A log [ R  (z)]  +  B log [ S  (z)] , (24)

where A and B are constants which depend on the
parameters of kinetic rate γ and pumping P0:

A (P0,  γ) =  
γ (2 +  P0) −  1

2 (P0 γ −  1)2
,

B (P0,  γ) =  √γ
P0

 
P0 γ (1 +  P0) −  P0 +  1

2 (P0 γ −  1)2
, (25)

and R  (z) and S  (z) are the polynomials:

R  (z) =  1 −  2z +  


1 −  
1

P0 γ




 z2, (26)

S  (z) =  
1 −  √P0 γ
1 +  √P0 γ  

√P0 γ  +  P0 γ −  (P0 γ −  1) z

√P0 γ  −  P0 γ +  (P0 γ −  1) z
. (27)

Analysis of Eq. (24) can be performed by inverting
it numerically, both as a function of pumping P0 and
dose D =  P0 τill. It is worth mentioning that, in the
limit P0 → 0, Eq. (24) coincides with the corresponding
relation of the correlated soliton model of DL [17].

3. Results and Comparison with Experimental Data

Analysis of the function z =  z (D) has been performed
numerically. It appears that, on fixing the value of
parameter γ, the quantum yield first increases as the
dose increases, then, for relatively large values of D,
it reaches the saturation. Some results are showed in
Fig. 1 for γ =  1,  γ =  50, and different values of
pumping: P0 =  0.01, P0 =  0.2 and P0 =  5.
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The experiments consisted in illuminating the
sample, composed of an A.a. cell placed in a plastic
Petri dish filled with artificial sea water, with a pulse
of selected wavelength and measuring the time de-
pendence of the number of photons emitted. In the
results reported below, we used a stimulating light of
565 and 585 nm produced by LEDs (Oshino OLUY153,
OLUG153) that were fed by current from a stabilized
power supply (Hewlett-Packard 6216A). The incident

fluxes were: 0.8 ⋅  1012, 5.8 ⋅  1012, and 1.9 ⋅  1013

photon/(s ⋅  cm2). The illumination times varied from
1 to 1000 s [24]. 

Fig. 2 represents the experimental data for algae
A.a. and the theoretical  fit for different values of
pumping: P0 =  0.05, P0 =  0.36, P0 =  6.75, and
γ =  10.  This value of the kinetic rate corresponds to
the best fit obtained for the experimental data on the
DL kinetics from algae A.a. [17]. The experimental
results are indicated by different markers for different
values of the intensity of illumination. By comparing
the experimental data with theoretical results, we
conclude that the correlated soliton model for DL in
the presence of pumping explains not only the time
behaviour of DL [16, 17], but also the non-linear de-
pendence of the total quantum yield of DL on the
intensity and dose of illuminating light for relatively
high values of impinging dose up to saturation.

Conclusion

The model developed in the present paper, takes into
account the process of illumination. It provides both
the qualitative and quantitative explanations of the
main characteristics of DL from alga A.a. : the non-
linear dependence of the intensity of DL on the
intensity of the impinging light, the hyperbolic
behaviour of the time decay, and the same time trend

for different spectral components. Moreover, the model
shows, in good agreement with the experimental
results, the non-linear dependence of the total quantum
yield on the dose and intensity of illumination. The
quantum yield first increases as the dose increases
and then, for relatively high values of dose, it reaches
some saturation. However, experimental results show
a decreasing of the quantum yield for very high values
of impinging dose. To explain this behaviour, we retain
that further investigations are necessary, taking into
account the inhibition of photosystems [26 ¯ 28]. In
particular, we suggest (this work is in progress) to
consider the process of illumination as a non-linear
function of the number of ionized reaction centers.
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