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A nonlinear model of three coupled dynamical fields on an infinite
regular chain is proposed. The system admits the zero curvature
representation constituting the basis for its integration within
the framework of inverse scattering transform. The associated
auxiliary spectral problem is basically of the third order and gives
rise to a fairly complicated subdivision into the regularity domains
of Jost functions in the plane of a complex spectral parameter.
As a result, both the direct and inverse scattering problems turn
out to be substantially nontrivial. The Caudrey version of the
direct and inverse scattering techniques for the needs of model
integration is adapted. The simplest soliton solution is found.

Introduction

In a series of his articles [1—5], Caudrey developed
a fairly constructive version of inverse scattering
transform valid in principle for any one-dimensional
scattering problem of an arbitrary order. In particular,
the method enables one to integrate the nonlinear
evolution equations associated with third-order
differential (continuous) and finite difference (discrete)
spectral problems in a manner substantially simpler
[2, 4] as compared with other approaches [6] as well
as to treat adequately a so-called loop-like soliton and
multisoliton solutions |7, 8].

Bearing in mind the success of the Caudrey approach,
we will introduce here a new third-order discrete spectral
problem and will show how it generates an integrable
dynamical system of three nonlinearly coupled fields on
a regular infinite lattice. We will give a general sketch of
the Caudrey method as applied to the model of interest
and test it on a simplest solution.

The main features of the suggested model are
as follows. The model describes the three-component
nonlinear dynamical system on a regular one-
dimensional lattice of the second order in time regarding
to each field variable. Two of its components are
mutually equivalent and, if required, may be combined
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approximately into a Toda-type field accompanied by
some satellite field. The third component of the system
is responsible for the angular valued field similar to
that in the sine-Gordon model but with another type
of nonlinearity and with the standard definitions of
spatial and temporal coordinates. The couplings between
the components are essentially nonlinear and displayed
both in the kinetic and potential parts of a Lagrangian
function.

1. Auxiliary Linear Problems

It is well known [9-11] that the compatibility condition

d%_L(n|z) = A(n + 1|z)L(n|z) — L(n|z) A(n|z) (1)

of two auxiliary linear problems
lu(n +1|2)) = L(n|2)[u(n|z)), (2)
A(n|z)|u(n|z)) (3)

d
lu(n]2))

permits both to restore the evolution operator A(n|z)
and to generate some nontrivial discrete nonlinear
evolution system provided the spectral operator L(n|z)
is appropriately chosen. Here n stands for the discrete
coordinate variable running through all integers from
minus to plus infinity, 7 denotes the time variable, while
z marks the time independent spectral parameter.

In what follows, we adopt L(n|z) and A(n|z) to be
3 x 3 matrices, whereas |u(n|z)) is the three-component
column vector

(1|u(n|2))
(2lu(n|z)) ) - (4)
(3lu(n]2))

Taking L(n|z) in the form

|u(n|2)) =

L(n|z) =
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pii(n) +z+1/z Fiz(n) p13(n)
= G21 (n) 0 G23 (n)
p31(n) Fs5(n) pss(n)+z+1/z

(5)

and looking for A(n|z) in the form

0 A12(n) 0
Aln|z) = Axi(n)  z2+1/2 Asis(n) |, (6)
0 A32 (n) 0

we observe that the positive result can be achieved under
the reduction

Fi2(n) = i exp[+q_(n)] cos a(n), (7)
G1(n) = iexp[—q_(n)] cosa(n), (8)
Ga3(n) = iexp[—qy(n)]sina(n), (9)
F33(n) = iexp[+qy(n)]sina(n); (10)
pui(n) = ¢—(n) [1 —sin* a(n)] -

~d+(n) sin® a(n) cos® a(n); (11)
p13(n) = exp [+q-(n) — ¢4+ (n)] x

x [¢-(n) sin® a(n) cos a(n)+

+ ¢4 (n) sina(n) cos® a(n) — a(n)] ; (12)
p31(n) = exp[—q-(n) + ¢4+ (n)] x

x [q—(n) sin® a(n) cos a(n)+

+ ¢+ (n) sina(n) cos® a(n) + a(n)] , (13)
p33(n) = g4 (n) [1 - cos* a(n)] —

—¢_(n)sin® a(n) cos® a(n). (14)

Here, ¢_(n), g+ (n) and a(n) are nothing but the field
variables of a desired nonlinear evolution model, while
the overdot stands for the derivative with respect to time
7. In turn, the matrix elements A;(n) of the evolution
operator A(n|z) are found to be

Apz(n) = —iexp[+q-(n)]cosa(n), (15)
Asi(n) = —iexp[—q—(n —1)]cosa(n — 1), (16)
Ass(n) = —iexpl—gs(n — D]sinan - 1) (17)
Asa(n) = —iexp[+q+(n)]sina(n). (18)
654

2. Nonlinear Three-component Dynamical
Model

Inserting the just obtained expressions (7)—(14)
and (15)—(18) into spectral (5) and evolution (6)
matrices and manipulating with the compatibility (zero-
curvature) relation (1), we come readily to the system of
three dynamical equations for the field variables ¢4 (n),
g—(n), and a(n) on an infinite regular one-dimensional
chain. For the sake of brevity, we prefer to write them
in the standard Lagrangian form as

2102001 (n)] = 02 [0, (n), (19)
di (0.2 /04— (n)] = 0.2/9q(n), (20)
d [8.,2”/604( )] = 02 /0a(n) (21)
with the Lagrangian function £ given by

Z = % _Z: @3 (m) [1 + cos® a(m)] sin® a(m)+

+% Z @2 (m) [1 + sin® a(m)] cos® a(m)—

- Z q+ (m)g_(m) cos® a(m) sin? a(m)—

- Z & (m) — Z exp [+¢4(m + 1) — g4 (m)] x

x sina(m + 1) sina(m)—

- > exp[+g_(m+1) —q_(m)] x

x cosa(m + 1) cosa(m). (22)

According to the general rule, an equivalence
between the zero curvature equation (1) and the
nonlinear model of interest (19)—(22) following from
the chosen specification (7)-(18) of spectral (5) and
evolution (6) matrices opens the door for model (19)-
(22) to be integrated by the method of inverse scattering
transform. However, the particular realization of this
scheme in our case does not look so simple inasmuch as
three (rather than two) different eigenvalues constitute
the spectrum of the limiting spectral matrix L(—oo|z) or
adequately L(+oo|z). Therefore, we are bound to rely
here upon the Caudrey approach [2, 4] although with
some inevitable modifications.
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3. Gauge Transformed Auxiliary Linear
Problems

Inspecting the limits of spectral matrix (5), (7)—(14) at
both spatial infinities, we see that, in general, they do
not coincide:

nll)rlloo L(nl|z) # nll)rfoo L(n|z). (23)
As a consequence, the direct application of the Caudrey
theory to our problem is formally forbidden.

This type of inconvenience is known also for the
Toda system [12] and can be rebuffed in principle by

an appropriate gauge transformation:
lu(n]z)) = S(n)lu(n|2)),
M(n|z) = S(n+1)L(n|z)S *(n).

The choice of the gauge matrix S(n) is not unique and
should meet the only basic condition

(24)
(25)

Jim_ M(nf2) = M(:)= lim_M(n:), (26)
where M (z) can be taken as
z+1/z Fio 0
M(z) = G 0 Gas ; (27)
0 Fso z+1/z
Fiy = iexp[+q_]cosa, (28)
G2 = iexp[—q_]cosa, (29)
Gz = iexp[—q4]sina, (30)
F3y = iexp[+qy]sina. (31)

For the sake of definiteness, we adopt the gauge matrix
to be

Sll (n) 0 513(’!7,)
S(n) = 0 1 0 : (32)
531 (n) 0 533 (n)
where
S11(n) = exp =g (n) + ¢-] cos[a(n) — a, (33)
S13(n) = +exp[—g1(n) + ¢-]sin[a(n) — o], (34)
Ss1(n) = — exp[—q- (n) + ¢:] sinfa(n) — al, (35)
Sas(n) = exp [~ a4 (n) + g4 cosfa(n) — al. (36)

The use of the gauge transformed auxiliary linear
problems

[v(n +1)[2)) = M(n|2)[v(n]2)), (37)
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d

77 [v(n]2)) = B(n|z)[v(n|2)), (38)
and the gauge transformed zero-curvature relation
M(n|z) = B(n + 1|z)M (n|z) — M (n|2)B(n|z) (39)

enables one to remove totally the principal theoretical
obstacle described at the beginning of this section. Here,
M (n|z) and B(n|z) denote the transformed spectral and
evolution operators given by (25) and

B(n|z) = S(n)A(n|z)S™(n) + S(n)S™*

respectively.

(n), (40)

4. Eigenvalues of M(z) and the Domains of
their Subordination

According to Caudrey [2, 4], the main peculiarities of
a particular inverse scattering problem are determined
by the spectral properties of the limiting spectral matrix
M (z). In this context, the first step is to resolve the right

M(2)|v(2)) = ¢(2)[v(2)) (41)
and the left

(T (2)|M(2) = (v (2)IC(2) (42)
eigenvalue problems with M(z) given by (27) — (31)

and to perform the mutual comparison of all obtained
eigenvalues

G(z) = 2, (43)
G(z) = 24 1/z, (44)
Glz) = 1/z (45)

with respect of their moduli on the whole plane of
complex spectral parameter z.

Thus, for the components (k|v;j(z)) of the right
(column) eigenvectors |v1(2)), |v2(2)), and |v3(2)), we
find

(Lor(2)) = iexpl+q_Jcosa, (46)
2lu(2)) = -1/, (47)
(3lur(2)) = i expl+ay]sina, (48)
(1|v2(2)) = +iexp[+g-]sina, (49)
(2Jv2(2)) = 0, (50)
(Blv2(2)) = —iexp[+q4]cosa, (51)
(L|vz(2)) = iexp[+g_]cosa, (52)
(2lvs(2)) = -z, (53)
(3lvs(2)) = iexp[+q4]sina. (54)
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Subdivision into the regions {D(jkl)} in the plane of complex
spectral parameter z

For the components (U;' (z)|k) of the left (row)
eigenvectors (v] (2)], (vi(2)], and (v§ (2)|, in turn, we
have

(v (2)]1) = iexp[—g ]cosa, (55)
(v (2)[2) = -1/z, (56)
(i (2)[3) = iexpl—qy]sina, (57)
(03 (2)|1) = ~iexpl=q_]sina, (53)
(v3 (2)[2) =0, (59)
(03 (2)[3) = +iexp[—qy] cosa, (60)
(v;(z)|1> = jexp[—¢_]cosa, (61)
(vi (2)]2) = -2, (62)
(Wi (2)[3) = iexpl—gs]sina. (63)

The jth eigenvalue (j(z) pertains equally both to the
Jjth right |v;(2)) and jth left (v;r(z)| eigenvectors. As a
result, the orthogonality relations

(v] (2)|vr ()
(W] (2)]v;(2))

are proved to be valid, where

= djk (64)

3

(W) (2)ve(2)) = Y0 () (vn(2)),

=1

while j and k& run from 1 to 3.
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Insofar as all three eigenvalues (3 (z), (2(2), and (3(z)
of M(z) as functions of z are distinct (see (43)—(45)),
the complex z plane can inevitably be divided into six
different regions in accordance with six feasible chains
of inequalities between their moduli |(; (2)], |¢2(2)], and
|¢s(2)|. Speaking formally, the parameter z will be
regarded as that belonging to the region D(jkl) provided
it satisfies the chains of inequalities

G ()] <1 (2)] <G (2)], (66)

where the sequence {jkl} must be detectable among
six possible permutations of {123}. Due to the evident
equalities

GO =1¢(2)] = 1¢; (=21,

each of the just defined regions is subdivided into two
disconnected symmetric domains either in the top and
bottom quadrants as

(67)

D(123) = D¢(123) + Dy(123), (68)
D(213) = D(213) + Dy(213), (69)
D(231) = D(231) + Dy(231), (70)
D(321) = D¢(321) + Dy(321) (71)
or predominantly in the left and right quadrants as

D(132) = D;(132) + D,.(132), (72)
D(312) = D,;(312) + D, (312) (73)

(see the Figure for clarity).

5. Direct Scattering Problem. The Advanced
Caudrey Approach

The advanced version of the Caudrey approach to
direct and inverse scattering problems is based upon
his generalized definition of Jost functions [2, 4] which,
in contrast to the standard ones [1, 3, 6], succeeds in
avoiding any address to the conjugate spectral problem
even in the highly complicated cases of spectral plane
subdivision. As a result, both the direct and inverse
scattering theories acquire the forms of essentially
formalized procedures weakly sensitive to a particular
choice of the spectral operator.

Following Caudrey [2, 4], we adopt the jth envelope
Jost function
18;(n]2)) = [G(2)] " | (nl2))

(=123) (74)
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associated with the gauge transformed auxiliary spectral
problem (37) as a solution to the jth Fredholm
summation equation

[2(n]2)) = (=) + Y K;(nlzlm)|[®;(mlz)) (75)

m=—00

(1=123)

with the jth kernel matrix K;(n|z|m) specified by the
expression

Kj(n|zlm) = [¢(2)]™ " [M(2)]""™ " x

3

x [0(n —m)I =0 (|G(2)] = 1¢;(2)]) Pel=) | x

k=1

x [M(m|z) — M(z)] (=123), (76)
where Py (z) stands for the kth projection operator
|0 (2)) (v ()]
Pe(2) = 75—y (k=1,2,3), (77)
(v (2)|vr(2))
I denotes the unity 3 x 3 matrix, and
! if x>0
6(z) = { 0 if <0 (78)

Then we call |¢;(n|z)) to be the jth Jost function
inasmuch as it meets all necessary demands of the
usual definition, i.e. satisfies both the gauge transformed
spectral equation (37) and the standard boundary
condition

lim [ (2)]7" |¢j(nl2)) = lv;(2))

n——oo

(G =1,2,3). (79)

An extra property affirming the boundedness of each
envelope Jost function |®;(n|z)) ( =1,2,3) at n — 400
follows from the respective Fredholm equation (75) after
the use of the identity

3

6(n—m)-I—3 " 0(IG (=) = I¢G()]) Pr(z) =

k=1

3

=> 0(¢(2)] = |G(2)]) Pe(z) = 0(m + 1 = n) I+

k=1

+Pj(2) + Y (L= 05) [1 = 8(IGe(2)] = ¢ (2)])—
k=1

= 0(1G (2)] = G (2))] Pr(2)

in respective kernel matrix (76).

(80)
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When proving the boundary properties of Jost
functions at n - —oo and n — +00, an assumption
about a sufficiently rapid decrease of M (n|z) — M(z) to
a zero 3 x 3 matrix at respective infinity of the coordinate
n turns out to be rather convenient.

Actually the same assumption about the rapid
vanishing of M (n|z) — M(z) at |n|] — oo supports a
sufficient condition for the Fredholm determinant f;(z)
and a 3 x 3 matrix analog of the first Fredholm minor
Fi(n|zlm)(j = 1,2,3) associated with the respective
Fredholm equation (75) to exist in every spectral region
defined in Section 4. Here, it should be particularly
emphasized that our spectral parameter z has nothing
to do with the auxiliary parameter of the standard
Fredholm theory [13]. Moreover, each kernel matrix
Kj(n|zlm)(j = 1,2,3) is seen (76) to be a piecewise
function of the spectral parameter, i.e. to exhibit a
jump discontinuity once the parameter z crosses the
boundary between spectral domains. In principle, the
similar discontinuities may be displayed also in f;(2)
and Fj(n|zlm) (j = 1,2, 3) inasmuch as these quantities
are linked to the respective K;(n|z|m) through the basic
Fredholm relations

Fj(n|z|m) — f;(2)K;(n|z|m) =

= Z Fj(n|z|l)K;(l|z|m)

(j=1,2,3), (81)
[=—00
Fj(n|z|m) — f](z)KJ(n|z|m) =
= > K;mlz|)F;(llzlm) (G =1,2,3). (82)

l=—00

However, within the interior of each individual spectral
domain, the quantities f;(z) and Fj(n|zlm) (j = 1,2,3)
have to be regular functions of the spectral parameter z
[14] insofar as the same is certainly true for the respective
kernel Kj(n|z|m) (76). The limits of these functions as
z approaches any interdomain boundary exist and are
finite.

Thus, at all z providing f;(z) # 0, the jth 3 x 3
matrix Fredholm resolvent

Fj(n|z|m)
fi(2)

is defined and the formal solution of the jth Fredholm
equation (75) is given by

Rj(n|z|lm) = (j=1,2,3) (83)

o0

®5(nl2)) = [v;(2)) + D Rj(nlzlm)lv;(2))

m=—00
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(=1,2,3). (84)
We can reckon this result (84) for the set of envelope
Jost functions {|®;(n|z))} as the main step in mapping
the set of dynamical variables {¢4(n),q—(n),a(n)} into
the set of scattering data. The latter in the Caudrey
terminology [1—4] is nothing but the generic information
about the poles of Jost functions and their residues as
well as about possible discontinuities of Jost functions in
the complex z plane. Evidently the poles are determined
by the zeros of Fredholm determinants while the
jump singularities may happen only on the boundaries
between the domains in the plane of complex spectral
parameter (i.e. spectral domains).

6. Direct Scattering Transform. How to
Achieve an Explicit Mapping

Strictly speaking, the mapping from the field amplitudes
into the Jost functions given in its present form (84)
suffers to be fairly implicit insofar as the field amplitudes
q—(n), ¢+ (n), a(n) remain to be explicitly traceable in all
Jost functions under consideration. Unfortunately, this
fact becomes evident only in the final stage of inversion
from the scattering data to the field variables and can
be plainly elucidated, e.g., in the extra property

limj@s(nl2) =SS~ (—soluy ()| =0-1
(=1,2,3) (85)

necessary for the inversion to be fixed uniquely.

Looking at the fixing condition (85), we find that
the situation with an implicit mapping can be readily
handled via the simple back gauge transformation in
all quantities of interest. Thus, instead of the jth
Jost function |p;(n|z)) and jth envelope Jost function
|®;(n|2)) (j = 1,2,3), we have to use their back gauge
transforms

€i(n]2)) = ST Hn)|p;(nlz)) (7 =1,2,3) (86)
and
12j(n]2)) = S7H(n)|®;(n|2)) (j=1,2,3), (87)

accordingly. The jth resolvent solution (84), in turn, is
apparently converted to yield

o0

25 (nl2)) = lui(2)) + Y Dj(nlzlm)lu;(2))

m=—0o0

658

(1 =1,2,3), (88)
where
|uj(2)) = S7H(=o0)|v;(2))  (j =1,2,3) (89)

stands for the jth right eigenvector of the operator

L(z) = S7'(—00) M (2)S(—00) = L(—0]|2) (90)
and
Dj(nlzlm) = S~} (n)R; (n|zJm)S(—o0)+

denotes the jth back transformed resolvent. Finally, the
jth fixing condition (85) is rewritten to be

(125 (n|2)) — |u;(z))] =0-T

lim
165 (2)[—00

(1 =1,2,3). (92)

It is worth noticing that, while making the mapping
to be explicit, the back gauge transform saves all
fundamental properties of Jost functions and envelope
Jost functions to be carried over into their back gauge
transformed counterparts. Therefore, it looks reasonable
to treat |{;(n|z)) and |Z;(n|z)) as the jth Jost function
and the jth envelope Jost function (j = 1,2,3)
associated directly with the original auxiliary spectral
problem (2).

7. Scattering Data. Reflectionless Case

According to the general rule [2, 4], the scattering data
can be identified with the generic information about
the singularities of resolvent matrices. In this paper,
we adopt such a definition and consider the so-called
reflectionless case where the jump singularities of Jost
functions on the boundaries between domains in the
plane of complex spectral parameter are absent and the
only informative singularities of Jost functions are the
poles emanated from the zeros of respective Fredholm
determinants.

In order to examine these poles, we have to know the
Wronskian

3

W ISk (n]2))} = det{(8k (n]2))] (93)
calculated on the Jost solutions of the original spectral
problem (2). Applying the Wronskian operation (93) to
the set of equalities
&k (n +1]2)) = L(n|2)[&k (n]2))

(k=1,2,3) (94)
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with the use of the asymptotic properties
Hm [Ce(2)] " [k(nl2)) = lur(2))  (k=1,2,3) (95)
n—r—0oo

and the equalities

L(z)|ur(2)) = G (2)|ur(2)) (k=1,2,3), (96)
we obtain
W {J6u(nl2)} =
3 n Y5 [ det L(m]|z)
= W {lux(2))} [det L(2)] mym{m}. (97)

Now we can readily conclude that the right-hand side of
(97) does not contain any specific information about the
singularities of resolvent matrix (91) because the same
is true separately for its cofactors,

Wl = (z - 1)t -2 (o)
and
det L(z) = det L(m|z) = z + 1/=. (99)

Thus, we have
zﬁ{fk(nlz»}:[ﬂ1/21”[2— 1/z]eta+(mo)ta-(=29) (100)

To proceed further, we denote z;(r) to be the rth
zero of the jth Fredholm determinant f;(z) and assume
each zero to be simple, i.e.

fi(z(r)) =0, zliin(r) dfj(z)/dz # 0

(r=1,2,3,...,N;; j=1,2,3), (101)
and does not lie on any boundary between spectral
domains. Then the rth residue of the jth Jost function
|€j(n]2)) can be defined as

[Res[g (ol () = lim {16 (ml=) Lz - 2 ()]}

(r=1,2,3,...,Nj; j=1,23), (102)
which is usual for simple poles. To ensure the finiteness
of residues, we have to adopt zeros belonging to different
Fredholm determinants to be distinct.

This latter demand becomes natural when inspecting

the set of relationships

3

lim 3™ [6 () (r)[1 — 6]

z—2z;(r) o1

[Res [€;(n|z;(r)]) =

ISSN 0508-1265. Ukr. J. Phys. 2003. V. 48, N 7

(r=1,2,3,...,Nj; j=1,2,3), (103)
where the coefficients v;(r) (r = 1,2,3,...,N;;j =
1,2,3;k # j) and the locations of the poles z;(r) (r =
1,2,3,...,N;;j = 1,2,3) are referred to as a discrete
part of scattering data [2, 4]. Each of Ny + Ny + N3
formulae (103) represents the superposing condition
between the columns of a certain 3 x 3 matrix with zero-

valued determinant

kviq{ |Res (& (n]2;(r)])djn+

+ lim
z—zj(r

166(nl=)) 1L = oi4]} =0

(r=1,2,3,...,Nj; j=1,2,3) (104)
obtainable from the basic Wronskian (100) by the simple
limiting operation lim_,. (. {...[z — z;(r)]}. The weak
point in the suggested arguments lies in tacitly supposed
coordinate independence of the superposing coefficients
Ykj(r). However, it is precisely this hypothesis which
proves to be the only plausible assumption giving rise
to the self-consistent time evolution of scattering data
and thus ensuring the noncontradictive character of the
whole theory.

Another concretization of superposing coefficients
Ve (1) = 6 (|G (2 ()| = 16 (25 (r))]) Tij (7)
k# )
is a direct consequence of the asymptotic conditions

im_|Z5(nle)) = [uj (=)

(r1=,2,3,...,N;; j=1,2,3; (105)

(1 =1,2,3), (106)
which can be easily observed during the reconstruction
of envelope Jost functions.

An additional information about the scattering data
can be obtained by the symmetry analysis of envelope
Jost functions and will be taken into account in the
final formulae of their reconstruction. The symmetries
of interest may be formally divided into two groups:

|Z1(n|1/2)) = [Es(n[2)), (107)

|Z2(n|1/2)) = [Ea2(n|2)), (108)

|Z3(n|1/2)) = [E1(n]2)) (109)

and

(k|25 (n]z9))* = (=1)"(k[Z;(n]2))

(j =1,2,3; k=1,2,3). (110)
659
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While the first group (107)—(109) becomes evident from
the very forms of the original spectral operator (5) and
the limiting eigenfunctions (89) written explicitly, the
second one (110) should invoke an extra assumption
about the reality of dynamical variables q_(n), ¢+(n),
a(n) for its proper justification.

8. Reconstruction of Envelope Jost Functions
in Terms of their Residues

Relying upon the evident correspondence

§i(nl2) =[G Ej(nl2))  (1=1,2,3)

between the Jost functions |£;(n|z)) and the envelope
Jost functions |E;(n|z)) and using the fundamental
formulae (103) for the residues |Res[{;(n|z;(r))]) of Jost
functions, we readily come to the similar formulae

[Res [Z;(n]z;(r)]) =

(111)

= lim 3 Zr(n|z i(r)[1—=19; Gk (25(r) !
= dm) 2 Bl (1) [1 = 8 <Co)
(r=1,2,3,...,Nj; j=1,23) (112)

for the residues

[Res[2(n]z;(r)]) = lim ){|‘—‘] (n|2))[z = 2 (r)]}

22

(r=1,2,3,...,Nj; j=1,23) (113)
of envelope Jost functions.

Now we have collected all necessary information (92),
(106), (107)—(109), (110), (112) sufficient to reconstruct
the general features of envelope Jost functions in
reflectionless case. The methods of complex variable

theory yield

Z1(nl2)) = |ua(2)) + (1 = don) X

Gz (r)

Zm (121 (MG (alr) = oy
+Z =3 (n]21(r))) a1 (n]r) G <Z§1£221(21 DN
+Z|“2 (I (D) C51 (I 7 gl(zf(gi)*( N
N Z|~3 IO ) gl(zf(glz( 5l (1
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9 ﬁ =10 220 G~ JEEZIZ(T» v
¥ i =3(0l 22(0) (o) (;f;((’gi(r)) ¥
M z3(r
* B0 500 Gty D
+ f 230l Z5(r)) Cialnlr) (jfg((”()) . ()
[Z2(012)) = fua(2)) + (1= Boar) %
) & B0 Gt @(zj{;;z(gi(r)) '
- % Ea(nl 52007 Cralol) C(ji((? -
+ f =3t 50 sl (ji((l) —
g % 1l 550) ) (fi((l)()) . (1
Z3(012)) = hus(2) + (1= dow) x
x éa(nm(r)»ag(mm )+
+§Nl E(nlaa(r)) o) - S
+i1 Al D) S
+ i I D) ey e s | (1)

Cr(nlr) = 0(1Ck (21 (r))] = |G (21 (r)]) X
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X161 (21 (7D [Ge 21 (1) /63 (21 ()] i ()

(r=1,2,3,....,N; k=23 z(r)z()=1), (118)
Cra(nlr) = B(1Gh(Z2(r))] = G2(Z2() ) x

x [G(Z2() /G (Za()] Crar)

(r=1,2,3,...,.M; k=1,3;
Cra(nlr) = 6k (2))] — 1 (B2 x
x [ Ea0)/6E )] Cratr)
Lo(r) 22(r) = 1), (120)
Crs(nlr) = B(1Gk(25(r))| = [Ga(z5(r) ) x

%[ (25() /G (25(1)] " Cis )

k=12

(r=1,2,3,....,.M; k=31,

(r=1,2,3,...,N; zg(r)z1(r) =1). (121)

Here, we have introduced a new numeration of poles
originated from the manifested symmetries (107)-(110)
of envelope Jost functions. In so doing, we had to assume
that N1 =2N = N3, N2 =4M and

C21(T') = 023(7') (T’ = 1,2,3, . .,N), (122)
031(7“) = 013(7“) (7“ = 1,2,3, . .,N), (123)
Cia(r) = 532(r) (r=1,2,3,..., M), (124)
Caa(r) = 512(r) (r=1,2,3,...,M). (125)

It is convenient to treat the quantities Ca (1), C31 (1),
z1(r), Ca3(r), Cis(r), z3(r) (where r = 1,2,3,...,N)

and C12(r), Cs2(r),22(r), 532(7“); 512(7”); }_2(7“) (where
r = 1,2,3,...,M) together with their complex
conjugate counterparts as a new, more adequate,
although overfilled set of scattering data rather than to
decipher them in terms of the original set.

The general scheme of complete reconstruction
of envelope Jost functions from the scattering
data in reflectionless case becomes clear, since it
is reduced actually to resolving the set of linear
algebraic equations with respect to the quantities
1Zj(nlz1(r)), [Ei(nl2i(r)) (where j = 2,3; r =
1,2,3,...,N) and [E;(n| 22(r))), |Z;(n| 25(r))) (where
j = L3 r = 1,2,3,...,M) or alternatively with

respect to the quantities |Z;(n| %(r))), |EJ(—5§(T))>
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(where j = 3,1;r = 1,2,3,..., M) and |Z;(n|zs5(r))),
|Zj(n|25(r))) (where j = 1,2;r = 1,2,3,...,N).
However, its practical implementation is determined
by the additional condition (173) supporting the
self-consistency of field variables through the
interdependence of scattering data (see Section 10 for
more details).

9. Time Dependencies of Scattering Data

Below we derive the evolution equations for the
scattering data as they were defined in the previous
section.

As the first step, it is reasonable to suppose that
M(z) = 0-I1. Then, at both spatial infinities |n| — oo, the
gauge transformed zero-curvature relation (39) yields

B(z)M(z) = M(2)B(z), (126)
where the limiting value
B(z) = |nl\iglooB(n|Z) (127)

of the gauge transformed evolution operator (40) is given
by

B(z)=(z+1/z)- T - M(z). (128)
Thus, the operators B(z) and M(z) are commutative
and hence possess the same two sets of eigenvectors,
namely the right (46)-(54) and left (55)—(63) ones.
However, the eigenvalues

m(z) = 1/z, (129)
n2(z) = 0, (130)
n3(z) = 2 (131)

of B(z) and eigenvalues (43)—(45) of M(z) are seen to
be distinct. Of course, the jth eigenvalue 7;(z) pertains
equally well both to the jth right |v;(z)) and jth left

(v;' (z)|] eigenvectors, i.e.

B(2)|vj(2)) = nj(2)|v;(2))
(Wf (2)|B(2) = (v] (2)In;(2)

Further, in parallel with the right Jost functions
lo;(n|z)) satistying to

(=123),
(j=1,2,3).

(132)
(133)

M(n|2)lp;(n]2)) = lp;(n +1]2))

lim _[C;(2)]"le;(nl2)) = [v;(2))

n——oo

(1=1,2,3), (134)

(7 =1,2,3), (135)
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we will take advantage of the left Jost functions
(cp;r(n|z)| satisfying the relations

(o] (n+1]2)|M(n]2) = (¢} (n|z)] (j =1,2,3), (136)
Jlim (o (n]2)|[G ()" = (v ()] (G=1,2,3). (137)
The property of orthogonality

(o7 (nl2)lpr(n]2)) = (v] (2)]v ()31

(j=1,2,3; k=1,2,3) (138)

will be also necessary.
The results of the previous two paragraphs enable us

to prove that

[B(n|z) —n;(2) -

2 lpinlz) = 1] ip;(n]2))

(1=1,2,3). (139)

Indeed, differentiating (134) with respect to time 7 with
the subsequent substitute of M (n|z) from the zero-
curvature relation (39), we conclude that

%Wj(nlz)) — B(n|2)|g;j(n|z)) =

= ZM« (n|2))dk;(2)

insofar as the left-hand side of (140) was revealed to
satisfy the gauge transformed spectral equation (37).
Then operating onto (140) with (] (n|2)| from left to
right and taking the limit at n — —oco, we obtain

dij(2) = —ni(2)di

which in combination with (140) yields (139).
In terms of envelope Jost functions, we evidently
have

(=123) (140)

(i=1,2,3j=123), (141)

2 12,(n12)) = [B(nl2) — 1) - 1) [%5nl2)

(J=1,2,3). (142)
The simple manipulation with (127), (133) and (142)
gives rise to

d

lim  — (v}

j=1,2,3).
n—>+ood7' (] 773)

; (2)|®5(n]2)) = (143)
This property (143) together with those early written
down (127), (133), and (142) comprise the main tool in

establishing the evolution equations for scattering data.
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In so doing, we have to prepare the reconstructions for
(v;r(z)|<I>](n|z)> (j = 1,2, 3) from reconstructions (114)—
(117) for |Z;(n|2)) (j = 1,2,3) by means of the gauge
transformation

|®;(n|z)) = S(n)|E;(nlz)) (G =1,2,3) (144)
and then to make two tricks assuming that
d[S(00)S™1(—0)]/dT = 0.
The first one consists in calculation of
li ’
im i(zi(s X
nSo ¢ (2) Sates(o) [Cj( )~ Gl ))]
d, .
x (v (2)|®5(n|2)) (145)
(]:17273) 821727377(6j1 +5]3)N+5]2M)7

where we will understand under zy(s) either z,(s) or

er2(s) depending on which of two equivalent expressions
(115) or (116) for |23(n|z)) is involved. As a result, we

obtain
dzi(s)/dr =0 =dzs(s)/dr (s=1,2,3,...,

N), (146)

dzs(s)/dr = 0= d2s(s)/dr (s =1,2,3,..., M). (147)
After the time independence of pole locations was
established, the second trick consisting in the calculation

of

lim lim
n—=+00 ¢ (2)—¢i(25(s))

{[@-(z)—@-(zj(s» x

d
X (o} ()8 (n|z>>}

(] = 1,2,3; S = 1,2,3, feey (6j1 + (Sjg)N + 5j2M) (148)

might be done. As a result, we obtain

A0 (s)/dr = i (z1(5)) = m (21(5))] Cia (5)

(k=2,3;5=1,2,3,...,N), (149)
dCra(s)/dr = [m(22(5)) = ma(22(5)| Crals)
(k=1,3;5=1,2,3,..., M), (150)

+

A0ra(s)/dr = [me(F2(5) = m(22(5)] Cras)
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(k=3,1;5=1,2,3,..., M), (151)
dCy3(s)/dr = [nk(zg(s)) — 3(23(8))| Cs (3)
(k=1,2,;5s=1,2,3,...,N). (152)

The evolution equations for the complex conjugate
part of scattering data can be obtained either by the
same procedures with the replacement z;(s) into 27 (s)
or by the sheer complex conjugation of (146), (147), and
(149)—(152).

10. Reconstruction of Field Amplitudes.
General Scheme

Inspecting reconstructions (114)—(117) of envelope Jost
functions |Z;(n|2)) (j = 1,2,3), we observe that they
can be expanded in Laurent-type series in the regions of
their regularity. In particular,

E1(n]2)) = [u1(2)) + Y [Ur(nlm)) [G(2)] 7™

(z € D(231) + D(321)), (153)
Z2(n]2)) = [ua(2)) + il |U2(n|m)) [G2(2)] ™
(z € D(132) + D(312)), (154)
Zs(n|2)) = |us(2)) + il |Us(n|m)) [Gs(2)] "™
(» € D(123) + D(213)). (155)

These expansions (153)—(155) enable us to
reconstruct the field amplitudes ¢_(n), ¢+ (n), and a(n)
in terms of expansion coefficients

(K|Uj(n[1)) = U;(nl1)  (k=1,3;j=1,2,3) (156)

or, more precisely, in terms of their time derivatives.
For this purpose, we must invoke the equalities

|2j(n + 1]2))¢j(2) = L(n|2)[=;(n|2))

for the back gauge transformed envelope Jost functions
|E](n|z)> on the one hand, and the nonlinear dynamical
equations written in their authentic form

(j =1,2,3) (157)

Pik(n) = Xje(n+1) = Xj(n) (7 =1,3; k = 1,3),(158)
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on the other. Here, the notations

X11(n) = ett-M=1-=D co54(n) cosa(n — 1), (159)
Xi3(n) = er-W=0+(n=Y cosq(n)sina(n — 1), (160)
X3 (n) = er+M=-(n"Dgin a(n) cosa(n — 1), (161)
Xas(n) = ett+M=e+(=Dgin g(n)sina(n —1)  (162)
are implied.

Collecting the lowest terms in equalities (157)

expanded in accordance with formulae (153)-(155), we
might come to the interim result

pii(n) =

= —i[Ui1(n+1]1) = Uy1(n]1)] e~ 9= (=) cos a(—o0)—
—i [Ura(n + 1|1) — Upa(n|1)] e79= (=) sin a(—o0), (163)
piz(n) =

= —i[Ui3(n + 1]1) = Uy3(n|1)] e~ 9+ sin a(—o00)+
+i [Ur2(n + 1|1) = Upz(n|1)] e+ (=) cos a —o00), (164)
p3i(n) =

= —i[Usi(n + 1]1) — Us; (n]1)] e~ 9= (=) cos a(—o0) —
—i [Usa(n + 1|1) — Usa(n|1)] e~9= (=) sin a(—o0), (165)
p3z(n) =

= —i[Uss(n + 1]1) — Usz(n|1)] e~ 9+ sin a(—o00)+
+i [Usz(n + 1|1) — Usz(n|1)] e+ cos a—00), (166)

which should be inserted into the dynamical equations
(158). After an appropriate summation, the result for the
quantities Xz (n) (j =1,3;k = 1,3) looks as follows:

X11(n) = cos® a(—o0) — i [Ull(n|1) cos a(—00)+

+ Una(n1) sina(—oo)] e=1-(=%9) (167)
Xlg(n) =
= 1= (=20)=0+(=%) o5 o (—00) sin a(—00)—
i [Ulg(nu) sina(—o00) — Uya(n|1) cos a(—o0)] x
xe 4+ (=20, (168)
X31 (n) =
= et 1+(720)=0-(=) gip o (—00) cos a(—o00)—
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—i |Usy (n|1) cos a(—00) + Usy(n|1) sin a(—oc)| x

xe~1-(=%) (169)
X33(n) = sin® a(—o00) — i [Ugg(n|1) sin a(—o0)—
— Usy(n|1) cos a(—oo)] e~ d+(=00), (170)

Here, we should remember that neither the authentic
dynamical equations (158) nor the combinations of
field variables (159)-(162) are independent. In order
to overcome this obstacle when tackling the nonlinear
dynamical system, we were forced to introduce the three-
field parametrization (7)—(10). However, we do not
know yet whether some universal parametrization for
the expansion coefficients (156) or alternatively for the
scattering data themselves is possible. For this reason,
we restrict ourselves by the mere statement that the
property

Xll(n)X33(n) = X13(H)X31 (n) (171)

exp [+2¢+(n) — 2¢4+(n — 1)] =

[X13(n + 1)X33(n) + Xll(n + 1)X13(n)] [X33(’n)X31 (n - ].) + X31 (n)Xll(n — ].)]

(evident from definitions (159)-(162)) in combination
with the properties

Ukl(n|m) :Uk3(n|m)7 (k: ]-737 m = 172737"'700)

(172)

(evident from the symmetry conditions (107), (109)) give
rise to the following requirement:

iU12(n|1)et 9+ (=) sin a(—o00) — Uy3(n|1)Usy(n|1) =
= iUsy(n|1)eT4- (=) cos a(—o0)—
—U31(n|1)U12(n|1). (173)

Inverting definitions (159)—(162) and supposing the
quantities X;;(n) to be given by formulae (167)—(170)
under all mentioned restrictions (172), (173), we come
to the formal reconstruction of the field amplitudes

X13(n + 1)X31(n - 1)

exp [+2¢—(n) —2¢_(n — 1)] =

[Xgl (n + l)Xll(n) + X33(n + 1)X31 (n)] [Xn(n)Xlg(n — 1) + Xlg(n)ng(n — 1)]

: (174)

X31(n + 1)X13(n — ].)

cos 2a(n) = Xu(n+ 1)X1§<n> ¥ Xlz(n n 1)X22(n> :

11. Simplest Solution

Although the full reconstruction of envelope Jost
functions could be done in principle according to the
scheme described in Section 8, an extra interplay
between their expansion coefficients (173) should always
be taken into account or at least verified by the final
results. We believe such an interplay may be linked with
some intrinsic symmetries of envelope Jost functions.
However, at present, any extra symmetries except for
(107)-(110) have not yet been revealed, and the very
question about their existence remains to be open.
Nevertheless, bearing in mind the formal criteria
already adopted for the envelope Jost functions and
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, (175)

(176)

requiring the solutions of the nonlinear model to
be finite, the correct concretizations concerning the
scattering data can be made sometimes.

As an example, let us analyze the simplest
constructive case N = 1, M = 0, where the
partial reconstructions (114)—(117) for the envelope Jost
functions are taken to be

=1(n]2)) = fua(2))+

HEs(nlz (1)) Can () = (zglfzél(g(l)) !

Gz (1)

+|53(n|21*(1))>0§1(nll)Cl (177)

(2) = Gz (1)’
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Z2(n[2))| = ua(2))-

The expression for |Z3(n|z)) is dropped out since it
carries the same information as (177).

The reconstruction of |E;(n|z)) will be complete
provided the quantities |E3(n|z1(1))) and |ZE3(n|z5(1)))
are found. The set of equations for their finding is
evidently as follows:

(178)

+ [Es(nlz (1)) 1—031(n|1><(z3<%§zi(22zl<1>> -
Gz ()

~ [Es(lz (NGl =

= [us(21(1))), (179)
=l . G (2 (1)
|‘—‘3( | 1(1))>C31( |1) Cl(zg(]-)) — Cl(zl(l) +
N A ety I
= |us(1(1)))- (180)
To proceed further, the parametrization
21(1) = exp[—p — ik], (181)
z3(1) = exp[+p + ik] (182)

by real parameters ¢ > 0 and k seems to be reasonable.
Then C3;(n|1) can be written in the form

Cs1(n|l) = exp[+2un + 2ikn|Cs:1(1) (183)
with
031(1) _ 6—2Tsh(u+ik)—2,uac(0)+1n(2shu,)—2i,8(0)7 (184)

where the parameters z(0) and 5(0) are real.

In order the functions ¢_(n), ¢4 (n), a(n) to be finite,
the determinant of the linear set (179), (180) must
be of constant sign. This demand is achievable under
restrictions k = v, cos26(0) < 0, where v = 1,2 and
£(0) = m/3 without any loss of generality.

The rest of calculations is straightforward. The result
is as follows:

chlp(n +1/2 = a(7)]

o) = 0 IR T O s g (—o0). (159)
. chlp(n+1/2 —x(7))]
qu(n) =In ch[u(n — 1/2 — JJ(T))] +p+ qu(—OO), (186)
a(n) = a(-), (187)
where
z(r) = TshT,u cos(mv) + z(0) (v=1,2). (188)
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Conclusion

Summarizing, we have developed the nonlinear model
describing three coupled dynamical subsystems on a
regular one-dimensional lattice. Despite the highly
nontrivial coupling in its kinetic and potential parts,
the system as a whole admits the standard Lagrange
formulation and can be readily rewritten in the
Hamiltonian form as well. Moreover, it was obtained as
a compatibility condition of two auxiliary linear matrix
equations and hence can be integrated by the method
of inverse scattering transform. This method turns out
to be rather complicated even in the framework of
the advanced Caudrey approach both due to the third
order of the respective spectral problem and because
of the hidden symmetries of Jost functions yet to be
revealed explicitly. We have tried to give as broad
information about the model as now possible in order
to make it more reliable for the further investigation.
It is interesting to note that even the simple result on
a one-soliton solution has enabled us to test the whole
inverse scattering machinery and to conclude that it
should be built up on back gauge transformed envelope
Jost functions |Z;(n|z)) rather than on the originally
introduced ones |®;(n|z)).
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JUCKPETHA HEJIIHIMHA MOJIE/Ib TPHOX 3B’A3AHUX
JAVMHAMIYHUX I1OJIIB, IHTEI'POBHA METO/1OM KO/IPI

0.0. BaxneHnko
Pesmowme

3amponoHOBAHO HEiHINHY MOJEeIb TPbOX 3B’SI3aHUX JUHAMIUYHHX
[TOJIiB HA HECKIHIEHHOMY DEryJISpPHOMY IHCKDETHOMY JIQHIIOXKKY.
Cucrema JOIyCKAa€ NPEJCTABJICHHS HyJbOBOI KPUBHU3HHU, IO € OC-
HOBOIO /1 11 iHTerpyBaHHsS MeTOJ0M 0OepHeHOI 3a4a4i po3CitoBaH-
us. JlomomikHa crmekTpasbHA 33/ada, AcOIiifoBaHA 3 HeTiHIHHOIO
CHCTEMOIO, € 33/1a9€l0 TPETHOr0 MOPAAKY, IO IPHBOIUTH IO I0-
CHUTH CKJIAJHOTO HO,E[i.TIy IJIOIMWHA KOMILJIEKCHOTO CIIEKTPAJIBHOTO
mapaMerpa Ha 00JacTi perynsgpHOCTI dYHKIIN HMocra. Buacnizok
nporo i mpsMa, i obepHeHa 3a/Jadi pO3CIIOBAHHSA CTAOTh CYTTEBO
HETPUBIAJILHUMU 1 TOMY PO3IVISIIAIOThCs B paMKaX MiIX0y, pO3-
pobsenoro Kogpi. Saransay cxemy Koxpi amanToBano g0 morpeb
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iHTerpyBaHHS 3aIlIPOIIOHOBAHOI MOZesi Ta 3HaiimeHo i1 HalmpocTi-
muit po3s’ sA30K.

JOUCKPETHAA HEJIMHEWHAS MOJIE/Ib TPEX
CBA3AHHBIX JIMHAMNYECKUX ITOJIENA,
UHTETPUPYEMAA METOJOM KOJPI

A.A. Bazrnenro
Pesmowme

[Ipennoxkena HeauHETHAA MOIEIb TPEX CBA3AHHBIX JUHAMHAIECKIX
nosielt Ha GeCKOHEYHOH peryasapHO# auCcKperHO# remouke. Cucre-
Ma JOIyCKaeT IIpeACTaBiIeHHe HyJIeBOU KPUBH3HBI, ABJIAIOIIEECT
OCHOBAHHEM [IJIsSI €€ UHTEIPUPOBAHUSI METOH0M OOpATHOM 3ajadun
pacceaHusd. BcmomoraresnpHaa coeKTpaiabHAA 337393, aCCOIUAPO-
BaHHas C HEJMHEHHOH cucTeMmoil, ABjsgeTca 3ajadeil TpeTbero mo-
paAKa, ITO BeAeT K JOCTATOYHO CJIOKHOMY IEeJeHHIO IIOCKOCTH
KOMIIJIEKCHOI'O0 CIEKTPAJIBHOIO IapaMerpa Ha O0JIACTH Deryssp-
moctu dynxnuii Mocra. Benegcrsue 910ro u npsiMast, u o0paTHas
3aJa9H pacCedHHsd OKAa3BIBAIOTCA CYIIECTBEHHO HETPUBHATIBLHBIMU
¥ IMO3TOMY PACCMATPUBAIOTCS B PAMKAX IOAXOAd, pa3paboTaHHO-
ro Koxgpu. IIpoBenena amantamus obmieil cxembr Koapu aisa uH-
TEerpUPOBAHUs IPEJIOKEHHON MOJenaun U HalJeHo ee mpocTeiiniee
pelIeHue.
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