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The states of electrons and holes which interact with lattice
vibrations in a one-dimensional semiconductor are considered.
Moderately strong electron-phonon coupling leads to the self-
trapping of carriers and polaron and bipolaron states for electrons
or holes, as well as bound localized states of electron-hole pairs
are formed. The self-trapping of carriers is accompanied by self-
consistent lattice distortion which causes the appearance of bound
electronic levels in the forbidden energy band, and, threfore, leads
to the appearance of specific spectral lines within the gap region
in the optical absorption spectra.

Introduction
The discovery that conjugated polymers, being
insulators in their neutral forms, become highly

conducting by oxidation or reduction [1—4], opened
the field of conducting polymers. The emergence of
these polymers as a new class of electronic materials
has attracted considerable attention. In particular, a
variety of applications using conducting polymers has
been proposed such as rechargeable [5] and solar [6]
batteries, information storage devices [7], sensors [§],
electro-optical and nonlinear optical [9—12] devices.

Numerous, both experimental and theoretical,
studies have shown that conjugated polymers exhibit
semiconducting properties. Through doping (by
oxidation, p-type, or reduction, n-type) the electronic
and optical properties of conducting polymers are
experimentally controlled over the full range from
insulator to metal states. The study of physical
properties of various polymers rules out the applicability
of the conventional metallic band transport theory
for these systems. Many investigations suggest the
formation of nonlinear excitations, such as polarons,
bipolarons, and solitons, in conducting polymers [13]
under doping or photoexcitation.

Theoretical calculations of the electronic structure
were performed either for oligomers with up to 40 units
using some molecular orbital methods, or for infinite
chains using band theory based on semiempirical, first
principles and ab initio calculations. Calculations of the
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energetics of the polaron and bipolaron formation are
based on the tight-binding Hiickel theory with using
model Hamiltonians for polymer chains [14, 15]. For
polymers with different conjugations and backbones,
different versions of a model Hamiltonian should be
used. In the present paper, a general approach to
the theoretical description of polaron-like states in
such systems is proposed. Of course, the electronic
structure of polymers is determined by a chain structure
(e.g., the number and kind of atoms in the repeated
units) and its symmetry. But in general, conjugated
polymers are semiconductors with the filled higher
occupied band separated by an energy gap from
the empty one (the lowest unoccupied band). The
electronic band structure of a polymer appears as the
result of the translational symmetry. Therefore, we
can consider conducting polymers as one-dimensional
semiconductors with corresponding conducting and
valence bands. In one-dimensional systems, the electron-
phonon interaction plays an important role, and it
is nesessary to take it into consideration. Often,
in some approximation, we can use such physical
characteristics of semiconductors as effective masses of
electrons and holes, phonons’ frequencies, and electron-
and hole-phonon coupling constants, which can be
determined from quantum-chemical calculations or from
experimental data. Although the linear and nonlinear
optical properties of conducting polymers have been
investigated for over a decade, there is a contraversy
in describing elementary excitations. In this connection,
a general consideration which combines the physical
insight with explicit analytical expressions seems to be
useful.

1. Adiabatic Approximation

Let us consider the simplest case of a one-dimensional
semiconductor with nondegenerate valence and
conducting bands separated by the energy gap A.
The ground state |®g) describes a semiconductor with
completely filled valence band and empty conducting
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one. If these two bands are well isolated from others,
the Hamiltonian which describes excitations in such a
semiconductor can be written in the form:

H = 50+E1(Ne—Nh)+He+Hh+th+He_ph+Hh_ph.(1)

Here
Hyp =Y hw;(k
k,j

is the phonon Hamiltonian with bk] (bx,;) being Bose
operators of creation (annihilation) of phonons with
wavenumber k and frequency wj(k) of the j-th branch
of normal vibrations of a backbone,

HZE

are the energy operators for electrons in the conducting
band (c; 5 is the Fermi operator of creation of an electron
with wavenumber k and spin s in the conducting band)
and for holes in the valence band (d*s is the Fermi
operator of creation of a hole (electron annihilation)
with wave number k and spin s in the valence band),

) (b3 bk + 5) (2)

Ck <Ch,s» Hh—ZEh (3)

k,s

dkysdk,sa

respectively, and the operators
Hefph =
=% D Xeilk Kep sonsbrw g + 054 5),  (4)
kK 5,]
Hh—eh =
ik, ENdE dp s (Dp—pr i + 075, ) (5)
Xh,j\IVs k,s Uk’ ,s\Ok—k',j k' —k,j
k.55

describe, accordingly, the interaction of electrons and
holes with phonons. In (1), E; is the middle gap energy
and N, and N, are the operators of the numbers of
electrons and holes:

— E +
Ne - Ck7sck,sa
k,s

Explicit expressions of energy dispersion
conducting (¢) and the valence (v) bands

Nup=>_df dys.
k,s

in the

Ee(h) = %A + Lc(v) (k) (6)

as well as the explicit dependence of the coupling
functions x.),;(k, k') = Xo(n), ;(k', k) on wave numbers
are determined by polymer structure.

The ground state |®Po) is the eigenvector of
Hamiltonian (1) with energy &o:

H|®o) = &|Po)

646

(ck,s|®o) = dis|Po) = 0). The excited state of a
semiconductor corresponds to the appearance of some
number of electrons, v, in the conducting band and/or
holes, vy, in the valence one. This state |¥) = | U (v, vp))
and the corresponding energy are found from the
Schrodinger equation

H[¥(ve,vn)) = E(Ve, vn)[¥ (ve, va))- (7)

The presence of quasiparticles (a charge, electrons
or holes, under doping, or electron-hole pairs by
photoexcitation) induces displacements of the nuclei of
the polymer backbone from their equilibrium positions.
In the adiabatic approximation, such a lattice distorsion
or the renormalization of the phonon ground state is
described by a unitary operator exp(S) which appears
in the eigenstate vector |¥) as a multiplier [16]:

|9 (ve,vn)) = €| T (ve, n)),

S=% Z B (k)b 5 — 87 (k)b g] -
k,j

In this case, Eq.(7) can be rewritten as

H|¥(ve,vn)) = EWe, va) ¥ (ve, v1)), 9)

where
[f—v[:e*SHeS:£0+W+EI(N6_Nh)+[Z+HNh+

it Hon b Hi e ST 008, 60 +
k.j

+hw; (k) B (k)br,j] -

Here
_ 1
—NE: w; (k)| 5, (k
k,j

is the energy of the lattice deformation and

chs{E

(10)

Ck:s

+x ZX&] (k, k)8 (k — k') + B} (K' — k)]ew s}, (12)
K .j
Hy =Y df {En(k)dys +
k,s
1 l l * (7.0
o > xng(k, KB (k = k) + B85 (K' = B)]dw s}, (13)
k' ,j
By the unitary transformation
(14)

Ch,s = Z (N
\

K)Cxs, dis =Y pu(k)Dys
W
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with
Z X (k = Ok, Z YX(k)Ya (k) = dxx,
Z‘PH ") = Ok, Z‘Pu k) = 0, (15)

we can_diagonalize the operators for electrons, ﬁe, and
holes, Hy, (12)—(13), and get the expression

I:Te = ZEAC;:SC)\,S, I:rh = ZEuD:,sD!hS

A,s w,s

(16)

The coefficients of the unitary transformation (14) and
adiabatic energy levels for electrons, Ey, and holes, E,,,
are found from the equations

B ()a(k) + & Y xe,i (b, K)[Bj (k — k') +
]
+8; (K" — k)[Ya (k') = Exoa(k), (17)
En(k)eu(k) + % > xnj(k, K)[B;(k — k') +
k'.j
+B5 (K = k)|pu (k') = Eupu(k). (18)

The operators of the electron- and hole-phonon inte-
raction, (4), read in the new representation (14) as

He ph:

Z i (B)CF O s (b + b5, ), (19)
>\ N 5.k,
Hy_en =
Z Py (k)DIsDu’ys(bk,j + btkﬂ')a (20)
o' 58k, 7
where
Fij(k) =D Xej (k+ K KUK (k + K )on (K, (21)
kl
®ppri (k) =Y xnj(k+ kLK) (k+ K)o (k). (22)

k/
In the adiabatic approximation, the solution of Eq.

(9) which describes the state of a semiconductor with v,
electrons and vy, holes can be written as

¥ (ve, )y = [J(C5 )™ [0 )

A, 1,8

(I)0>7 (23)

whereny ; = 0,1and n, ; = 0,1 are occupation numbers
which indicate the filling of adiabatic levels A and p by
electrons and holes, correspondingly, with spins s and

§ nx,s = Ve, E Ny,s = Vh.
A,s In,s

(24)
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Taking into account the properties of Fermi-
operators, we can see that

Crs|¥(We,vn)) = Dyo|¥(ve,vp)) =0

for those (), s) and (

(25)
i, s) for which ny s =n, s =0, and
Cy ¥ (ve,vn)) = Df | ¥(ve,vn)) =0
for those (A,s) and (p,s) for which nys = n,s = 1.

Therefore, with respect to the action of Fermi-operators
on state (23), we can introduce the operators

(26)

CA,s = (1 - nA,s)CA,s + n)\,sﬁ;;,

s

D,s=1(1

)

—Nps)Dys + 1y, sC’+ (27)

E
This means that, for unoccupied states, ny s = n,s =0,
Crs = Chs and D, = D, are the annihilation
operators for electrons and holes, respectively. For
occupied states ny, = n,s = 1, these operators are
renamed as the creation operators for new holes and
electrons, respectively: C , = D sand D, = C+ -
Substltutmg (27) into (10) with account of (16) and (19)
and after putting the creation and annihilation operators
in the normal order, we get

H=8E+W+> nasBx+ Y nusE,+

A, I8
+EI(N - Nh) + Hexc + Hna +
+\FZ{hw] )8 (k) + 3 nasFyx x; (k) +
k,j A,8
+Znus rou (R +hed (28)
Here the Hamiltonian Hey. _describes “excited”
states relatively to the state |¥(ve,vp)), (23) (this

Hamiltonian holds terms with C st, D DXS,

Df Dy s, and C:,séu,s) and Hy, is the nonadlabatlmty
operator and contains terms which correspond to
phonon-induced transitions between occupied and
unoccupied adiabatic terms. The lattice configuration
in state (23) will be stable provided that terms which
are linear with respect to the phonon operators b+ k.
disappear in Hamiltonian (28). This condition leads to
the following relation for the parameters j3;(k):

Pis (
hw; (k

Z )\sF/\/\J k)+z Np,s

(29)
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In the adiabatic approximation, H,, is considered
as a perturbation and can be omitted in the zero-
order approximation. In this case, the wave vector (23)
is an eigenstate of Hamiltonian (28) with the energy
eigenvalue

E(We,vy) =& + Er(ve —vn) + W+

+> nasBa+ > nusE. (30)
A, 1,8
The condition of applicability of the adiabatic

approximation in a one-dimensional electron-phonon
system has been obtained in [17].

We see that adiabatic electronic terms are
determined by the lattice configuration (Eqs.(17)—(18))
which, in turn, depends on the states of electrons or/and
holes (Eq.(29)). Thus, after substituting (29) into (17)
and (18), it becomes clear that, to solve the problem, we
have to solve, in the general case, the system of nonlinear
equations for occupied states. The solution gives us the
self-consistent states for electrons (or/and holes) and
lattice distortions. All other virtual adiabatic electronic
states are determined from the linear equations (17) and
(18) with the given lattice deformation.

2. Polaronic States

Near the bottom of quasiparticle bands (the top of the
valence band and the bottom of the conducting one), the
approximation of effective masses can be used:

(k) = $A + 1kl

2Me(n)

(31)

where kg corresponds to the bottom of bands. The value
of ko is determined by a chain symmetry but usually
(for simple chains) ko is the same for the conducting
and valence bands and kg = 0 or 7/a with a being the
lattice constant.

For solving Eqgs. (17)—(18), let us introduce the
functions

lﬁx(l') — \/11\’7 Zei(k_k())w'éb)\(k):
k

pulz) = \/le—a Zei(kiko)z‘)@u(k) (32)
k

of the continuum variable . Note, that, at x = an, the
functions

\/agb)\(na)eikoan — ﬁ Zeikantbx(k)
k
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(and similarly for ¢,) are the coefficients of
transformation (14) in the site representation.

For levels which are close to the bottom of bands,
Ya(k) and ¢, (k) are essentially nonzero for values of
k which are close to kyg. Taking this into account and
using (31), Eqgs.(17)—(18) can be represented as the
Schrédinger equations for functions (32),

— L LV, (s () = (Bx — 50)0a(2),  (33)
_2726 ¢ 5:2(96) + Ve(@)pu(z) = (BEu - %A)Wu(iﬁ)a (34)
with
Ve(z) = —2a(G. an,s|¢>\(2¢)|2 +
A8

+Gen Y muleun@P), (35)

w,s
Vi(x) = —2a(Ghe Y nasloa(@) +

A,s
+Gr Y slou(®)?). (36)
1,8

Here the following notations are introduced:
Ge = Z |ge,j|2; Gh = Z |gh,j|27

J J

(37)

* *
Gen =G = de,jgh,j:
J

where

Xe(n),i (k:k')

ge(h)vj = k,ll}glko /hw(k—k’) :

A)Polarons and bipolarons.
Let us consider the case where, under doping, one or
two identical quasiparticles appear in a semiconducting
chain. In this case, only one adiabatic level Ey is
occupied either by one quasiparticle (ng s = 1,n9,s = 0)
or by two quasiparticles with opposite spins (ng4+ =
no,; = 1). Other occupation numbers are zero. The
corresponding state (23) is characterized by filling
numbers (24) v; = lor v; =2 and v; =0 (i = e when
quasiparticles are electrons and ¢ = h in the case of holes;
and j # i indicates alternative quasiparticles).The self-
consistent potentials in (35)—(36) become

Vi(z) = —2av;,Gi|i0(2) [,

V(@) = —2av:Gji|¢io (). (38)
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Thus, acording to (33)—(34) and (38), the occupied
state 1; o(z) is determined from a nonlinear Schrédinger
equation (NLSE) [18],[19] with the well-known solution

- 1 1 n’a®
901',0(1;) - \/gcosh[a(x—xi)]’ Eio = §A - 277?1- :

This solution describes the self-trapped state of
quasiparticles with localization parameter « which
depends on the number of quasiparticles v;, quasiparticle
effective mass m;, and strength of electron-phonon
coupling G;,(37),

(39)

a=vig, o= (40)
Solution (39) determines potentials (38) in the
Schrédinger equations (33)—(34) which describe
renormalized unoccupied adiabatic states. For

quasiparticles of the same sort i as dopped ones, state
(39) is a single bound state. Others belong to the
quasicontinuum band spectrum which is characterized
by the wave number k:

1 k—iatanh[a(w—xi)]eikx
)

wi,k(x) = /Na ViZ+az

Ei(k) = JA + 22=ko?

-2 2m;

(41)

For quasiparticles of another sort, j, a solution of
the corresponding Schrédinger equation depends on the
parameter

C = Tige. (42)
The energy spectrum consists of the quasicontinuum
band states with the corresponding eigenfunctions and

eigenenergies

¢J7k(m) = AkeikzF(_Sa 1 + S, 1- i%;f);

Ej(k) = $A + LGzl

2m;

(43)

where ¢ = (1/2)(1 — tanh[a(z — =;)]), A is a
normalization constant,

s=L1(/1+8C—1),

and F(a,p,v,€) is the hypergeometric function. The
presence of bound localized states and their number
depend on the value of parameter C, (42). If C < 0
(Gji < 0), there are no bound states. Gj; = 0
corresponds to the case where electrons and holes
interact with different phonon branches. At C' > 0, the
bound states appear in the spectrum with the energy
levels

2 2
Ejn =30 =52 (s —n)”,

(44)

(45)

ISSN 0503-1265. Ukr. J. Phys. 2003. V. 48, N 7

where n = 0,1,...,[s] ([s] is the integral part of
a number s (44)). The corresponding wavefunctions
Yjn(x) are

Yjo(z) = m’

'ijl (.’L’) = m tanh[oz(.r — .'L'i)], . (46)
where A,, are normalization constants.

Quasiparticle self-trapping is accompanied by chain
distortion (29) which requires energy consumption (11).
Neverseless, energy (30) in the state |¥(0,v;)) with
v =1,2,

E(O, Vi) - 50 + I/iE[ + W + ViEi,O -

h%a?
Vi 6m; ?

= 50 + ViEo + %I/iA

(47)

is less than the energy & £ v;Ey + 1v;A of v; delocalized
quasiparticles (with the wave number k = ko). Here
the signs “4+” and “—” correspond to electrons and
holes, respectively. The gain of the total energy due
to self-trapping is uif—n‘ff. Such a self-trapped state
can propagate along the chain with constant velocity
without changing its form and without losing the energy.
At v; = 1, state (39) describes a polaron and at v; = 2
it corresponds to a bipolaron. After A.S. Davydov [20],
such states are often called “electrosolitons” (at v; = 1)
and “bisolitons” (at v; = 2) [21, 22].

A polaron or an electrosoliton state, v; = 1, extends
over several chain units and its width is inversely
proportional to the parameter «;, (40). The presence of
a polaron on the chain introduces localized electronic
levels in the gap. In the case of an electron polaron,
t = e and j = h, there are a singly occupied bound
polaron level

B = hza?
T 2my

(48)

below the conducting band edge and doubly occupied
localized levels

Ejn = (mi/m;)Eip(s — n)* (49)

above the valence band edge in the gap. In the case of a
hole polaron, ¢« = h and j = e, the singly occupied bound
polaron level (48) above the valence band edge and the
empty localized levels (49) below the conducting band
edge appear in the gap. If 0 < C <1 (0 < s < 1), there
is only one bound level, Ejp. At 1 < C <3 (1 <s<2),
the second bound level with n = 1 is splitted from the
quasiparticle band and so on. Usually C' ~ 1 and if the
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second bound level is present, it is very close to the band
edge because of the inequality (s — 1) < 1.

A bipolaron or bisoliton state, v; = 2, is more narrow
because its localization parameter is 2q;. In this case,
the created localized electronic levels in the gap are: (i)
a doubly occupied bound bipolaron level 4E;, below the
conducting band and doubly occupied localized levels
4E;, above the valence band in the case of an electron
bipolaron, i = e and j = h and (ii) an empty (doubly
occupied by holes) bound bipolaron level 4E;, above the
valence band and empty localized levels 4Ej, below the
conducting band in the case of a hole polaron, i = h and
j=e.

The bipolaron energy (47) is less than that of two
isolated polarons with the gain of the total energy equal
to 2E;p. This indicates that the formation of bipolaron is
favored as compared with that of two isolated polarons
[21—23]. Because a bipolaron is formed by two identical
quasiparticles with opposite spins, it is a spinless doubly
charged carrier (negative in the case of electrons and
positive in the case of holes). Due to the Fermi statistics,
a pair of quasiparticles in the triplet state form two
isolated polarons [24].

B)Electron-hole pairs.Letan electron-hole
pair appear in a one-dimensional semiconductor under
excitation. In this case, the excited state (23) is |¥(1,1))
(ve = vp, = 1) in which an electron and a hole occupy
their own levels A = A\g and y = po. Below we denote
Ao = po = 0. In this case, the self-consistent potentials
in Eqgs.(17)—(18) are

Ve(x) —2a (Geltho(@)]” + Genloo(2)]*) ,
Vi(z) = —2a(Gnelvo(@)* + Grlpo(2)[)

and, for determining the occupied adiabatic terms, it is
nesessary to solve the system of two nonlinear equations
(17)—(18) for tp(z) and po(z). This system admits a
solution in the form of two independent electron and hole
polarons (39) separated by the enough large distance
|ze — xp| = oo such that ¢o(x) = 0 in the region where
wo(x) # 0 and vice versa. In this case, the total energy
(30) is

(50)
(51)

Ef(1,1) = &4+ W + By, + B,y = &+ A 00210 (50,

6m. 6mp
where «; (i = e, h) is given by (40).

The general solution can be obtained easily in the
case where C = 1 (the parameter C is determined
in (42)). In this case, the solution ¥g(z) = @o(z) is
described by the same function as that in (39) and the
electron and hole eigenenergies are

- hzag
ep = om0

Epp = 2o (53)

2mp °
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Here the localization parameter ayq is

mea(Ge+Ge n)
h2

g = = mha(G;2+Gh'e) . (54)
This solution corresponds to an electron-hole pair bound
in the common self-consistent lattice potential. The total

energy (30) in this state is

Ey(1,1) =& + A - h2a3,

- (55)

==
®

The diference between energy (52) of isolated electron
and hole polarons and the energy (55) of an electron-
hole bipolaron (or bisoliton) is
AE = %Ge’h(Zag + ae + ap)a. (56)
Therefore, at G.p > 0, the formation of a bound
electron-hole pair is favored over that of two
isolated polarons with the gain in total energy
by (56). An electron-hole bipolaron is a neutral

nonlinear formation which can be in a singlet
state (electron and hole have opposite spins)
and in a triplet one (electron and hole have

equal spins). Due to the processes of radiative
recombination, a lifetime of singlet pairs is small,
whereas a triplet electron-hole bipolaron is long-
lived.

Conclusion

The presence of polaron states leads to the appearence
of bound electron levels in the gap region. These
localized electronic levels can become apparent in optical
absorption data. Due to the different filling of localized
levels in cases of polarons and bipolarons, optical
measerments allow one to distinguish polarons and
bipolarons. In the case of bipolarons within the gap
region, there are two additional features in absorption
spectra. In the case of hole polarons, these two lines
correspond to transitions between the valence band and
two unoccupied localized levels. In the case of electron
bipolarons, the additional lines correspond to transitions
between two filled bound levels and the conducting
band. In the case of a polaron state, there appears the
third absorption line which corresponds to the transition
between localized levels. Such an evolution of the optical
spectrum upon a doping of the conducting polymer
poly(pyrrol) (PP) have been observed experimentally
[25]. At low levels of oxidation of PP, there are
three additional features of absorption within the gap
region. As the level of oxidation increases, the middle
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absorption line disappears. In the fully oxidized sample,
two intensive broad absorption bands are present. This
observation led the authors to suggest that such an
evolution could be explained by the formation of polaron
and bipolaron states.

The formation of a bipolaron is favored over that
of two isolated polarons. Indeed, many experimental
observations can be explained by relating charge carriers
to doubly charged spinless bipolarons [26] and, in some
polymers (e.g., in poly(thiophene) [27]), the kinetics
of recombination of polaron pairs into lower-energy
bipolarons is sufficiently rapid. In [26], it is also found
that there is no correlation of the ESP spectrum
with the transport properties, and, moreover, it is
possible, by electrochemical cycling, to reduce the spin
concentration without affecting the conductivity. Hence,
the authors conclude that the paramagnetic species
are predominantly neutral and, conversely, that the
charge carriers are spinless. It is suggested that these
latter species are bipolarons, singlet-bound states of two
positively charged polarons (hole bipolarons), and it is
possible to suggest that the former species are electron-
hole bipolarons.

The work was partly supported by Project
No0.0102U002332 of the Fundamental Research Program
of the Ukrainian NAS.
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CTAHU IIOJIAPOHHOI'O TUILY B O/JTHOBUMIPHUX
HAIIIBITPOBIJJHUKAX

0. O. €Epemro
Pesmowme

B aniabarumynoMy HaOIMXKEHHI PO3IVISHYTO CTAHH €JIEKTPOHIB Ta
IipOK, IO B3aEMOIIOTH 3 KOJHMBAHHSMH TIDATKH B OJHOBUMIip-
HUX HamiBnpoBigHukax. IloMipHO cuIbHA eJ1eKTpOH-(DOHOHHA
B3AEMO/Iisi IPUBOAUTH IO aBTOJIOKAJII3allil HOCITB 3 yTBOPEHHSIM 110~
NApOoHHEX 1 GimosigpouHHuX cTaHiB. OgHA KBa3i9aCTHHKA ABTOJIO-
KaJIi3yeThCs B eIeKTPOHHUN abo gipkosuit mosispoH. /IBi kBaziza-
CTUHKH BHACJIJIOK B3a€MOIl 3 1edOpPMAIi€0 IPATKA 3B’ SI3YHOThCS
B GimosisgponHi cranu, mo BignosigaooTs (i) exekTpoHHHM a6o Iip-
KOBUM OImOJIsipOHAM 3 MOABIMHUM 3apsiloM 1 HYJIbOBHM CIIHOM
Ta (ii) HeHTpaabHHM JIOKAJIi30BAaHUM eJIEKTPOH-IiPKOBHM I[apaM
B TPUILIETHOMY CTaHi. ABTOJIOKaJIi3allisi HOCITB CylpPOBOIKYETHCsI
CaMOY3TO/KEHOI 1edOPMAIIE€I0 MOJIEKYJIAPHOIO JIAHIIOXKKA, IO
CIPUYHUHIOE IOsIBY JIOKAJII30BaHUX EJIEKTPOHHHUX PiBHIB y 3ab0po-
HeHill eHepreTu4Hiil 30Hi. HagBHICTb IUX pIBHIB MPOSBIISIETHCS B
ONTUYHUX CIIEKTPAX HOTJIHHAHHS OSHOBUMIPHUAX HAIIIBIPOBiIHUKIB
y BHIVISZl XapaKTEPHUX CIEKTPAJIbHUX JIiHIA, m[0 po3TamoBaHi
HHUKYE [MOPOra MiXK30HHHX IIEPEXOIiB.

COCTOAHUA ITOJIAPOHHOI'O TUITA B OJJHOMEPHUX
IMOJIVIIPOBOJHMKAX

A. A. Epemko
Peswowme

B agumabarmaeckoM npuOIMXKEHHH PACCMOTPEHBI COCTOSHHS JJIEK-
TPOHOB U JBIPOK, B3aUMOEHCTBYIONUX C KOJIEOAHUSIMU DEIIeTKH,
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A. A. EREMKO

B OJTHOMEDHBIX IIOJYyIPOBOJHUKAX. Y MEPEHHO CHUJIBHOE 3JIeKTPOH-
(dOHOHHOE B3aMMOEHCTBUE NPUBOAUT K ABTOJIOKAJIH3ALMA HOCH-
Teneil ¢ 0Opa30BaHHEM IOJISPOHHBIX U OUIIOJISIPOHHBIX COCTOSI-
muit. OgHa KBA3W4aCTHIQ, CAMO3aXBAThIBAsiChb PEIIETKO, obpa-
3yeT JIEKTPOHHBIM HJIM IBIPOYHBIN HOISAPOH. /IBe KBa3muaCTUIIHI
BCJIEICTBHE B3AMMOJEUCTBHUSA C AedopMalueil pelmeTKyd CBS3bIBA-
I0TCs B OUIIONISAPOHHBIE COCTOSIHHS, COOTBETCTBYIHUE (1) 31eKTPOH-
HBIM HJIM JBIPOYHBIM OHIIONSAPOHAM C JBOMHBIM 3apsaJOM U Hy-

652

JIeBbIM CIMHOM # (ii) HeHTPaJbHBIM JIOKAJTH30BAHHBIM SJIEKTPOH-
ABIPOYHBIM IIapaM B TPHUILJIETHOM COCTOSAHUHA. ABTO.}IOKaJ’[I/I3aHI/Iﬂ
HOCHTeJeHl COMpPOBOXKJAETCS CAMOCOTJIACOBAHHON medopmariueit
MOJIEKYJISIDHOM IENOYKH, UYTO IPUBOJUT K IOSBJIEHUIO JIOKAJIU30-
BAQHHBIX JIEKTPOHHBIX YDPOBHeH B 3amnpemieHHo# 3oHe. Hajanume
9THUX YPOBHEIl IPOABJIAETCA B ONTHYECKUX CIEKTPaX IOIJIOMIeHUS
OJITHOMEPHBIX HOJIYyHIPOBOJHUKOB B BHJ€ XapPaKTEPHBIX JIMHUH, pac-
TIOJIO?KEHHBIX HHXKe ITOPOra MeXK30HHBIX IIepeXO0B.
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