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A brief review is given on the theory of Davydov solitons,
some recent advances of the theory and its perspectives for
the modern problems of physics and biophysics. In particular,
the main properties of solitons and their dynamics in discrete
macromolecular systems are analyzed. It is shown that the soliton
model explains well some peculiarities of the experimental data
on the saturation of charge carriers mobility with the intensity
of the applied electric field in some low-dimensional conducting
polymers. Charged solitons are proved to emit millimeter range
electromagnetic radiation, via which intra- and inter-cellular
signalling is possible. Such radiation is shown to result in the
long-range interaction between electrosolitons, which leads to
the synchronization of soliton dynamics. This can constitute one
of the mechanisms of self-regulation in living systems. Study of
the interaction between solitons shows that the Davydov model
qualitatively describes the charge transport that accompanies
oxidative-phosphoryllation redox processes. The input of soliton
states into the stimulated luminescence is calculated and shown
to describe qualitatively and quantitatively the main properties of
the delayed luminescence from biological systems.

Introduction

It is thirty years since the first paper on Davydov’s
soliton [1] was published. The concept of molecular
solitons [2] has found a wide area of applications in low-
dimensional systems (LDSs) which include conducting
polymers, macromolecular proteins, etc. Initially this
concept has been suggested to explain the effective
mechanism of the transfer of energy, that is released
during the ATP hydrolysis processes in biological
systems, on macroscopic distances in a cell. “Davydov
soliton” (the very term has been suggested by Alwyn
Scott [3]) constituted the main subject of the NATO
ASI held in 1989 in Denmark, whose Proceedings were
entitled “Davydov’s Soliton Revisited” [4]. It is not the
intention of the present paper to give a complete review
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of the theory of molecular solitons; instead, some of
the recent advances of this theory are briefly discussed
below.

1. Main Properties of Davydov Soliton

1.1. General Description of Davydov’s Model

A state of quasiparticles (electrons, holes, excitons),
|¥(t)), in a molecular chain can be found from the
Schrédinger equation with the Frohlich Hamiltonian H,
which, in the general case of an arbitrary number of
quasiparticles and phonon modes, can be written as the

sum of three terms
1

H=> BEk)A] Aro+—= > xj(@)x
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4,

Here, A;U, Aj,, are the creation and annihilation
operators of a quasiparticle with the wave number
k and spin projection ¢ in a conductive band
with the dispersion law E(k), bIj (bg,;) are the
creation (annihilation) operators of phonons of the j-th
branch with the wave number ¢ and frequency ;(q),
and functions yx;(g) characterize the electron-phonon
interaction.

Hamiltonian (1) conserves the number of
quasiparticles and commutes with the operator of the
total momentum of the system

P=> hkAj Ape+ Y habl b (2)

k,o q,]

which is connected with the translation operator T' =
exp(iPz/h). The energy of a stationary state |¥(t))
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depends on the eigenvalue p of the operator P, and
every value of p corresponds to the group velocity V =
dE(p)/dp. In the coordinate system moving with this
velocity, such stationary states satisfy the Schrodinger
equation

(H=VP)|y)=Ely), [¢(t) =expiPVt/n)|[¥()).(3)

In the multiplicative adiabatic approximation under the
unitary transformation [5]

= Z‘IIA(k)aa,A (4)
A

the part of Hamiltonian (1), which is quadratic with
respect to the new operators, can be diagonalized. For
this, the coefficients ¥ (k) should satisfy the equations

[5]:
[E(k) —

NZXJ

As a result of (4), the Hamiltonian takes the form of the
sum of two terms, one of which, Hy, is the operator which
describes the adiabatic states of the electron-phonon
system, and the second one, Hy, is the nonadiabaticity
operator:

KV K] 5 (k) +

Q) (B + B2y ) Uk —q;) = Ex¥x(k). (5)

HOZW-F)\Z;{EA-{—\/——Z/"AAQ] q,"‘b—q])}

Zhwqj

xaa)\a‘7>\+ B‘IJ q]+BQqu])

—|—Zh (wq,j —

0.iba.» (6)

za:jﬁg%ﬂm@ﬁ g by 65,5 (7)
Here,

Z T(wg,j — V@) |Basl?, (8)
P (@,9) = x3(0) Y W3 (k)Tx (k — q). 9)

k

In the zero adiabatic approximation, the stationary
state ¥ of a quasiparticle in a potential well created
by the deformation of a chain, accounting for the
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interaction with the acoustic phonon branch only, is
described by the system of equations which read in the
continuum limit as:

L 0¥(z,1) 82

+axp(z,t)¥(z,t) — AV (x,t) = eF(x,t) (10)
0? 5 07 x 9 2 _

<@ -V, @) p(z,t) + M@N’(%tﬂ =

=cf(z,1). (11)

Here, p is a chain deformation, J is the exchange
(resonance) interaction, x is the EPC constant, a is
the lattice constant, M is a molecular mass, V, is the
sound velocity in a chain, V, = ay/w/M, w is the
elasticity coefficient, and A = Ey + W — 2J, where
Ey is the quasiparticle on-site energy, and W is the
phonon energy. Functions F(z,t), f(x,t) account for
higher order derivatives, the influence of external fields,
etc., that are assumed to be small, which is reflected by
the presence of a small coefficient ¢ < 1.

The system of equations (10)—(11) in the absence
of external fields within the accuracy of second space
derivatives, i.e., at F = f = 0, is called Davydov’s
system. For the running wave type functions, this
system can be transformed to the Nonlinear Schrodinger
equation (NLSE) whose normalized solution has the
form of a soliton

Wooi(@,1) = not(a, £) om0,
V9
B = 12
'%bsol (.’L') ) 2 COSh [g(-’If — Vt/a)/2] ) ( )
with the parameters
_ X2 s V2
g= —-"——, 8 = —,
2Jw(1l — s?) V2
mV I
k= — — _J9 .
h’ 2ma? 4 (13)

The main characteristic of a moving soliton is the
wave vector k which determines the soliton velocity,
momentum, and energy (the latter includes the energy
of deformation):

Pioi(k) = hk + 355?22?? (_kzz)B" (14)
Eyo1(k) = Eo — 2J cos(ka) — Z‘ U o Cgs (1)

ISSN 0508-1265. Ukr. J. Phys. 2008. V. 48, N 7



DYNAMICAL PROPERTIES

respectively. Such a soliton has the effective mass

Jg3 "
32’ T 2Ja2

me =m(1+9), 5 = (16)
and can propagate along a chain with constant velocity
V <V, without changing its form and without losing its
energy.

1.2. Conditions of Soliton Existence

Generally speaking, the ground states of a quasiparticle
in a chain can be conventionally divided into
three types which correspond to three different
approximations in the Frohlich Hamiltonian. Namely,
these approximations are: (i) strong EPC, which
corresponds to a small polaron; (ii) weak EPC, which
corresponds to almost free quasiparticle; and (iii)
adiabatic approximation, which is valid at intermediate
values of EPC, and results in the formation of a soliton
(large polaron) state. To show this explicitly and to get
the estimate of adiabatic approximation validity, the
variational method suggested in [6], turned out to be
useful. In the case of one quasiparticle, the variational
function in the site representation can be chosen in the
form

¥) = Va)_ ¥(n)e”™a;f|0), (17)
where
1 .
al, = TN Zk: exp (—ikna)a},,
o) = <= 3 s 0by = £, 0000 (18)

with the variational variables ¥(n) and f; ;(n) to be
determined from the extremum condition for £ =
(P|H|PT) at the additional condition (¥|¥) = 1. This
general form of a function, as it has been shown in [6],
allows to describe all three aproximations within the
same variational scheme. Namely, it was shown that
the wavefunction ¥(n) satisfies Schrodinger equation in
the deformational potential with the effectife exchange
integral J* = Je ¢, renormalized by the Franck—
Condon factor @G, which, in turn, depends on the
wavefunction. Using the complete set of orthogonal
eigenfunctions, that include ground state functions and
functions of the continuum spectrum, and choosing the
trial function of the ground state depending on the
localization parameter, x, the energy can be calculated
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as a function of k. This function depends on the EPC
constants and nonadiabaticity parameters of the phonon
branches as parameters.

It turns out that, in the case of one vibrational
mode, optical [6] or acoustic [7], the self-trapped soliton-
like states with finite nonzero value of the localization
parameter correspond to the minimum of energy only
within the finite interval of EPC values:

Gj,c1 < gj < Gj,c2, ] = Op, ac, (19)

with the lower and upper critical values of EPC
constants depending on the nonadiabaticity parameters,
7j, respectively. Here,

2 2
_ Xac _ |X0p|
Jac = T 9P T 5780,
. B . RV
70p = J* y Yac = 2J*‘la' (20)

The ground state corresponds to an almost free
quasiparticle, provided the EPC constant is less than the
lower critical value, g; < gj1, and to a small polaron
state, provided the EPC constant is bigger than the
upper critical value, at g; > g; 2. The analysis becomes
more cumbersome in the case of several vibrational
modes. It has been shown in [8] that, for a chain with two
modes, the parametric region of soliton existence is much
broader with respect to the EPC constant with one of
the two phonon branches, g;, as compared with the one-
mode approximation, provided the EPC constant with
the second mode, g;;, belongs to the domain where the
one-mode adiabatic approximation is well valid.

In this respect, it is worth to mention here that,
in the numerical analysis of soliton properties, the
standard numerical values of the parameters that are
characteristic of real polypeptides (see [3]), are usually
used. For the overly simplified one-band single-chain
model, these values give Yac = 2.3, gac = 09 +
3.9, at which, according to [7], the ground electron
states do not correspond to a soliton. The single-chain
model describes a real alpha-helix quite conventionally,
both quantitatively and qualitatively. The account of
the helical structure, resonance and elastic interactions
between three peptide chains changes the effective band
width and reduces the sound velocity in the helix as
compared with a single chain. All this reduces the
nonadiabaticity parameter, v, ~ 1 [7]. But the most
important is the presence of three bands in the «-
helix, of which two, the lowest ones, are degenerate.
Such a system can hardly be described adequately in
all respects by a one-band model, in particular, a kind
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of Jahn—Teller effect can take place. Therefore, the
numerical study of a model chain has to be carried
with the numerical values of the parameters which are
renormalized as compared with a real polypeptide.

This explains the very small values of the soliton
life-time calculated by H. Bolterauer [4, p. 309] and
J.V. Schweitzer and J.P. Cottingham, in [4, p. 285],
as well as inconsistence of the conclusion about
the thermal instability of solitons, obtained within
the molecular dynamics model [9, 10] or using the
perturbation theory [11]. Moreover, the problem of
temperature influence on a mixed quantum-classical
system requires a self-consistent quantum-mechanical
consideration. According to the quantum-mechanical
study [12], the temperature dependence of soliton
parameters is nonmonotonous. There is some optimal
value of temperature, Ty, at which a soliton has
the lowest energy. Soliton stability increases with
temperature increasing in the interval [0, Tp] due to the
effective decrease of the electron band width, 4J*, and,
respectively, the decrease of soliton dispersion. With
the increase of temperature above Ty, the total soliton
energy increases approaching the band bottom, which
corresponds to the decrease of soliton thermal stability
at T > Tp. There is some critical value of temperature,
T.;, at which the kinetic energy of the lattice due to
thermal vibrations overcomes the binding energy, and
the soliton dissociates into a delocalized quasiparticle
and a lattice deformation. These results agree with the
results of computer simulations [13].

1.3. Soliton Dynamics in Discrete
Molecular Chains and Electrosoliton
Induced Electromagnetic Radiation

Numerical modelling of the soliton dynamics in a discrete
molecular chain reveales some peculiarities as compared
with analytical continuum models. Namely, it shows the
presence of small oscillations of the soliton amplitude.
The regular study of the dynamical dependence of soliton
parameters has been done in [14—18]. Here, we report
only that it turns out that a soliton in a chain moves
along the periodical Peierls—Nabarro potential relief,
whose height, U,, depends on the width of a soliton
and which has the period equal to the lattice spacing.
Due to this, the dependences of the soliton velocity,
momentum and energy on the quasimomentum differ
from those predicted by the continuum models. Instead
of a monotonic relation, they are oscillating functions of
time. It has been shown in [17] that the instantaneous
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soliton velocity is

V(t) = 7(t) = Vodn(u, k) =

4q¢" cos (nwt)
=V 1+Z T |

(21)
where dn(u,x) is the Jacobi elliptic function, u =
7Vot/a, and k? = U,/FEkn, is the modulus of the
elliptic integral. According to (21), the soliton moves
with an average soliton velocity, V = 7Vy/2K (k), and
has oscillating components with the main harmonic

Vo
20K (k)

w = (22)
and its overtones. Here, V4 is the initial soliton velocity
due to the initial wavevector ko, K (k) is the complete
elliptic integral of the first kind, and ¢ = exp (—7K'/K),
where K’ = K(x'), ¥ = 1 — k2. The amplitude of
soliton oscillations in the barrier depends on the value
of the carrying wave vector and on the strength of
the electron-phonon coupling. The overcoming of the
Peierls—Nabarro barrier has a threshold character not
only with respect to the soliton kinetic energy, but also
with respect to its binding energy, at a given value of k.

Because of these oscillations, electrosolitons can emit
electromagnetic waves [18, 19]. In the general case, the
scalar and vector potentials of the electromagnetic field
created by the charge and current distributions are
determined by the Maxwell equations [20]:

L[l

p({za},t) =

drey | r(za,zl)
L ({%})]
aft 2
Aoty = 42 [ el (23)
Here, z,, a = 1,2,3, is the a-coordinate of the

radius-vector, p({za},t) and A({z.},t) are the scalar
and vector potentials of the field. The rectangular
brackets in (23) mean that the corresponding variables
are determined with account of the retardation effects,
i.e., are taken at the time moment t'(z,,zl) = t —
r(zq,2!,)/c, where r(z4,z!,) is the distance between z,
and z!,. Finally, the charge and current distributions are
determined by the electron wave function v, (t):

U (1)]?
2 :ez | 71'7“(%()1| ’

n

- J . I
](t) = Z; (1/) Yol — ¢n+1¢n) 71'7'(2)(17 (24)

n
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respectively. Here, e is the electron charge, and I
is a unit vector along the chain axis with the
characteristic transverse size parameter ro. Within the
continuum approximation for the soliton envelope (12),
the expression for current (24) takes the form j(t) ~
eV (t)pe(t). When calculating the EMF potentials from
Egs. (23), the terms of two types appear, which decrease
in space as 1/r? or as 1/r. It is known that the latter
ones describe the radiation fields. Substituting the time
derivative of the soliton velocity from (21), we get for
these terms in the wave zone (i.e., where the inequalities
> 1, > 1/p are valid):

- eV?
E, - __ -0

aa () 2ae9c?r3

o0

Ang" .

x n; - qu% sin(nwt)f x (f’ x (z)) , (25)
> eV 4mg™ . -
Biad (7) = ~Sazceir mz::l T sin(mwt)l x 7. (26)

Thus, electrosolitons that propagate along a discrete
chain emit EMR which, according to (25), (26), contains
characteristic harmonics with frequencies nw,n =
1,2,.... The value of the main harmonic frequency
w (22) of electrosoliton radiation depends on soliton
velocity. In the case of electrosolitons that participate
in charge transfer processes in biological systems, this
velocity is determined by the metabolic activity. For
an approximate estimate, we can use the value of
soliton velocity from numerical simulations [21], Vj =
1.5 - 10®> m/s. Together with the characteristic value
of polypeptide chain spacing a = 4.5 - 1071 m, this
gives v ~ 10'2 571, which allows us to conclude that
the soliton-induced EMR can be relevant for the high-
frequency EMF which exists around biological cells and
is registered by the microdielectrophoresis and other
methods [22, 23].

1.4. Solitons in the Presence of External Fields

The dynamical properties of solitons are manifested in
external fields. Moreover, one can expect to prove the
existence of Davydov solitons by their input into the
scattering spectra of external radiation. In particular,
this has been calculated in [24—26] for the scattering
spectra of slow neutrons and of X-ray in [27]. In [2§],
the possibility of the experimental observing of a soliton
mode by neutron scattering was analyzed using the data
on the experiments with [(CHsz)4N] [NiCls].
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It has been shown in [29] that, in the external
constant magnetic field oriented parallel to chain axes,
an electrosoliton moves along the helical trajectory with
the wave function that describes the superposition of
the soliton propagations along the chain and along the
closed orbits in the perpendicular direction with the
quantized energy. In the case of the magnetic field
oriented perpendicular to the chain axis, the soliton
velocity is the oscillating function of time:

wB
V(t) = Vycos(wt), = . 27
(1) = Vocos(et), w= (27)
Here, wg = |Be|/mpc and mp = My
are the cyclotron frequency and free cyclotron

mass, respectively, with m,,m. being the transverse
components of the effective mass of a quasiparticle. The
effective cyclotron mass in (27) is determined as

mp,s = 1/ (1 +d)mymy = /msmy,

i.e., it exceeds the cyclotron mass of a band electron
due to the phonon “dressing” of a soliton. Therefore, the
cyclotron frequency of a soliton is less than that of a free
electron.

The study of soliton properties in the external
electromagnetic field (EMF) has been carried in [30—
33]. In this case, the total Hamiltonian of the system
can be written in the form H(t) = Hp + V(t), where
Hy is given in (6) and V(t) is the operator of the
quasiparticle interaction with EMF. The wavefunction
of the system, [¥(¢)), satisfies the Schrodinger equation
with the Hamiltonian H(t) = Hy + V(t) and can
be expanded over the complete set of the stationary
states |¥x(t)) of the Hamiltonian Hy. This set includes
a soliton state and delocalized electron states in the
band. The account of the corresponding diagonal and
nondiagonal matrix elements of the perturbation results
in two qualitatively different effects of EMR on solitons.

The nondiagonal matrix elements of the perturbation
V(t) determine the probability of a quantum transition
from the initial soliton state |¥) into the delocalized
band states |¥;). As calculated in [30, 32|, the
total probability of soliton dissociation per unit time
has resonant dependence on the frequency with the
resonance frequency wqiss which depends on the value
of the electron-phonon coupling, g. With the increase of
g, wdiss tends to the value corresponding to the most
probable soliton transition into the delocalized band
state with zero wavenumber £ = 0: wgiss & Wp—o =
x*/(hJw?). At small values of g, waiss is displaced to
the higher frequency value due to the input of the soliton
transitions into the band states with &k # 0 [32]. For the

(28)
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parameters characteristic of the amide-I vibration in an
a-helix [3], waiss & 34 + 65 GHz [30]. This qualitatively
corresponds to the experimentally observed nonthermal
millimeter electromagnetic wave bioeffects [33, 34].

The diagonal elements lead not only to a shift of the
energy levels, as is usual for linear systems, but also to
the nontrivial change of the dynamics of solitons. This is
governed by the system of equations (10)—(11), in which

2 2
F(z,t) = iAg—i) cos (wt), f(z,t) = BW
where A, B are some real constants, and w is the
frequency of EMF, respectively. This system of
equations was solved in [31, 32] analytically for the case
of an electromagnetic field of small amplitudes within
the Mitropolsky—Bogolyubov—Krylov  perturbation
theory and numerically. In the presence of a weak
periodic perturbation in the zero adiabatic order, the
soliton wavefunction (12) is unchanged except for the
slow time dependence of its c.m.c., {(t), and phase, 9(t).
For the steady-state motion of the driven soliton with
account of the retardation effects in the deformation
accompanying soliton, the equation can be obtained as

» (29)

cos [wt — p(w)]. (30)

Fy
ma(w)
Here, mg(w), the dynamical mass of the soliton in
the field, and ¢, the phase shift due to the soliton
acceleration under the external force, are functions of the
EMF frequency. The corresponding analysis shows that
¢ — 0 at low and high frequencies, while the frequency
dependence of mg4(w) is qualitatively different for low
and high frequencies as compared with the characteristic
constant wy:

2KV,

Wy = .
™

(31)

Namely, at w < wy, a soliton propagates as a classical
Newtonian particle in a slowly oscillating external field
with a dynamical mass equal to the effective mass of
the soliton in the absence of the field, my =~ ms.
At high frequencies w > wp, the deformation cannot
follow the comparatively fast electron motion, and the
dynamical mass approaches the mass of a free band
quasiparticle, mqy ~ m. Due to oscillations, solitons emit
sound waves in the backward and forward directions.
This process occurs with the absorption of energy by
solitons from the external field and is also frequency-
dependent. The energy absorption per field oscillation
period, T' = 27 /w, is proportional to the EMF frequency
at low frequencies and decreases exponentially at high
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frequencies attaining the maximum at the dynamical
resonant frequency wayn = 1.3wp. The numerical
calculations have confirmed these results and proved
the applicability of the perturbative analysis and the
stability of solitons in rather strong EMF's apart from the
resonant frequency. In the very strong EMFs when the
adiabatic approximation breaks down, the amplitude of
the soliton decreases significantly with the increase of the
amplitude of oscillating tails and with the appearance of
some stochasticity features in the system behavior.

1.5. Few-soliton States

The interaction between Davydov solitons is much more
complicated than the interaction between solitons in
completely integrable systems, where it is reduced to
the phase and c.m.c. shift. Of course, the interaction
beween Davydov solitons depends on the statistics the
quasiparticles obey. Namely, two electrosolitons with
opposite spins form a bisoliton state, as was shown
first in [35, 36] and later in [37—43]. In particular, two
extra electrons in a chain satisfy the stationary two-
component nonlinear Schrédinger equations [44, 45]

2T, .
T = Vi = 29(W + U5,
h?
E; —2m’;’2, i=1,2 (32)

Here, the parameter g is determined in Eq.(13). The
system of Eqs. (32) admits the solution ¥; = ¥, which
corresponds to the lowest energy Eps = —%Jg2, w=g
and describes a bisoliton [35, 36]. For fermions, this
solution has the sense only in the case of opposite spins
of electrons in the initial state, i.e., when o # o'.
System (32) can be solved using the inverse scattering
transformation [44] for a two-soliton state, as was done
in [36], or, since it belongs to the Liouville-type class,
using the method of quadratures, as it was done in [5],
using the method of quadratures. A normalized solution
of Eq. (32) has the form:

I

Ui = ————=X
2g cosh (2uA)

e$,u)\ N ei,u)\
cosh [u(z — R)] = cosh[u(z + R)]| "

(33)

The corresponding density of charge distribution has two
localized peaks with the distance between the peaks

R = L In Zpcosh (2p3) (213) —+ 00 at

o A A — 0.

(34)
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The integration constant A determines the level of
electron corelation: at A = 0, the electron state is
absolutely collectivized and both electrons participate
in the formation of the collective state with equal
probabilities, while the symmetry is brokenat A # 0 and,
at a large enough value of A, the functions ¥; and ¥,
describe individual solitons, respectively. The value of
i determined from the normalization condition equals
i = g/2, and two electrons have the energy
Eirp = —%ng + 2Jg¢? cosh? (g\) exp (—2¢gR), (35)
which yields that there is the repulsion between solitons
caused by the exponentially decreasing force F' =
OE/OR o exp(—2¢R). The integration constant A
characterizes the level of hybridization of electrons in
the bound state. These results are confirmed by the
numerical calculations of (33). At |A| > 5, the electrons
with parallel spins form the unbound state, and their
wavefunctions can be described as independent free
solitons.

One can show that the case where there are four extra
electrons in a chain, can be reduced formally to the case
of two electrons with the substitution ¢ - G = 2g.
This means that, in the zero adiabatic approximation,
there is the repulsion between two bisolitons, which
exponentially decreases with distance, due to which the
bisolitons are separated by the distance as maximum as
possible for the given chain length.

It has been shown in [5] that the account of the
nonadiabatic term H; (7) of the Hamiltonian results in
the additional direct interaction between two solitons
(or, similarly, two bisolitons) via the phonon field
which stabilizes the two-soliton solution. Considering
the nonadiabatic term of the Hamiltonian H; as a
perturbation, one can calculate the first order energy
correction accounting for the complete set of states of the
two-component NLSE (32) including the bound states
A = 1,2, as determined in (33), and the continuous
spectrum. This gives the energy correction

3

9
AE N~ -

1 2
3797 g—R> . (36)

1
* 4m2 cosh (Ag) R? < T3,

Here, 7 is the nonadiabaticity parameter (20). Therefore,
the lowest state of two extra electrons in a chain
corresponds to a singlet bisoliton. In the triplet state,
there is the repulsion between two electrons as well
as between two bisolitons. This situation is opposite
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to what happens with two small bipolarons which
form a bipolaron drop. The repulsion between two
(bi)solitons is partly compensated by the interaction
between electrosolitons via the phonon field accounted
by the nonadiabatic terms of the Hamiltonian.

The equilibrium distance between the c.m.
coordinates of solitons in the triplet state can be
determined from the minimization condition of the total
energy within the accuracy of the first nonadiabatic
order Eyo, = FEiyro + AE, where the terms are given
in (35) and (36), respectively. As a result, in the
presence of N, extra electrons in a chain, the periodic
lattice of bisolitons is formed in it in the form of
a cnoidal wave with the distribution period [46, 47]
I = N/Nps, Nps = N./2 = 1/6, that corresponds to a
many-electron solution of the Peierls—Frohlich problem
at zero temperature [47]. Here, 0 is the concentration of
bisolitons. The envelope of a cnoidal wave is described
by the periodic Jacobi function [46]

I B~V (k)dn <Mk> x

Yen(2,1) =[5 E(k)

x exp [i (g — Pen())] - (37)
Here, E(k) is a complete elliptic integral of the second
kind, the modulus of which, k, is determined by the
space period of the function, and, hence, b they bisoliton
concentration § = 1/l according to the relation

gl = 2B(k)K (k) (38)

with K (k) being a complete elliptic integral of the first
kind. The energy of the cnoidal wave per period, i.e.,
the energy per bisoliton in a coherent superlattice, is a
function of the concentration of bisolitons

Ecn = —%Jgg [E(k)(2 — k*)+

+K(k)(1 - k)] E~3(k). (39)

The analysis of expression (39) shows that the
inequality takes place [ > I, = 72 /2g. This means, there
is some critical value of bisoliton concentration

290
6cr = ?:

(40)
above which, at & > d¢;, the cnoidal wave is not
stable because of the too strong repulsion between
the electrons. It follows also from Eq. (39) that the
energy gap that separates a localized electron level from
delocalized states in the conduction band vanishes when
J tends to der [48].
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1.6. Solitons tn Two-dimensional Lattices

Unlike 1DSs which have been systematically studied,
2D electron-phonon systems have been studied mainly
numerically [49—52]. First of all, there was much
scepsis about the soliton stability in 2DSs, because
the simplest reduction in 2DSs leads to the 2D
NLSE, whose solitons are unstable with respect to a
shrinking or, in the limit, to a collapse [53]. At the
same time, even the earliest numerical studies of 2D
soliton states [50—52] have shown that a discrete 2D
lattice supports solitonic-like solutions for appropriate
values of the coupling constants. These 2D solitons
are very robust objects that propagate without energy
loss, and their collisions with boundaries are almost
elastic. The stabilization of solitons is a result of an
interplay between discreteness, dispersion, and nonlinear
interactions. The lattice discreteness turns out to be
very important at soliton shrinking, and the lowest order
continuum approximation becomes not valid, and higher
order terms have to be taken into account. It has been
shown in [52] that this leads to the modified 2D NLSE
with extra terms that stabilize the localized solutions:
%+ Vo 20 (16l + 75916 ) o =0 (1)

It is well known that the 2D NLSE has a stationary
solution at a fixed value of the nonlinearity parameter,
(9 = 5.85 at the normalization to one) only, and
corresponds to zero value of the total energy and
arbitrary values of the localization parameter and
binding energy. The solution of 2D NLSE is marginally
stable in the linear approximation [54] and is unstable
with respect to perturbations of finite amplitude [53]. In
(41), there is an extra term, coming from the account
of lattice discreteness, which stabilizes the solutions.
Indeed, differentiating the square of the localization
radius

R = [ PloPdody (42)
with respect to 7 gives [52, 53, 55—57]
d*R? 1 212
o 8(E+9), d= Eg/ (Alpl?)” dzdy. (43)

It follows from (43) that initial configurations with
negative energy £ will start shrinking unless the extra
term ¢, which is positive, can compensate £. As the
result of such a shrinking, ¢ increases until the r.h.s.
of (43) becomes negative. Then the wave function starts
to expand untill § becomes small enough to make the
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soliton start to shrink again. This process continues, and,
as a result, a soliton oscillates in size. Numerical results
support these analytical conclusions: a 2D lattice with
electron-phonon interaction admits solitonic solutions
when the coupling constant ¢ is larger than its lower
critical value, g.; =~ 5.8, and less than its upper
critical value, g.» =~ 8. In this interval a solitonic
solution is stable with respect to finite and not too
large perturbations. At g > 8 the self-trapping changes
into the regime of strong localization. The more detailed
analysis of solitons in 2D lattices can be found in [58, 59].

1.7. Soliton Input into the Delayed
Luminescence of Biosystems

One of the applications of the theory of Davydov
solitons is connected with the explanation of the
delayed luminescence (DL) of biosystems [60, 61].
The phenomenon of the DL consists of photoinduced
light emission long time (seconds and more) after
illumination. Experimentally observed correlation
between the DL and chloroplast organization [62]
and analogies in certain features of DL spectra
from biological and some solid state systems [63]
indicate that this phenomenon in biosystems can be
connected with the collective electron states. In the
meantime, in view of long duration of DL and high
physiological temperatures, it can hardly be connected
with delocalized states, such as conventional band
electrons or excitons. Another possibility is connected
with Davydov solitons, which are much more stable
than electron delocalized states and can be created by
the pre-illumination of a sample. Indeed, it has been
shown in [60, 61] that the soliton mechanism explains
qualitatively and quantitatively all the main features of
the DL from simple biosystems.

The general scheme of the DL in the soliton
model is the following one. Electrons released in the
ionized centers of luminescence (the charge separation
complexes) in systems which produce photosynthesis,
or released in the redox processes, are self-trapped
with a certain probability in the macromolecules
as, for instance, alpha-helical polypeptide proteins,
actin filaments, etc. The luminescence arises from the
decay of these localized states into the conductive
electron band with the following fast transition into
recombination centers. Two possible situations can
occur: weak or strong electron correlations. In the
first case (at very small concentrations, in not long
enough macromolecules, etc.), electrons localize in
independent (bi)soliton states, and the probability
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of electron localization does not depend on soliton
concentration (so-called non-correlated model [60]). In
the opposite case of large concentration of (bi)solitons,
the correlation between solitons is strong and bisolitons
form a periodical cnoidal wave in a chain (37). In
this case, the number of available localized states is
determined by the critical concentration (40), vy = 20c,.
Analysis of both models shows that the kinetics of the
DL depends on two basic parameters: (i) on kinetics rate
Yum, determined as the ratio of the characteristic rates
of the localization and recombination processes, and (ii)
the level of excitation which is the ratio of the number
of initial excited states to their total available number:
o = ’no/llo.

According to these models, the initial intensity Iy =
I(t = 0) is, in the general case, a non-linear function of
the level of excitation xg,

g
2o + Mum (1 — o)’

Inc70 =

2
Lo

20 + Yum (1 — 70)*

; (44)

Icorr70 =

which become linear in the limit of zero values of
Yum, only. Indeed, the experimental study of the DL
of biosystems reveals the nonlinear dependence of Iy on
the intensity of the stimulating light [62—64]. At small
values of the kinetics rates 7 < 1, both models predict
a similar behaviour of Iy(zo). Increasing the value of v
even at v < 1, the deviation between the two models
increases.

Two mechanisms of the DL, correlated and non-
correlated, can complement each other. Realization of
one or another depends on the biological system and
the corresponding conditions. One of the reasons of
the correlated behaviour of solitons can be connected
with the length of polypeptide macromolecules, in which
solitons can be formed. Another reason can be due
to the state of metabolic activity of a system that
determines the number of (bi)solitons and the level of
their coherence.

2. Experimental Evidences of Soliton
Existence

A wide class of organic and inorganic materials was
recently synthesized. Some of them possess strongly
anisotropic physical characteristics and reveal many
unusual properties, due to which some of these
compounds find numerous applications in modern
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technologies and attract an ever increasing scientific
interest. Some of these characteristic features arise
from the electron-phonon coupling. Many applications
in nanotechnologies, including quantum computation,
information processing, sensing, etc., are based on
the discoveries of large polarons, charge and spin
density waves. The high-temperature superconductivity
in perovskites, superconductivity in LD organic and
inorganic materials, including the recently discovered
superconductivity in magnesium diboride, MgBs, [65]
and in organic polymer films [66] also reveal the
important role of electron-phonon interaction.

There is the ample experimental evidence for large
polaron-type states in 1D molecular structures [67—
71], although the term “large polaron” or “soliton”
is far not always used (other call this “composite
polaron”, “complex polaron”, “solitary polaron”, etc.). In
particular, polarons and bipolarons are considered to
be the reason of the high conductivity of conducting
polymers. For example, the so-called acoustic solitary-
polaron model [71, 72] describes reasonably well the
carriers mobility in polydiacetylene, both in weak and
moderate electric fields. However, this model failed in
strong electric fields as it predicts that a saturation
of the carriers drift velocity should occur at the sound
velocity whereas experimentally this is observed to take
place at remarkably lower values. This problem has
been solved in [17] as arising from the violation of
applicability in strong fields when solitons attain large
values of quasimomentum, and the lattice discreteness
needs to be accounted properly. In a discrete lattice
at large values of quasimomentum, a soliton velocity
attains saturation, whose value Vj max and the value
of k for which this saturation occurs depend on the
values of the parameters of the chain (see [17]). For the
polydiacetylene parameters, Vp max is & 2V, /3, which is
obviously less than the value predicted by the continuum
model and very close to the experimentally observed
value ~ 0.7V},) [68]. Moreover, the increase of the soliton
velocity results in a perturbation of the soliton, that
is, its envelope changes, oscillating tails appear, and
their amplitude and energy increase with k. At the same
time, the total current in the system first increases with
k and, for large values of k, it reaches a plateau. A
further increase of the carrying wave vector k results
in a decrease of the current due to the more intensive
emission of phonons and radiation from the soliton.
This corresponds to the region of negative resistance
that is observed experimentally at large fields in some
conducting polymers.

The soliton model of the DL provides a qualitative
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and quantitative explanation of the main characteristic
features of the DL spectra from yeast and alga A.a
[60, 61]. These include the kinetics of time decay, the
nonlinear dependence on the intensity of the stimulating
light and the same time trend for all the emission
spectral components. Unicellular alga A.a, seems to be a
system admitting the existence of correlated self-trapped
electron states. In particular, in A.a, there are very long
macromolecules, like actin filaments and microtubules
which form the cytoskeleton of cells and are responsible
for the motility of organelles and the streaming of
cytoplasma on the whole. These microfilaments have
largely variable length from 10—20 to few hundreds of
subunits, they have a double-chain helical structure and,
in the presence of the fibrin protein, they are bundled
together into parallel arrays. These macromolecules are
good candidates for a system, in which a large number
of correlated electrosolitons can be excited under certain
conditions. Indeed, it turns out that the correlated
soliton model gives a higher precision of the theoretical
fit of experimental data for A.a. in the wide interval of
intensities of the stimulating light and in the whole time
interval of experimental measurements, as compared
with the non-correlated model [61].
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JMHAMIYHI BJIACTUBOCTI JABUJOBCBHKUX
COJIITOHIB

JI.C. Bpuoatcuk
Peswowme

3po6JiIeHO KOPOTKHUI OrIvisij Cy9aCHOrO CTaHy Teopil JaBHIOBCH-
KHX COJIITOHIB, 3amo4aTkoBaHoi 30 pOKiB TOMYy, & TAKOXK II€PCIIeK-
TuB 1T 3aCTOCYBaHHS OO CydacHUX mpobsiem dizukm ta 6iodizuku.
IIpoananizoBaHO OCHOBHI BJIACTHUBOCTI COJITOHIB Ta TX AUHAMIKA B
MaKPOMOJIEKYJISpHAX cucTemax. [lokazaHo, mo comTonHA MOAEIH
NPABUJIBLHO IOSICHIOE EKCIIEPUMEHTAJBHO CIIOCTEPEXKYBAaHEe HACH-
qeHHs ApeiidoBOl MIBUAKOCTI HOCIIB 3apsAay B CHIBHHUX €JIeKTPHYI-
HUX MOJISIX I Psiy mnojiimepiB. J[oBeIeHO, 110 ejeKTpoCcoJiTo-
HH BUIIPOMIHIOIOTH €JIeKTPOMAarHiTHI XBUJIi, 338 paXyHOK YOro Bin-
OyBa€THCs CHHXPOHI3ANmis IXHBOrO PyXy, I[0 MOXKe 3a0e3medyBa-
TU BHYTPINIHbOKJIITHHHUN Ta MIXKKJIITHHHUN 00MiH iH(OpMAaIi€o.
BuBuenHsi B3aeMoil MiXK JaBUJOBCHKHUMHU COJIITOHAMY [TOKA3YE, 110
COJIITOHHA MO/IEJIb SKICHO MPAaBUJILHO IOSICHIOE OCHOBHI XapaKTe-
PHUCTHKH TPAHCIOPTY 3apALiB B OKHCIIOBAJIbLHO-BiJHOBIIOBAIHLHUAX
npouecax. IToka3aHO TaKOXK, IO COJIITOHHI CTAHH JAIOTh BHECOK Y
3aTpUMaHy JIIOMiHEeCIeHIifo 6iomorivaux cucrteMm. Taka MOJenb He
JIMIIE SIKICHO, aJie # KiJIbKICHO IOSICHIOE €KCIEPUMEHTAJIbHI JaHi
I IpOCTUX (OAHOKJIITHHHUX) GlOIOriYHUX CHCTEM.

IUHAMUYECKAE CBOMCTBA JABBIJOBCKIX
COJIMTOHOB

JI.C. Bpuotcuk
Pesmowme

Cpeman kpaTkKuil 0630p COBpeMEHHOrO COCTOSIHHS TEOPUU JaBbI-
JIOBCKHX COJIMTOHOB, OCHOBBI KOTODPO# 3aJi02keHbl 30 jieT ToMy Ha-
32, & TAaKKe [IEePCIEKTHUB ee IPIMEHEHNsI K COBPEMEHHBIM IpobJte-
MaMm ¢dusuku u 6uodusuku. [Ipoanaan3mpoBaHbl OCHOBHBIE CBOH-
CTBa COJITOHOB M HX AWUHAMHKHA B MAKPOMOJIEKYJSPHBIX CHCTe-
MaXx. r[OKa3aHO7 9TO COJATOHHASA MOJEJIb IIPABUJIBHO O6'])?ICH?IeT
HaOJII0JaeM0O€e SKCIEPUMEHTAJBHO HACHIIEHUE IpeiidoBOil CKOpO-
CTH HOCHTeJNEeH 3apsifa B CHIbHBIX JEKTPUIECKUX HOJIAX AJIA PALA
nouMepoB. J[0Ka3aHOo, ITO IEKTPOCOTUTOHBL U3JIY 90T SJIEKTPO-
MarHUTHBIE BOJIHBI, 3a CYeT Yero MPOUCXOAUT CHHXPOHHU3AIUA HX
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IBHKEHHd, ITO MOXKeT o0ecliednBaTh BHYTPHKJIETOUHBIH U MeXK-
NyKJIeTOIHBIH oOMeH mubOpManuei. V3yuenue B3ammomeiicTBHs
MeXKJy JaBbIJOBCKAMH COJUTOHAMH IOKA3bIBAET, UTO COJTUTOHHAA
MO/I€JIb IPABUIJILHO O0BACHSET OCHOBHBIE XaPAKTE€PUCTUKU TPAHC-
IIOpTa 3aPs1/10B B OKUCIHTEIbHO-BOCCTAHOBUTEILHBIX IIPOIECCax Ha
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KaueCTBeHHOM ypoBHe. Iloka3aHO Tak»Ke, YTO COJUTOHHBIE COCTO-
SHAS AT BKJIQJ B 3aJ€PKAHHYIO JIIOMHHECIEHIIUIO OHoormde-
CKHX cuUCTeM. Takas MOJesb He TOJIbKO KadyeCTBEHHO, HO U KOJIH-
YeCTBEHHO OO'bsICHSIET SKCIEPUMEHTAJIbHbIE JIAHHBIE JJIsi IPOCTHIX
(0nHOKJIETOIHBIX) OHOJIOrHIECKHX CHCTEM.
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