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Applications of the higher-order variational calculus to some
classical models of a relativistic particle motion began in 1937
and continue till now. Differential geometry of Ostrohrads'kyj's
mechanics has been an object of renewed interest among
contemporary mathematicians for last three decades. In the
present article, we demonstrate the work of some intrinsic tools
of the formal theory of variational equations in application
to one specific example of the third-order evolution equation
of a free relativistic top in three-dimensional space-time. The
main goal is to introduce a combined approach of simultaneous
utilization of symmetry principles and inverse variational problem
considerations in terms of vector-valued differential forms. Next,
some simple algorithm of transition between the autonomous
variational problem and the variational problem in parametric
form is established. The example definitely solved shows the no-
existence of a globally and intrinsically defined Lagrangian for the
Poincar�e-invariant and well-defined unique variational equation
in the case in hand. The Hamiltonian counterpart in terms of
Poisson bracket is discussed too. The model appears to provide
a generalized canonical description of a quasi-classical spinning
particle governed by the Mathisson�Papapetrou equations in flat
space-time.

Introduction

During past decades, the subject of Ostrohrads'kyj's
mechanics was revisited by many authors from the
point of view of global analysis including certain
features of the intrinsic differential geometry ideology
(see monographs [1�3], preceded and followed by the
large number of other reviews and articles). The more
intriguing is that the investigations on the application
of Ostrohrads'kyj's mechanics to real physical models
haven't been abandoned since the pioneer works by
Chrap lywyj, Mathisson, Bopp, Weyssenhoff, Raabe, and
H�onl (see references). Most of the applications consider
models of test particles endowed with inner degrees
of freedom [9�16] or models which put the notion of
acceleration onto the framework of a general differential
geometric structure of the extended configuration space

of a particle [17]. One interesting example of how the
derivatives of the third order appear in the equations of
motion of a test particle is provided by the Mathisson�
Papapetrou equations
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together with the supplementary condition

uγS
αγ = 0. (3)

It is immediately clear that the second term in
(1) may produce the derivatives of the third order
of space-time variables xα as soon as one dares to

substitute uγ
DSαγ

dζ
by −Sαγ

Duγ

dζ
in virtue of (3).

Such substitution in fact means differentiating Eq. (3).
However, the system of equations thus obtained will
not possess any additional solutions comparing to that
of (1)�(3) as far as one does not forget the original
constraint (3). System (1)�(3) was recently a subject
of discussion in [18]. In (1), the right-hand side vanishes
if there is no gravitation.

It is a matter of common consent that the relativistic
motion of simple particles in gravitational field may
be described mathematically via the notion of geodesic
paths. Because less simple particles obey higher-order
equations of motion, it seems worthwhile to investigate
the appropriate geometries. But, in the same way as
pseudo-Riemannian geometry descends down to the
natural representation of the Lorentz group, a more
complicated geometry should break out first from some
symmetry considerations of global character.

We intend to present some tools from the arsenal of
intrinsic analysis on manifolds that may appear helpful

1This article was presented at the II International Symposium �Fundamental Problems in Modern Quantum Theories and
Experiments� (September 2�7 2002, Odessa, Ukraine) on the occasion of Professor Walter Thirring's 75th birthday.
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in solving the invariant inverse problem of the calculus of
variations. In a special case of three-dimensional space-
time, we shall successfully follow some prescriptions
for obtaining third-order Poincar�e-invariant variational
equations up to the very final solution thus discovering
the unique possible one, which will then be identified
with the motion of a free relativistic top by means
of comparing it to (1)�(3) when Rαβδγ = 0. This
case of two-dimensional motion in space makes quite a
good sense from the viewpoint of the general theory as
well [19]. On the other hand, one can show directly that
even in the four-dimensional special relativity case, the
world line of a particle obeying the system of equations
(1)�(3) has the third curvature equal to zero (see
also [20]). Thus, even in this case, the particle actually
propagates in two-dimensional space. Another feature of
this limited case is that the spin four-vector

σα =
1

2‖u‖
εαβγδu

βSγδ (4)

keeps constant under the condition for the motion to be
free. So, knowing a Lagrange function for some third-
order equation equivalent to (1)�(3) allows offering a
generalized Hamiltonian description in terms of Poisson
brackets that might be considered as a canonical
equivalent to (1), (3). Our example exposes some typical
features of variational calculus:

� the nonexistence (in our case) of a well-defined
invariant Lagrangian along with intrinsically very
well defined equation of motion with the Poincar�e
symmetry produced by each of a family of
degenerate Lagrangians which transform into one
another by renumbering the axes of a Lorentz
frame;

� all handled Lagrangians give rise to the same
system of canonical equations;

� each Lagrangian includes a different set of
second order derivatives, thus their sum is not a
Lagrangian of minimal order.

1. Homogeneous Form and Parametric
Invariance

Presentation of the equation of motion in the so-called
�manifestly covariant form� stipulates introducing the
space of Ehresmann's velocities of the configuration
manifold M of a particle, T kM = {xα, ẋα, ẍα . . . xα(k)}.
In future, the notations uα, u̇α, üα, uα(r) will frequently

be used in place of ẋα, ẍα, xα(3), xα(r+1), and xα(0)

sometimes will merely denote xα. We call some mapping
ζ 7→ xα(ζ) the parametrized (by means of ζ) world line
and its image in M will be called the non-parametrized
world line. As far as we are interested in a variational
equation (of order s) that would describe the non-
parametrized world lines of the particle,

Eα
(
xα, uα, u̇α, üα, . . . , uα(s−1)

)
= 0, (5)

the Lagrange function L has to satisfy the Zermelo
conditions, which read in our case of at most the second
order derivatives in L

uβ
∂

∂uβ
L+ 2u̇β

∂

∂u̇β
L = L,

uβ
∂

∂u̇β
L = 0.

In this approach, the independent variable ζ (called
the parameter along the world line ) is not included
into the configuration manifold M . Thus, the space
T kM is an appropriate candidate for the role of the
underlying manifold on which the variational problem
in the autonomous form should be posed. We may
include the parameter ζ into the configuration manifold
by introducing the trivial fibre manifold R ×M → R,
ζ ∈ R, and putting into consideration its kth-order
prolongation, Jk(R,M), i.e., the space constituted by
the kth-order jets of local cross-sections of Y = R ×M
over R. Each such cross-section of Y is nothing but the
graph in R ×M of some local curve xα(ζ) in M . For
each r ∈ N, there exists an obvious projection

pr0 : Jr(R,M)→ T rM. (6)

The manifold T rM consists of the derivatives up to the
rth-order of curves xα(ζ) in M evaluated at 0 ∈ R. If,
for every τ ∈ R, we denote the mapping ζ 7→ ζ + τ of
R onto itself by same character τ , then the projection
reads

pr0 :
(
τ ;xα(τ),

d

dζ
xα(τ),

d2

dζ2
xα(τ), . . .

. . . , fracdrdζrxα(τ)
)
7→

7→
(

(xα ◦ τ) (0),
d

dζ
(xα ◦ τ) (0),
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d2

dζ2
(xα ◦ τ) (0), . . . ,

dr

dζr
(xα ◦ τ) (0)

)
. (7)

By means of projection (6), (7), every Lagrange
function L initially defined on T kM may be pulled
back to the manifold Jk(R,M) and defines there some
function L0 by the obvious formula L0 = L◦ pk0 . We say
that the differential form

λ = L0dζ (8)

constitutes a variational problem in extended parametric
form because the independent variable ζ was artificially
doubled in the construction of the new configuration
manifold R × M . But we shall need this construction
later.

Let us return to the variational problem set on the
manifold T kM by a given Lagrange function L. At the
very first moment we impose the Zermelo conditions, the
problem becomes degenerate. There exists one way to
avoid degeneracy by reducing the number of velocities,
of course, at the cost of losing the �homogeneity�
property of Eq. (5). Consider some way of segregating
the variables xα ∈ M into t ∈ R and xi ∈ Q, dimQ =
dimM−1, thus makingM into some fibration, M ≈ R×
Q, over R. The manifold of jets Jr(R, Q) provides some
local representation of what is known as the manifold
Cr(M, 1) of r-contact one-dimensional submanifolds of
M . The intrinsically defined global projection of non-
zero elements of T rM onto the manifold Cr(M, 1) in
this local and, surely, �non-covariant� representation is
given by

℘r : T rM \ {0} → Jr(R, Q), (9)

and is implicitly defined in the third order by the
following formulae, where the local coordinates in
Jr(R, Q) are denoted by t; xi, vi, v′i, v′′i, . . . , vi(r−1) with

vi(0) marking vi sometimes:

ṫ vi = ui,

(ṫ)3v′
i = ṫu̇i − ẗui,

(ṫ)5v′′
i = (ṫ)2üi − 3ṫẗu̇i +

[
3(ẗ)2 − ṫt(3)

]
ui. (10)

There does not exist any well-defined projection from
the manifold Cr(M, 1) onto the space of independent
variable R, so the expression

Λ = L
(
t; xi, vi, v′

i
, v′′

i
, . . . , vi(k−1)

)
dt (11)

will vary in the dependence on the way of local
representation M ≈ R × Q. We say that two different
expressions of type (11) define the same variational
problem in parametric form if their difference expands
into nothing but only the pull-backs to Ck(M, 1) of
the following contact forms which live on the manifold
C1(M, 1),

θi = dxi − vidt. (12)

These differential forms obviously vanish along the jet
of every curve R→ Q.

Let the components of the variational equation

Ei = 0 (13)

of Lagrangian (11) be treated as the components of the
following vector one-form:

e =
{

Eidt
}
. (14)

We intend to give a �homogeneous� description to
(14) and (11) in terms of some objects that would live
on T sM and T kM , respectively. But we cannot apply
directly the pull-back operation to Lagrangian (11)
because the pull-back of one-form is a one-form again,
and what we need on T kM is a Lagrange function, not a
differential form. However, it is possible to pull (11) all
the way back along the composition of projections (6)
and (9),

pk = ℘k ◦ pk0 , (15)

ultimately to the manifold Jk(R,M). In such a way, we
obtain the differential form

(
L ◦ pk

)
dt. But what we do

desire is a form that should involve dζ solely (i.e., a semi-
basic with respect to the projection Jk(R,M) → R).
Fortunately, the two differential forms, dt and ṫdζ, differ
not more than only by the contact form

ϑ = dt− ṫdζ. (16)

Now, we recall that equivalent Lagrangians that have
the structure of (11) differ by multiplies of the contact
forms (12). It remains to notice that, by the course of
(7) and (10), the pull-backs of the contact forms (12)
expand only into the contact forms (16) and

ϑi = dxi − uidζ (17)

alone,

p1∗θi = dxi −
(
vi ◦ p1

)
dt = ϑi −

(
vi ◦ p1

)
ϑ.
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Thus, every variational problem posed on Jk(R, Q)
and represented by (11) transforms into an equivalent
variational problem

λ =
(
L ◦ pk

)
ṫdζ (18)

posed on Jk(R,M). But the Lagrange function of this
new variational problem,

L0 =
(
L ◦ pk

)
ṫ, (19)

does not depend upon the parameter ζ and substantially
may be thought of as a function defined on T kM .

We prefer to cast the variational equation (of some
order s ≤ 2k) generated by Lagrangian (18) into
the framework of the theory of vector-valued exterior
differential systems by introducing the following vector
differential one-form defined on the manifold Js(R,M):

ε = Eα
(
xα, ẋα, . . . , xα(s)

)
dζ. (20)

The expressions Eα
(
xα, ẋα, . . . , xα(s)

)
in (20) may also

be treated as ones defined on T sM similarly to L0.
Altogether the constructions built above allow the
formulation of the following statement:

Proposition 1. If the differential form (14)
corresponds to the variational equation of Lagrangian
(11), then the expressions

Eα =
{
uiEi, ṫEi

}
(21)

correspond to the Lagrange function (19).
In this case, the (sth-order) equation (5) describes,

�in homogeneous form�, the same non-parametrized
world lines of a particle governed by the variational
problem (19), as does Eq. (13) with the Lagrangian
given by (11), and also L0 obviously satisfies the Zermelo
conditions. As to more sophisticated details, paper [21]
may be consulted.

2. Criterion of Variationality

Our main intention is to find a Poincar�e-invariant
ordinary (co-vector) differential equation of the third
order in three-dimensional space-time. With this goal in
mind we organize the expressions Ei in (14) into a single
differential object, the exterior one-form

e0 = Eidxi (22)

defined on the manifold Js(R, Q), so that the vector
differential form (14) should now be treated as the

coordinate representation of an intrinsic differential
geometric object

e = eidxi = Eidt⊗ dxi = dt⊗ e0. (23)

The differential form e constructed in this way is an
element of the graded module of differential forms on
Js(R, Q) semi-basic with respect to R with values in
the bundle of the graded algebras ∧T ∗Q of scalar forms
on TQ. Of course, due to the dimension of R, actually
only functions (i.e., semi-basic zero-forms) and semi-
basic one-forms (i.e., in dt solely) exist. We also wish
to mention that every (scalar) differential form on Q
is naturally treated as a differential form on T rQ, i.e.,
as an element of the graded algebra of cross-sections of
∧T ∗

(
T rQ

)
.

For arbitrary s ∈ N, let Ωs(Q) denote the algebra
of (scalar) differential forms on T sQ with coefficients
depending on t ∈ R and arbitrary s. It is possible
to develop some calculus in Ωs(Q) by introducing the
operator of vertical (with respect to R) differential dv
and the operator of total (or formal �time�) derivative
Dt by means of the prescriptions:

dvf =
∂f

∂xi
dxi +

∂f

∂vi(r)
dvi(r), dv

2 = 0,

so that dvxi and dvvi(r) coincide with dxi and dvi(r),
respectively, and

Dtf =
∂f

∂t
+ vi

∂f

∂xi
+ vi(r+1)

∂f

∂vi(r)
, Dtdv = dvDt.

There exists a notion of derivation in graded algebras
endowed with generalized commutation rule, as Ωs(Q)
is. An operator D is called a derivation of degree q if,
for any differential form $ of degree p and any other
differential form w, it is true that D($ ∧ w) = D($) ∧
w+(−1)pq$∧D(w). To complete the above definitions,
it is necessary to demand that dv be a derivation of
degree 1 whereas Dt be a derivation of degree 0. But
still this is not the whole story. We need one more
derivation of degree 0, denoted here as ι and defined by
its action on functions and one-forms which altogether
locally generate the algebra Ωs(Q),

ιf = 0, ιdxi = 0, ιdvi = dxi, ιdvi(r) = (r + 1) dvi(r−1).

Let the operator the deg means evaluating the degree
of a differential form. The Lagrange differential δ is first
introduced by its action upon the elements of Ωs(Q),

δ =
(

deg +
(−1)r

r!
Dt

rιr
)
dv,
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and next trivially extended to the whole graded module
of semi-basic differential forms on Js(R, Q) with values
in ∧T ∗

(
T rQ

)
by means of

δ(ωidt⊗ dxi) = dt⊗ δ(ωidxi),

δ(ωri dt⊗ dvi(r)) = dt⊗ δ(ωri dvi(r)).

This δ turns out to possess the property δ2 = 0. We
have that, for the differential geometric objects (23) and
(11), the following relation holds:

e = δΛ = dt⊗ δL. (24)

Now the criterion for an arbitrary set of expressions{
Ei
}

in (14) to be the variational equations for some
Lagrangian reads

δe = dt⊗ δe0 = 0, (25)

with e constructed from
{

Ei
}
by means of (22) and (23).

Of course, one may apply the above constructions
literally to analogous objects living on the manifold
Js(R,M) in (6) and obtain the operator, the Lagrange
differential, δY acting upon semi-basic, with respect to
R, differential forms on Js(R,M) with values in the
bundle ∧T ∗

(
T sM

)
. In the algebra Ωs(M), the operator

δY preserves the sub-algebra of forms that do not depend
on the parameter ζ ∈ R. The restriction of δY to the
algebra of differential forms truly defined on T sM sole
will be denoted by δT . It was introduced in [22]. If the
Lagrange function L0 in (8) does not depend on the
parameter ζ ∈ R, as is the case of (18), (19), instead
of to apply δY to the forms λ from (8) and

ε = εαdx
α = Eαdζ ⊗ dxα (26)

from (20), we may apply the restricted operator δT to
the Lagrange function L0 and to the differential form

ε0 = Eαdxα. (27)

In case of (19), the criteria δY ε = 0,

δTε0 = 0, (28)

and (25) are all equivalent, and the variational equations
produced by the expressions ε = δY λ from (26), (18),
ε0 = δTL0 from (27), (19), and e from (24) all are
equivalent to (5). Expressions (14) and (11) are not
�generally covariant� whereas (27) is. But the criterion
(28) needs to be solved along with Zermelo conditions,
whereas (25) is self-contained.

The presentation of a system of variational
expressions

{
Ei
}
under the guise of a semi-basic (i.e.,

in dt solely) differential form that takes values in the
bundle of one-forms over the configuration manifold Q
is quite natural:

� the Lagrange density (called Lagrangian in this
work) is a one-form in dt only;

� the destination of the Euler�Lagrange expressions
in fact consists in evaluating them on the
infinitesimal variations, i.e., the vector fields
tangent to the configuration manifold Q along
the critical curve; consequently, the set of Ei
constitutes a linear form on the cross-sections
of TQ with the coefficients depending on higher
derivatives.

More details can be found in [23] and [24].

3. Lepagean Equivalent

The system of partial differential equations, imposed on
Ei, that arises from (25) takes a more tangible shape
in the specific case of third-order Euler�Poisson (i.e.,
ordinary Euler�Lagrange) expressions. The reader may
consult [25] and references therein. Let a skew-symmetric
matrix A, symmetric matrix B, and column c all depend
on t, xi, and vi and satisfy the following system of partial
differential equations:

∂
v[iAjl] = 0,

2 B[ij] − 3 D1Aij = 0,

2 ∂
v[iBj]l − 4 ∂

x[iAj]l + ∂
xl

Aij + 2 D1∂vl
Aij = 0,

∂
v(icj) −D1B(ij) = 0,

2 ∂
vl
∂

v[icj] − 4 ∂
x[iBj]l + D1

2 ∂
vl

Aij +

+ 6 D1∂x[iAjl] = 0,

4 ∂
x[icj] − 2 D1∂v[icj] −D1

3 Aij = 0 , (29)

where the differential operator D1 is the lowest order

generator of the Cartan distribution,

D1 = ∂t + v . ∂x .

It is obvious and commonly well known that the
Euler�Lagrange expressions are of affine type in the
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highest derivatives. The most general form of the Euler�
Poisson equation of the third order reads:

A . v′′+ (v′. ∂v) A . v′+ B . v′+ c = 0 . (30)

Due to the affine structure of the left-hand side of
Eq. (30), we may, alongside with the differential form
(23), introduce the next one whose coefficients do not
depend on third-order derivatives:

ε = Aijdv′j ⊗ dxi + kidt⊗ dxi ,

k = (W. ∂v)A .W + B .W + c . (31)

From the point of view of searching only holonomic
local curves in J3(R, Q), those exterior differential
systems which differ not more than merely by multipliers
of the contact forms (12) and

θ′i = dvi − v′idt, θ′′i = dv′i − v′′idt,

are considered equivalent. The differential forms (31)
and (23) are equivalent:

ε− e = Aijθ
′′j ⊗ dxi.

The differential form (31) may be accepted as an
alternative representation of the Lepagean equivalent [1]
of (23).

4. Invariant Euler�Poisson Equation

We are preferably interested in those variational
equations that expose some symmetry. Let X(ε) denote
the component-wise action of an infinitesimal generator
X on a vector differential form ε. The fact that the
exterior differential system generated by the form ε
possesses the symmetry of X means that there exist some
matrices Φ, Ξ, and Π which depend on v and v′, and are
such that

X(ε) = Φ . ε+ Ξ . (x− V dt) + Π . (dV −W dt).
(32)

Equation (32) expresses the condition that two
vector exterior differential systems, the one generated by
the vector differential form ε and the other generated by
the shifted form X(ε), are algebraically equivalent. For
systems generated by one-forms (as in our case), this is
completely the same thing as to demand that the set
of local solutions be preserved under the one-parametric
Lie subgroup generated by X. We see two advantages
of this method:

� the symmetry conception is formulated in
reasonably most general form;

� the problem of invariance of a differential equation
is reformulated in algebraic terms by means of
undetermined coefficients Φ, Ξ, and Π;

� the order of the underlying non-linear manifold is
reduced (to J2(R, Q) instead of J3(R, Q)).

Further details may be found in [26].

In the case of the Poincar�e group, we assert that
A and k in (31) do not depend on t and x. For the
sake of reference, it is worthwhile to put down the
general expression of the generator of the Lorentz group
parametrized by a skew-symmetric matrix Ω and some
vector π:

X = − (π · x) ∂t + g00 tπ . ∂x + Ω · (x ∧ ∂x +

+g00 π . ∂v + (π · v) v . ∂v + Ω · (v ∧ ∂v) +

+2 (π · v) v′. ∂v′ + (π · v′) v . ∂v′ + Ω · (v′ ∧ ∂v′) .

Here, the centered dot symbol denotes the inner product
of vectors or tensors and the lowered dot symbol denotes
the contraction of a row-vector and the subsequent
column-vector.

The system of equations (29), (32) may possess
many solutions or no solutions at all, depending on the
dimension of the configuration manifold. For example,
for the dimension one, the skew-symmetric matrix A
does not exist. For the dimension three, there is no
solution to the P.D.E. system (29), (32) (see [27]).
Fortunately, for the dimension two, the solution exists
and is unique up to a single scalar parameter µ (see
also [28]):

Proposition 2. The invariant Euler�Poisson
equation of a relativistic two-dimensional motion is:

−
∗v′′

(1 + v·v)3/2
+ 3

∗v′

(1 + v·v)5/2
(v·v′)−

−
µ

(1 + v·v)3/2

(
(1 + v·v) v′ − (v′·v) v

)
= 0 . (33)
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The dual vector above is defined in commonly
used notations, (∗w)i = εjiw

j . We know two different
Lagrange functions for the left-hand side of (33):

L1 = − v
′2v1

√
1 + vivi(1 + v2v2)

+ µ
√

1 + vivi, (34)

L2 =
v
′1v2

√
1 + vivi(1 + v1v1)

+ µ
√

1 + vivi. (35)

With the help of the prescriptions of Proposition 1,
we immediately obtain the �homogeneous� counterpart
of (33):

−
ü× u
‖u‖3

+ 3
u̇× u
‖u‖5

(u̇ · u)−

−
µ

‖u‖3
(
(u · u) u̇− (u̇ · u)u

)
= 0 (36)

with the corresponding family of Lagrange functions,

L1 =
u1
(
u̇2u3 − u̇3u2

)
‖u‖

(
u2u2 + u3u3

) + µ‖u‖,

L2 =
u2
(
u̇3u1 − u̇1u3

)
‖u‖

(
u1u1 + u3u3

) + µ‖u‖,

L3 =
u3
(
u̇1u2 − u̇2u1

)
‖u‖

(
u1u1 + u2u2

) + µ‖u‖ .

To produce a variational equation of the third order,
the Lagrange function should be of affine type in second
derivatives. It makes no sense to even try finding such a
Poincar�e-invariant Lagrange function in space-time with
dimension greater than two [27]. But the generalized
momentum

∂L
∂u
−

d

dζ

∂L
∂u̇

=
u̇× u
‖u‖3

+ µ
u

‖u‖

does not depend on the particular choice of one of the
above family of Lagrange functions. This expression for
the generalized momentum was (in different notations)
in fact obtained in [11] by means of introducing an
abundance of Lagrange multipliers into the formulation
of the corresponding variational problem.

4.1. Free Relativistic Top in Two Dimensions

Equation (36) carries a certain amount of physical sense.
We leave it to the reader to ensure (see also [29]) that,
in terms of spin vector (4), the Mathisson�Papapetrou

equations (1), (2) under the Mathisson-Pirani auxiliary
condition (3) are equivalent to the system of equations

εαβγδü
βuγσδ − 3

u̇·u
‖u‖2

εαβγδu̇
βuγσδ +

+
m0√
|g|
[
(u̇ · u)uα − ‖u‖2u̇α

]
= Fα,

‖u‖2σ̇α + (σ · u̇)uα = 0,

σ · u = 0 . (37)

It should be clear that the four-vector σ is constant in all
its components if the force Fα vanishes. Equation (37)
admits a planar motion, when u3 = u̇3 = ü3 = 0. In this
case it reads

η3σ3

(
ü× u
‖u‖3

− 3
u̇× u
‖u‖5

(u̇ · u)

)
+

m0

‖u‖3
[(u · u) u̇− (u̇ · u)u] = 0 ,

where we have set gαβ = diag
(
1, η1, η2, η3

)
. Comparing

with (36) imposes µ =
m0

η3σ3
.

5. Poisson Structure

It is instructive that each of the two Lagrange functions
(34), (35) is of minimal order and produces the
same Poisson structure. In constructing the Hamilton
function, we chose to start from (35) and then follow
the prescriptions of [30]. First, it is necessary to build
up the energy function

H2 = p1v1 + p2v2 + p′v′
1 − L2 (38)

and reduce the number of independent variables to the
set {xi, pi, q, p′} by means of the following equations:

∂H2

∂v2
= 0

∂H2

∂v′1
= 0 q = v1.

In these new independent variables, the Hamilton
function (38) reads

H = p1q + p2p′

(
1 + η1q2

)3/2

√
1− η2p′2

(
1 + η1q2

)2
+
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−µ
√√√√ 1 + η1q2

1− η2p′2
(

1 + η1q2
)2 .

The Poisson structure is implemented by the Poisson
bracket{
F,G

}
=
∂F

∂xi
∂G

∂pi
− ∂F

∂pi

∂G

∂xi
+
∂F

∂q

∂G

∂p′
− ∂F

∂p′
∂G

∂q
,

and the generalized Hamilton equations read:

dxi

dt
=

{
xi,H

}
dq

dt
=

{
q,H

}
dpi
dt

=
{

pi,H
}
,

dp′

dt
=

{
p′,H

}
.

6. Concluding Remarks

Problems with higher order derivatives entering the
Lagrange function have been the subject of continuous
interest among physicists, but some renewed interest
arose due to the attempts to introduce terms responsible
for rigidity into the action functional of the relativistic
string. From this point of view, the model considered in
this paper might be thought of as a point-like limit of
the relativistic string, as suggested in [14]. On the other
hand, the inner degrees of freedom of, say, a spinning
particle demand the introduction of additional variables
along the orbits of a coadjoint representation of the
Poincar�e group. But the question of the space-time origin
of these additional variables remains open. Roughly
speaking, we may try to construct spin variables
from the higher derivatives of ordinary coordinate
variables, as suggested in [15]. All such models demand
quantization, as an ultimate target. In particular, an
alternative way to the quantization of a free relativistic
top opens up [11]. Higher derivative terms produce some
amendments to the higher momenta in the generalized
Legendre transformation and, after quantization, may
be viewed as quantum corrections to the states of a
point particle without spin. Generalization to the four-
dimensional space-time further would prescribe some
helicity to a quantum particle [15]. Contrary to the
models, proposed by others, as in [11] or in [15], our
approach is free from the abundance of a preliminary
constraint, imposed ad hoc. And it produces the only
possible variational model with the third-order term in
three-dimensional space-time. Moreover, our model is
in perfect agreement with the Mathisson�Papapetrou
equation of motion of a classical relativistic spherical top.
With these arguments in mind, we may justifiably expect

interesting deviations, arising from different ways of
quantization of the Poisson structure introduced above.

Finally, let us mention that the symmetry group
of the dynamical system (36) without mass term with
a multiplier µ is the conformal group whereas the
presence of mass µ breaks the symmetry down to
the mere pseudo-Euclidean group. Without the µ-
term, equation (36) describes geodesic circles, that is,
plane curves with constant curvature, which is the
mathematical equivalent to the notion of relativistic
uniformly accelerated motion. The subject of uniformly
accelerated frames of reference gained recently a renewed
attention due to the theory of maximal acceleration
suggested by Caianiello [17].
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ÄÈÔÅÐÅÍÖIÀËÜÍÎ-ÃÅÎÌÅÒÐÈ×ÍI
ÌÅÕÀÍIÇÌÈ Â ÄÈÍÀÌIÖI ÎÑÒÐÎÃÐÀÄÑÜÊÎÃÎ
ÄËß ÐÅËßÒÈÂIÑÒÑÜÊÎ� ÑÔÅÐÈ×ÍÎ� ÄÇÈÃÈ

Ð.ß. Ìàöþê

Ð å ç þ ì å

Çàñòîñóâàííÿ âàðiàöiéíîãî ÷èñëåííÿ âèùîãî ïîðÿäêó äî äå-
ÿêèõ êëàñè÷íèõ ìîäåëåé ðóõó ðåëÿòèâiñòñüêî¨ ÷àñòèíêè, ÿêå
áóëî çàïî÷àòêîâàíî â 1937 ðîöi, ¹ àêòóàëüíîþ ïðîáëåìîþ äî
öüîãî ÷àñó. Äèôåðåíöiàëüíà ãåîìåòðiÿ ìåõàíiêè Îñòðîãðàäñü-
êîãî áóëà ïðåäìåòîì æâàâîãî iíòåðåñó áàãàòüîõ ñó÷àñíèõ ìàòå-
ìàòèêiâ ïðîòÿãîì îñòàííiõ òðüîõ äåñÿòèði÷. Â äàíié ðîáîòi ìè
ïîêàçó¹ìî, ÿê ïðàöþþòü äåÿêi âíóòðiøíüî ïðèòàìàííi ïiäõîäè
iç âñüîãî àðñåíàëó çàñîáiâ ôîðìàëüíî¨ òåîði¨ âàðiàöiéíèõ ðiâ-
íÿíü â çàñòîñóâàííi äî îäíîãî êîíêðåòíîãî ïðèêëàäó, ùî ñòîñó-
¹òüñÿ ðiâíÿííÿ ðóõó òðåòüîãî ïîðÿäêó âiëüíî¨ ðåëÿòèâiñòñüêî¨
äçèãè â òðèâèìiðíîìó ïðîñòîði-÷àñi. Îñíîâíîþ ìåòîþ ¹ ïîáó-
äîâà êîìáiíîâàíîãî ïiäõîäó, ùî îäíî÷àñíî âèêîðèñòîâó¹ ñèìåò-
ðiéíi ïðèíöèïè òà ðîçãëÿä îáåðíåíî¨ âàðiàöiéíî¨ çàäà÷i â òåðìi-
íàõ âåêòîðíîçíà÷íèõ äèôåðåíöiàëüíèõ ôîðì. Çíàéäåíî äåÿêèé

ïðîñòèé àëãîðèòì, ÿêèé ïîâ'ÿçó¹ àâòîíîìíó âàðiàöiéíó çàäà÷ó
ç âàðiàöiéíîþ çàäà÷åþ â ïàðàìåòðè÷íié ôîðìi. Öåé ïðèêëàä
÷iòêî äåìîíñòðó¹, ùî íå iñíó¹ ãëîáàëüíîãî i âíóòðiøíüî óçãî-
äæåíîãî âèçíà÷åíîãî ëàãðàíæiàíà äëÿ Ïóàíêàðå-iíâàðiàíòíîãî
i äîáðå âèçíà÷åíîãî âàðiàöiéíîãî ðiâíÿííÿ, ÿêå äîñëiäæó¹òüñÿ
â äàíîìó âèïàäêó. Òàêîæ ðîçãëÿíóòî ãàìiëüòîíîâèé àíàëîã â
òåðìiíàõ äóæîê Ïóàññîíà. Çäà¹òüñÿ, ùî öÿ ìîäåëü óçàãàëü-
íåíî ðåàëiçó¹ êàíîíi÷íèé îïèñ ðóõó êâàçiêëàñè÷íî¨ ÷àñòèíêè
çi ñïiíîì, ùî ïiäòâåðäæó¹ ðiâíÿííÿ Ìàòiññîíà�Ïàïàïåòðîó â
ïëîñêîìó ïðîñòîði-÷àñi.

ÄÈÔÔÅÐÅÍÖÈÀËÜÍÎ-ÃÅÎÌÅÒÐÈ×ÅÑÊÈÅ
ÌÅÕÀÍÈÇÌÛ Â ÄÈÍÀÌÈÊÅ ÎÑÒÐÎÃÐÀÄÑÊÎÃÎ
ÄËß ÐÅËßÒÈÂÈÑÒÑÊÎÉ ÑÔÅÐÈ×ÅÑÊÎÉ ÞËÛ

Ð.ß. Ìàöþê

Ð å ç þ ì å

Ïðèìåíåíèå âàðèàöèîííîãî èñ÷èñëåíèÿ âûñøåãî ïîðÿäêà ê
íåêîòîðûì êëàññè÷åñêèì ìîäåëÿì äâèæåíèÿ ðåëÿòèâèñòñêîé
÷àñòèöû, íà÷àòîå â 1937 ãîäó, ÿâëÿåòñÿ àêòóàëüíîé ïðîáëåìîé
è â íàøå âðåìÿ. Äèôôåðåíöèàëüíàÿ ãåîìåòðèÿ ìåõàíèêè Îñ-
òðîãðàäñêîãî áûëà ïðåäìåòîì æèâîãî èíòåðåñà ìíîãèõ ñîâðå-
ìåííûõ ìàòåìàòèêîâ íà ïðîòÿæåíèè ïîñëåäíèõ òðåõ äåñÿòè-
ëåòèé. Â äàííîé ðàáîòå ìû ïîêàçûâàåì, êàê ðàáîòàþò íåêî-
òîðûå âíóòðåííå ïðèñóùèå ïîäõîäû èç âñåãî àðñåíàëà ñïîñî-
áîâ ôîðìàëüíîé òåîðèè âàðèàöèîííûõ óðàâíåíèé â ïðèìåíå-
íèè ê îäíîìó êîíêðåòíîìó ïðèìåðó, ÷òî êàñàåòñÿ óðàâíåíèÿ
äâèæåíèÿ òðåòüåãî ïîðÿäêà ñâîáîäíîé ðåëÿòèâèñòñêîé þëû â
òðåõìåðíîì ïðîñòðàíñòâå-âðåìåíè. Îñíîâíîé öåëüþ ÿâëÿåò-
ñÿ ïîñòðîåíèå êîìáèíèðîâàííîãî ïîäõîäà, ÷òî îäíîâðåìåííî
èñïîëüçóåò ñèììåòðèéíûå ïðèíöèïû è ðàññìîòðåíèå îáðàòíîé
âàðèàöèîííîé çàäà÷è â òåðìèíàõ âåêòîðíîçíà÷íûõ äèôôåðåí-
öèàëüíûõ ôîðì. Íàéäåí íåêèé ïðîñòîé àëãîðèòì, ñâÿçûâàþ-
ùèé àâòîíîìíóþ âàðèàöèîííóþ çàäà÷ó ñ âàðèàöèîííîé çàäà-
÷åé â ïàðàìåòðè÷åñêîé ôîðìå. Ýòîò ïðèìåð ÷åòêî äåìîíñòðè-
ðóåò, ÷òî íå ñóùåñòâóåò ãëîáàëüíîãî è âíóòðåííå ñîãëàñîâàííî-
ãî îïðåäåëåííîãî ëàãðàíæèàíà äëÿ Ïóàíêàðå-èíâàðèàíòíîãî è
õîðîøî îïðåäåëåííîãî âàðèàöèîííîãî óðàâíåíèÿ, ðàññìàòðè-
âàåìîãî â äàííîì ñëó÷àå. Òàêæå ðàññìîòðåí ãàìèëüòîíîâûé
àíàëîã â òåðìèíàõ ñêîáîê Ïóàññîíà. Êàæåòñÿ, ÷òî ýòà ìîäåëü
îáîáùåííî ðåàëèçóåò êàíîíè÷åñêîå îïèñàíèå äâèæåíèÿ êâàçè-
êëàññè÷åñêîé ÷àñòèöû ñî ñïèíîì, ÷òî ïîäòâåðæäàåò óðàâíåíèå
Ìàòèññîíà�Ïàïàïåòðîó â ïëîñêîì ïðîñòðàíñòâå-âðåìåíè.
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