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Applications of the higher-order variational calculus to some
classical models of a relativistic particle motion began in 1937
and continue till now. Differential geometry of Ostrohradskyj’s
mechanics has been an object of renewed interest among
contemporary mathematicians for last three decades. In the
present article, we demonstrate the work of some intrinsic tools
of the formal theory of variational equations in application
to one specific example of the third-order evolution equation
of a free relativistic top in three-dimensional space-time. The
main goal is to introduce a combined approach of simultaneous
utilization of symmetry principles and inverse variational problem
considerations in terms of vector-valued differential forms. Next,
some simple algorithm of transition between the autonomous
variational problem and the variational problem in parametric
form is established. The example definitely solved shows the no-
existence of a globally and intrinsically defined Lagrangian for the
Poincaré-invariant and well-defined unique variational equation
in the case in hand. The Hamiltonian counterpart in terms of
Poisson bracket is discussed too. The model appears to provide
a generalized canonical description of a quasi-classical spinning
particle governed by the Mathisson—Papapetrou equations in flat
space-time.

Introduction

During past decades, the subject of Ostrohradskyj’s
mechanics was revisited by many authors from the
point of view of global analysis including certain
features of the intrinsic differential geometry ideology
(see monographs [1—3], preceded and followed by the
large number of other reviews and articles). The more
intriguing is that the investigations on the application
of Ostrohradskyj’s mechanics to real physical models
haven’t been abandoned since the pioneer works by
Chraptywyj, Mathisson, Bopp, Weyssenhoff, Raabe, and
Honl (see references). Most of the applications consider
models of test particles endowed with inner degrees
of freedom [9—16] or models which put the notion of
acceleration onto the framework of a general differential
geometric structure of the extended configuration space

of a particle [17]. One interesting example of how the
derivatives of the third order appear in the equations of
motion of a test particle is provided by the Mathisson—
Papapetrou equations
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together with the supplementary condition
u, ST = 0. (3)

It is immediately clear that the second term in
(1) may produce the derivatives of the third order

of space-time variables z® as soon as one dares to
bstitute u, 2o by —gor 2L

substitute w,—— —

vac ac

Such substitution in fact means differentiating Eq. (3).
However, the system of equations thus obtained will
not possess any additional solutions comparing to that
of (1)—(3) as far as one does not forget the original
constraint (3). System (1)—(3) was recently a subject
of discussion in [18]. In (1), the right-hand side vanishes
if there is no gravitation.

It is a matter of common consent that the relativistic
motion of simple particles in gravitational field may
be described mathematically via the notion of geodesic
paths. Because less simple particles obey higher-order
equations of motion, it seems worthwhile to investigate
the appropriate geometries. But, in the same way as
pseudo-Riemannian geometry descends down to the
natural representation of the Lorentz group, a more
complicated geometry should break out first from some
symmetry considerations of global character.

We intend to present some tools from the arsenal of
intrinsic analysis on manifolds that may appear helpful

in virtue of (3).

IThis article was presented at the II International Symposium “Fundamental Problems in Modern Quantum Theories and
Experiments” (September 2—7 2002, Odessa, Ukraine) on the occasion of Professor Walter Thirring’s 75th birthday.
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in solving the invariant inverse problem of the calculus of
variations. In a special case of three-dimensional space-
time, we shall successfully follow some prescriptions
for obtaining third-order Poincaré-invariant variational
equations up to the very final solution thus discovering
the unique possible one, which will then be identified
with the motion of a free relativistic top by means
of comparing it to (1)—(3) when R%gsy = 0. This
case of two-dimensional motion in space makes quite a
good sense from the viewpoint of the general theory as
well [19]. On the other hand, one can show directly that
even in the four-dimensional special relativity case, the
world line of a particle obeying the system of equations
(1)—(3) has the third curvature equal to zero (see
also [20]). Thus, even in this case, the particle actually
propagates in two-dimensional space. Another feature of
this limited case is that the spin four-vector

1
= 5570 4
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keeps constant under the condition for the motion to be
free. So, knowing a Lagrange function for some third-
order equation equivalent to (1)—(3) allows offering a
generalized Hamiltonian description in terms of Poisson
brackets that might be considered as a canonical
equivalent to (1), (3). Our example exposes some typical
features of variational calculus:

— the nonexistence (in our case) of a well-defined
invariant Lagrangian along with intrinsically very
well defined equation of motion with the Poincaré
symmetry produced by each of a family of
degenerate Lagrangians which transform into one
another by renumbering the axes of a Lorentz
frame;

— all handled Lagrangians give rise to the same
system of canonical equations;

— each Lagrangian includes a different set of
second order derivatives, thus their sum is not a
Lagrangian of minimal order.

1. Homogeneous Form and Parametric
Invariance

Presentation of the equation of motion in the so-called
“manifestly covariant form” stipulates introducing the
space of Ehresmann’s velocities of the configuration
manifold M of a particle, TFM = {2, %, i .. x?k)}

In future, the notations u®, 4%, 4%, u‘(lr) will frequently
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be used in place of &%, Z¢, :1:“3), x‘{rJrl), and x‘()‘o)

sometimes will merely denote . We call some mapping
¢ — z%(¢) the parametrized (by means of ¢) world line
and its image in M will be called the non-paremetrized
world line. As far as we are interested in a variational
equation (of order s) that would describe the non-
parametrized world lines of the particle,

Ea (xa,ua,ua,iio‘,...,u&_lo =0, (5)

the Lagrange function £ has to satisfy the Zermelo
conditions, which read in our case of at most the second
order derivatives in L
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0
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uﬁi_ﬁ =0.
U

In this approach, the independent variable ¢ (called
the parameter along the world line) is not included
into the configuration manifold M. Thus, the space
TkM is an appropriate candidate for the role of the
underlying manifold on which the variational problem
in the autonomous form should be posed. We may
include the parameter ¢ into the configuration manifold
by introducing the trivial fibre manifold R x M — R,
¢ € R, and putting into consideration its k*"-order
prolongation, J*(R, M), i.e., the space constituted by
the ktP-order jets of local cross-sections of ¥ = R x M
over R. Each such cross-section of Y is nothing but the
graph in R x M of some local curve z(¢) in M. For
each 7 € N, there exists an obvious projection

Pl JT(R, M) — T™M. (6)

The manifold T" M consists of the derivatives up to the
rth-order of curves z*(¢) in M evaluated at 0 € R. If]
for every 7 € R, we denote the mapping ¢ — ¢ + 7 of
R onto itself by same character 7, then the projection
reads

d d?
o (T;zam, 24 (7), 252 (0

- fracdrd(TxQ(T)) —

- (( 07 (0) 3¢ (5% 1) 0)
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2o o
Mﬂxoﬂamnqﬂﬁxoﬂmv. (7)

By means of projection (6), (7), every Lagrange
function £ initially defined on T*M may be pulled
back to the manifold J*(R, M) and defines there some
function £, by the obvious formula £, = £ op*. We say
that the differential form

A= LodC¢ (8)

constitutes a variational problem in extended parametric
form because the independent variable  was artificially
doubled in the construction of the new configuration
manifold R x M. But we shall need this construction
later.

Let us return to the variational problem set on the
manifold T*M by a given Lagrange function L. At the
very first moment we impose the Zermelo conditions, the
problem becomes degenerate. There exists one way to
avoid degeneracy by reducing the number of velocities,
of course, at the cost of losing the “homogeneity”
property of Eq. (5). Consider some way of segregating
the variables z* € M into ¢t € R and x’ € Q, dimQ =
dim M —1, thus making M into some fibration, M ~ R x
@, over R. The manifold of jets J"(R, Q) provides some
local representation of what is known as the manifold
C"(M,1) of r-contact one-dimensional submanifolds of
M. The intrinsically defined global projection of non-
zero elements of T"M onto the manifold C"(M,1) in
this local and, surely, “non-covariant” representation is
given by

p": T"M A\ {0} — J"(R,Q), (9)

and is implicitly defined in the third order by the
following formulae, where the local coordinates in
J.T(R,Q) are denoted by #;x?, vi v v L V(p—y) With
VEO) marking v* sometimes:

O3V = tt —

(0" = (6)2i' — 3t + [3(F) — ft(y)] ' (10)

There does not exist any well-defined projection from
the manifold C"(M,1) onto the space of independent
variable R, so the expression

A:L(t;xi,vi,v’i,v”i,...,vfkﬂ)) dt (11)
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will vary in the dependence on the way of local
representation M ~ R x Q. We say that two different
expressions of type (11) define the same variational
problem in parametric form if their difference expands
into nothing but only the pull-backs to C*(M,1) of
the following contact forms which live on the manifold
C'(M,1),

0" = dx' — v'dt. (12)
These differential forms obviously vanish along the jet
of every curve R — Q.

Let the components of the variational equation
E; =0 (13)
of Lagrangian (11) be treated as the components of the
following vector one-form:
e = {E;dt}. (14)

We intend to give a “homogeneous” description to
(14) and (11) in terms of some objects that would live
on T*M and T*M, respectively. But we cannot apply
directly the pull-back operation to Lagrangian (11)
because the pull-back of one-form is a one-form again,
and what we need on T*M is a Lagrange function, not a
differential form. However, it is possible to pull (11) all

the way back along the composition of projections (6)
and (9),

p* =" o}, (15)
ultimately to the manifold J*(R, M). In such a way, we
obtain the differential form (L o p*)dt. But what we do
desire is a form that should involve d(¢ solely (i.e., a semi-
basic with respect to the projection J*(R, M) — R).
Fortunately, the two differential forms, dt and td(, differ
not more than only by the contact form
9 = dt —td¢. (16)
Now, we recall that equivalent Lagrangians that have
the structure of (11) differ by multiplies of the contact
forms (12). It remains to notice that, by the course of
(7) and (10), the pull-backs of the contact forms (12)
expand only into the contact forms (16) and

9" = da’ —u'd¢ (17)
alone,
POt = dxt — (vi Opl)dt = — (vi Opl)ﬁ.
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Thus, every variational problem posed on J*(R,Q)
and represented by (11) transforms into an equivalent
variational problem
A= (L op*)td¢ (18)
posed on J¥(R, M). But the Lagrange function of this
new variational problem,
Ly= (L © pk)i7 (19)
does not depend upon the parameter ¢ and substantially
may be thought of as a function defined on T*M.

We prefer to cast the variational equation (of some
order s < 2k) generated by Lagrangian (18) into
the framework of the theory of vector-valued exterior
differential systems by introducing the following vector
differential one-form defined on the manifold J*(R, M):

e=&, (xa,gm,...,xg;))dg. (20)

The expressions &, (:c”‘,:ka, e 71"(’;)) in (20) may also
be treated as ones defined on T°M similarly to L,.
Altogether the constructions built above allow the
formulation of the following statement:

Proposition 1. If the differential form (14)
corresponds to the variational equation of Lagrangian
(11), then the expressions
ga = {’U,iEi,t.Ei} (21)
correspond to the Lagrange function (19).

In this case, the (sth-order) equation (5) describes,
“‘in homogeneous form”, the same non-parametrized
world lines of a particle governed by the variational
problem (19), as does Eq. (13) with the Lagrangian
given by (11), and also £, obviously satisfies the Zermelo
conditions. As to more sophisticated details, paper [21]
may be consulted.

2. Criterion of Variationality

Our main intention is to find a Poincaré-invariant
ordinary (co-vector) differential equation of the third
order in three-dimensional space-time. With this goal in
mind we organize the expressions E; in (14) into a single
differential object, the exterior one-form
e, = E;dx’ (22)
defined on the manifold J°(R,Q), so that the vector
differential form (14) should now be treated as the
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coordinate representation of an intrinsic differential
geometric object

e=edx' =Edt®@dx' = dt ®e,. (23)

The differential form e constructed in this way is an
element of the graded module of differential forms on
J*(R, @) semi-basic with respect to R with values in
the bundle of the graded algebras AT*Q of scalar forms
on TQ. Of course, due to the dimension of R, actually
only functions (i.e., semi-basic zero-forms) and semi-
basic one-forms (i.e., in dt solely) exist. We also wish
to mention that every (scalar) differential form on @
is naturally treated as a differential form on 77Q, i.e.,
as an element of the graded algebra of cross-sections of
AT (T7Q).

For arbitrary s € N, let ,(Q) denote the algebra
of (scalar) differential forms on T°@Q with coefficients
depending on t € R and arbitrary s. It is possible
to develop some calculus in Q4(Q) by introducing the
operator of vertical (with respect to R) differential d,
and the operator of total (or formal “time”) derivative
D; by means of the prescriptions:

_of of
T ox 8v§r)

dy f A+ —=—dv(,), d,* =0,

so that d,x* and deET) coincide with dx* and dvér),
respectively, and
of  9of i of

Dif = ot +v PN +V(T+1)8V—Er)»

There exists a notion of derivation in graded algebras
endowed with generalized commutation rule, as Q(Q)
is. An operator D is called a derivation of degree ¢ if,
for any differential form w of degree p and any other
differential form w, it is true that D(w A w) = D(w) A
w+ (—1)P9w A D(w). To complete the above definitions,
it is necessary to demand that d, be a derivation of
degree 1 whereas D; be a derivation of degree 0. But
still this is not the whole story. We need one more
derivation of degree 0, denoted here as ¢ and defined by
its action on functions and one-forms which altogether
locally generate the algebra Q4(Q),

Dtd’u = dth.

of = 0,udx’ =0, wdv® = dx, Ldvf,,) =(r+1) dvfrﬂ).

Let the operator the deg means evaluating the degree
of a differential form. The Lagrange differential § is first
introduced by its action upon the elements of Q4(Q),

(="

0= (deg +Dtrbr> dy,
r!
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and next trivially extended to the whole graded module
of semi-basic differential forms on J*(R, Q) with values
in AT*(T"Q) by means of

S(widt @ dx') = dt @ §(w;dx?),

O(widt ® dvfr)) =dt ® 5(w{dvér)).

This § turns out to possess the property 6% = 0. We
have that, for the differential geometric objects (23) and
(11), the following relation holds:

e=0A=dt®OdL. (24)
Now the criterion for an arbitrary set of expressions
{E;} in (14) to be the variational equations for some
Lagrangian reads

de = dt ® e, =0, (25)
with e constructed from {E;} by means of (22) and (23).

Of course, one may apply the above constructions
literally to analogous objects living on the manifold
J*(R, M) in (6) and obtain the operator, the Lagrange
differential, ¥ acting upon semi-basic, with respect to
R, differential forms on J*(R, M) with values in the
bundle AT*(T*M). In the algebra ,(M), the operator
0" preserves the sub-algebra of forms that do not depend
on the parameter ¢ € R. The restriction of §* to the
algebra of differential forms truly defined on T°M sole
will be denoted by 6”. It was introduced in [22]. If the
Lagrange function £, in (8) does not depend on the
parameter ¢ € R, as is the case of (18), (19), instead

of to apply ¢ to the forms X from (8) and
€ =egqdx® = E,dC ® dx® (26)

from (20), we may apply the restricted operator 67 to
the Lagrange function £, and to the differential form

€ = Eqdx”. (27)
In case of (19), the criteria 6e = 0,
6T€0 =0, (28)

and (25) are all equivalent, and the variational equations
produced by the expressions e = §¥ A from (26), (18),
g, = 6TL, from (27), (19), and e from (24) all are
equivalent to (5). Expressions (14) and (11) are not
“generally covariant” whereas (27) is. But the criterion
(28) needs to be solved along with Zermelo conditions,
whereas (25) is self-contained.

ISSN 0508-1265. Vp. Pis. owcypn. 2003. T. 48, N 4

The presentation of a system of variational
expressions {E;} under the guise of a semi-basic (i.e.,
in dt solely) differential form that takes values in the
bundle of one-forms over the configuration manifold @
is quite natural:

— the Lagrange density (called Lagrangian in this
work) is a one-form in dt only;

— the destination of the Euler—Lagrange expressions
in fact consists in evaluating them on the
infinitesimal variations, i.e., the vector fields
tangent to the configuration manifold @ along
the critical curve; consequently, the set of E;
constitutes a linear form on the cross-sections
of TQ with the coefficients depending on higher
derivatives.

More details can be found in [23] and [24].

3. Lepagean Equivalent

The system of partial differential equations, imposed on
E;, that arises from (25) takes a more tangible shape
in the specific case of third-order Euler—Poisson (i.e.,
ordinary Euler—Lagrange) expressions. The reader may
consult [25] and references therein. Let a skew-symmetric
matrix A, symmetric matrix B, and column c all depend
on t,x*, and v' and satisfy the following system of partial
differential equations:

9 1A =0,
2Bji;) — 3D, Ay =0,
20 iBjj — 49 1Ay + 01 Aij +2D; 9 1 Aij =0,
9, ¢y =Dy Buj) =0,
2019 icj) —49 1By +D1%0 1 Aij +
+6D, 9 Ay =0,

49 ;¢ = 2D 9 jic;) D P Ay =0, (29)

where the differential operator D1 is the lowest order
generator of the Cartan distribution,

D]_ :8t+v.8x.

It is obvious and commonly well known that the
Euler—Lagrange expressions are of affine type in the
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highest derivatives. The most general form of the Euler—
Poisson equation of the third order reads:

ANV'+(V.0,)A.V+B.V+c =0. (30)

Due to the affine structure of the left-hand side of
Eq. (30), we may, alongside with the differential form
(23), introduce the next one whose coefficients do not
depend on third-order derivatives:

€= Aydv'? @ dx' + kidt @ dx"

k=(W.8,)A.W +B.W +c. (31)

From the point of view of searching only holonomic
local curves in J3(R,Q), those exterior differential
systems which differ not more than merely by multipliers
of the contact forms (12) and
0/1‘ — dvi’ _ V/idt, 9//1: _ dv/i _ det,
are considered equivalent. The differential forms (31)
and (23) are equivalent:

€E— €= Aijﬂ”j ® dXi.

The differential form (31) may be accepted as an
alternative representation of the Lepagean equivalent [1]
of (23).

4. Invariant Euler—Poisson Equation

We are preferably interested in those variational
equations that expose some symmetry. Let X (e) denote
the component-wise action of an infinitesimal generator
X on a vector differential form €. The fact that the
exterior differential system generated by the form €
possesses the symmetry of X means that there exist some
matrices ®, =, and II which depend on v and v/, and are
such that

X(e)=®.e+E.(x—Vdt) +II.(dV — Wdt).
(32)

Equation (32) expresses the condition that two
vector exterior differential systems, the one generated by
the vector differential form € and the other generated by
the shifted form X (e), are algebraically equivalent. For
systems generated by one-forms (as in our case), this is
completely the same thing as to demand that the set
of local solutions be preserved under the one-parametric
Lie subgroup generated by X. We see two advantages
of this method:
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— the symmetry conception is formulated in

reasonably most general form;

— the problem of invariance of a differential equation
is reformulated in algebraic terms by means of
undetermined coefficients ®, =, and 1II;

— the order of the underlying non-linear manifold is
reduced (to J2(R, Q) instead of J3(R,Q)).

Further details may be found in [26].

In the case of the Poincaré group, we assert that
A and k in (31) do not depend on ¢ and x. For the
sake of reference, it is worthwhile to put down the
general expression of the generator of the Lorentz group
parametrized by a skew-symmetric matrix  and some
vector :

X=—(m-x)0+ gootm™. O+ - (xA I+
4+goom. O+ (w-v)v.0 +Q-(VAI) +

+2(r-v)V. 0, + (w-V)v.0, +Q-(VAND,).

Here, the centered dot symbol denotes the inner product
of vectors or tensors and the lowered dot symbol denotes
the contraction of a row-vector and the subsequent
column-vector.

The system of equations (29), (32) may possess
many solutions or no solutions at all, depending on the
dimension of the configuration manifold. For example,
for the dimension one, the skew-symmetric matrix A
does not exist. For the dimension three, there is no
solution to the P.D.E. system (29), (32) (see [27]).
Fortunately, for the dimension two, the solution exists
and is unique up to a single scalar parameter pu (see
also [28]):

Proposition 2. The invariant FEuler—Poisson
equation of a relativistic two-dimensional motion is:

xv’ xv’

— 3 W) —
(1 —|—V-V)3/2 + (1 +V-V)5/2 (V V)

e (T vV (Vo)) =0,

(1 +vev)?/2 (33)
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The dual vector above is defined in commonly
used notations, (xw); = €;;w’/. We know two different
Lagrange functions for the left-hand side of (33):

v'2yl .
L = - - + pvV 1+ vV 34
! V14 vvi(1 4 vav?) a (34)
v 1y2
Ly, = , + p/ 1+ vive. 35
? V14 vvi(1 4+ vivh) K (85)

With the help of the prescriptions of Proposition 1,
we immediately obtain the “homogeneous” counterpart
of (33):

U X u uXu .,
TP T g ¢
_H:|I3((u.u)a_(a-u)u):o (36)

with the corresponding family of Lagrange functions,

ul (HQU3 — ’1'1,3’&2)

L ) . |

U Tl (uaet ) T
u? (Ylgul — 711“3)

oo ”“H(le +u3u3) + pllull,
£3 _ U3 (’(:LlUQ - ﬂ2u1)

Tl (ol + ) + pulfu]] -

To produce a variational equation of the third order,
the Lagrange function should be of affine type in second
derivatives. It makes no sense to even try finding such a
Poincaré-invariant Lagrange function in space-time with
dimension greater than two [27]. But the generalized
momentum

oL d oL U X u + u
=
ou dCou  |lu|® [l

does not depend on the particular choice of one of the
above family of Lagrange functions. This expression for
the generalized momentum was (in different notations)
in fact obtained in [11] by means of introducing an
abundance of Lagrange multipliers into the formulation
of the corresponding variational problem.

4.1. Free Relativistic Top in Two Dimensions

Equation (36) carries a certain amount of physical sense.
We leave it to the reader to ensure (see also [29]) that,
in terms of spin vector (4), the Mathisson—Papapetrou

ISSN 0508-1265. Vp. Pis. owcypn. 2003. T. 48, N 4

equations (1), (2) under the Mathisson-Pirani auxiliary
condition (3) are equivalent to the system of equations
U-u

6a5751’iﬁu705 -3 W 6()¢@-\/§1’Lﬁu’yO’6 +

O (e w) g — 2] = Fa,

Vol

”u”Qda + (U . ib) Uq = 0,

oc-u=0. (37)

It should be clear that the four-vector o is constant in all
its components if the force F, vanishes. Equation (37)
admits a planar motion, when uz = uz = i3 = 0. In this
case it reads

U X u

X u 3 (i u) | +
1N303 — u-u
[Ju][® [Ju][®

mg

[Jef|®

[(w-u)i — (@ u)u] =0,

where we have set gog = diag(l,nl, 772,773). Comparing
myo

7303

with (36) imposes p =

5. Poisson Structure

It is instructive that each of the two Lagrange functions
(34), (35) is of minimal order and produces the
same Poisson structure. In constructing the Hamilton
function, we chose to start from (35) and then follow
the prescriptions of [30]. First, it is necessary to build
up the energy function

Hy = piv! + pov? + pV'' — Ly (38)

and reduce the number of independent variables to the
set {x*,p;,q,p’} by means of the following equations:
0H, OH, 1

e 0 pr 0 9=V

In these new independent variables, the Hamilton
function (38) reads

(1 + mq2)3/2

2
\/1 — 1op’? (1 + Tl1q2)

H = piq+ p2p’ +
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1 +maq?

2
1- nzp’2(1 + mq2)

—p

The Poisson structure is implemented by the Poisson
bracket

(G} = 200G _OF0G OFOG _0F0G
’ COxiOp;  Op; Oxt - dq dp!  Op' Oq’
and the generalized Hamilton equations read:
dxt ; dp;

at {XH} at {p“H}’

dq N dp’ _ ’

@~ lenp = )

6. Concluding Remarks

Problems with higher order derivatives entering the
Lagrange function have been the subject of continuous
interest among physicists, but some renewed interest
arose due to the attempts to introduce terms responsible
for rigidity into the action functional of the relativistic
string. From this point of view, the model considered in
this paper might be thought of as a point-like limit of
the relativistic string, as suggested in [14]. On the other
hand, the inner degrees of freedom of, say, a spinning
particle demand the introduction of additional variables
along the orbits of a coadjoint representation of the
Poincaré group. But the question of the space-time origin
of these additional variables remains open. Roughly
speaking, we may try to construct spin variables
from the higher derivatives of ordinary coordinate
variables, as suggested in [15]. All such models demand
quantization, as an ultimate target. In particular, an
alternative way to the quantization of a free relativistic
top opens up [11]. Higher derivative terms produce some
amendments to the higher momenta in the generalized
Legendre transformation and, after quantization, may
be viewed as quantum corrections to the states of a
point particle without spin. Generalization to the four-
dimensional space-time further would prescribe some
helicity to a quantum particle [15]. Contrary to the
models, proposed by others, as in [11] or in [15], our
approach is free from the abundance of a preliminary
constraint, imposed ad hoc. And it produces the only
possible variational model with the third-order term in
three-dimensional space-time. Moreover, our model is
in perfect agreement with the Mathisson—Papapetrou
equation of motion of a classical relativistic spherical top.
With these arguments in mind, we may justifiably expect
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interesting deviations, arising from different ways of
quantization of the Poisson structure introduced above.

Finally, let us mention that the symmetry group
of the dynamical system (36) without mass term with
a multiplier p is the conformal group whereas the
presence of mass p breaks the symmetry down to
the mere pseudo-Euclidean group. Without the pu-
term, equation (36) describes geodesic circles, that is,
plane curves with constant curvature, which is the
mathematical equivalent to the notion of relativistic
uniformly accelerated motion. The subject of uniformly
accelerated frames of reference gained recently a renewed
attention due to the theory of maximal acceleration
suggested by Caianiello [17].
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JUNOEPEHIIAJIBHO-I'EOMETPUYHI
MEXAHIZMU B JUHAMIIII OCTPOT'PAZICBKOTI'O
JINId PENATUBICTCHKOI CO®EPMYHOI JI3UTU

P.A. Maugox
Peswowme

3acTocyBaHHsI BapiallilHOIO 4YHMCJIEHHSI BUIOIO IOPSJKY [0 Je-
SAKAX KJIACHIHUX MOJesell pyXy PeasTHBICTCHKOI JaCTHHKHU, sIKe
Oy10 3amovaTKoOBaHO B 1937 polli, € aKTyaapbHOI TPOOIEMOI0 0
uporo 4acy. Jdudepennianbaa reomerpis Mmexaniku OcTporpaach-
KOro OyJia IpeJMeTOM 2KBAaBOI'0 iIHTEpeCy 6AraTboX CyJacHUX MaTe-
MAaTHKIB OIPOTATrOM OCTAHHIX TPHOX Aecsatupid. B mamiit pobori mu
TOKAa3y€EeMO, K MPAIIOI0Th JesKi BHYTPIIIHBO IPUTAMAHHI i IX011
i3 BChOro apceHasy 3acobiB dopmasbHOl Teopil Bapianiiinux pis-
HSHD B 3aCTOCYBAHHI 40 OZHOI0 KOHKDETHOTO IIPUKJIAAY, IO CTOCY-
€ThCs PIBHAHHSA PyXy TPETHOIO HOPHAAKY BLIBHOI PeIATHBICTCHKOL
I3UTH B TPUBHMIpHOMY mpocTopi-daci. OCHOBHOIO MeTO0 € moby-
0Ba KOMBIHOBAHOTO MiIXOY, IO OTHOYACHO BUKOPUCTOBYE CUMET-
piiini npuHIUIN Ta PO3riIsay obepHeHol Bapianifinol 3aa4i B Tepmi-
HAX BEKTOPHO3HAYHUX ArdepeHmiaabaux (popM. 3HANIEHO JeaKuit
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IpPOCTHil AJITOPUTM, SIKAH MOB’sI3y€ aBTOHOMHY Bapianiiiny 3amady
3 BapiamiiHor 3agadero B mapamerpudHii dopwmi. Ileit npuxmam
49iTKO JeMOHCTPYE, IO HE iCHY€ IJI00AJILHOTO i BHYTPIIIHBO y3T0-
JPKEHOT'0 BU3HAUEHOrO JIarpaHxkiana s [lyankape-iHBapiaHTHOrO
i 10O6pe BU3HAYEHOrO BapPialliftHOrO PiBHSIHHS, SIKE JOCJIIXKYEThCs
B JAHOMY BHIAJAKY. TaKO0XK PO3IJISIHYTO TaMiJIbBTOHOBHN aHAJIOT B
repminax gyxok Ilyaccoma. 3maeThes, MO s MOJEIb y3arajb-
HEHO peaJli3y€e KaHOHIYHUI ONHC PYyXy KBa3iKJACHYHOI JaCTHHKU
3i cmiHOM, IO MiATBepXKye piBHsSHHA Marticcona—IlamameTpoy B
IJIOCKOMY IIPOCTOPi-4aci.

JNOPEPEHIIMAJIBHO-TEOMETPUYECKIE
MEXAHU3MBI B IUHAMUWKE OCTPOI'PAZICKOI'O
JIJId PEJIATUBUCTCKON CO®EPUYECKOI IOJIBI

P.A. Mauox
Pesmowme

IIpuMeHeHre BapHAIMOHHOTO WCYHCJIEHUS BBICIIETO MOPANKA K
HEKOTOPBIM KJIAQCCUYIECKUM MOACJIAM ABUXKEHUA peHHTHBHCTCKOﬁ
qacTHIB, HagaToe B 1937 roxy, ABiageTcs aKTyaJabHOU npobsemoi
u B Hame Bpems. /Juddepennnansuas reomerpus mexanuku Oc-
TPOTPaICKOr0 ObliIa IPEIMETOM YKHBOIO HHTEPeCa MHOTHX COBpe-
MEHHBIX MATEMATUKOB HA IIPOTAXKEHUU IIOC/ICJHUX TPEX JeCATH-
nernit. B maHHON paboTe MBI MOKa3biBaeM, Kak pabOTAIOT HEKO-
TOpble BHYTPEHHE IPHUCYIIHE MOAXOALI U3 BCETO apCEeHaJa CIIOCO-
608 (pOpMAIBLHON TEOPUH BaPUANMOHHBIX YPABHEHHUII B IPHUMEHE-
HUHM K OJHOMY KOHKDETHOMY IIDUMEpPY, UTO KaCaeTCsS YpaBHEHHUS
JBUKEHUST TPETHErO MOPsAIKA CBOOOIHON PEISATUBUCTCKON IOJBI B
TPEXMEPHOM IIPOCTPAHCTBe-BpeMeHUu. OCHOBHOM IIENIBIO0 SBJISAET-
Csl OCTPOEHUE KOMOMHHMPOBAHHOIO IOJXO0[A, Y9TO OJHOBPEMEHHO
HCIOJIb3yeT CHUMMeTpUUHBIE IPUHIUIBI U PACCMOTpeHue 06paTHOM!
BapHAMOHHON 337a4YU B TEPMHUHAX BEKTOPHO3HAYHBIX UM depeH-
nmnaJbHbIX opM. HaiifeH HeKuil mpocToil ajropuTM, CBsI3BIBAO-
o aBTOHOMHYIO BapHAIMOHHYIO 33Ja4y C BapHAIIMOHHOU 3a1a-
geif B mapaMeTpuIecKoi popme. DTOT IPUMEDP I€TKO JeMOHCTDH-
PYeT, 9TO He CyIIeCTBYeT IMT0OAILHOr0 U BHYTPEHHE COTJIAaCOBAHHO-
IO OIIPEJEJIEHHOTO JIarpaHKuaHa s IlyaHkape-uHBapHAHTHOTO U
XOPOILIO OIIPeeIEHHOTO BapHAIMOHHOTO YDaBHEHHS, PACCMATPHU-
BaeMOr0 B JAHHOM Ciydae. lTak»Ke pacCMOTPEH raMHUJIbTOHOBBIH
anajor B TepMuHax CKoOok Ilyaccoma. Kaskercs, aTo 312 MOZenn
0600IIEHHO peann3yeT KAHOHUYEeCKOe OMUCAHUe JBUXKEHUS KBa3H-
KJIACCUYeCKONH JaCTHUIIBI CO CIIMHOM, UTO MOATBEPKIAeT ypaBHEHHE
Maruccona—IlanamneTpoy B IJIOCKOM IIPOCTPAHCTBE-BPEMEHU.
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