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Some simple observations concerning certain κ-deformations in
the framework of 2D dilaton gravity formulated as Poisson-
sigma models are discussed, and the question of (non-)triviality is
addressed.

Introduction

Certain astrophysical observations have motivated the
study of κ-deformed Poincar�e-algebras, e.g. in the
context of �Doubly Special Relativity� (henceforth DSR;
for a recent review and more references cf. e.g. [1, 2, 3]).
It might be helpful to consider the simpler case of
D = 2 first to settle open conceptual questions
(especially concerning gravity). The first work in this
direction appeared only recently [4]. In the present note
when talking about κ-deformations2 we will exclusively
refer to the deformation introduced by Magueijo and
Smolin [3], which differs from the original proposal [5]. 3

Moreover, it seems to be an interesting task by
itself for purely mathematical reasons. Indeed, Izawa has
shown a few years ago, that the most general consistent
deformation (in the sense of Barnich and Henneaux
[7]) of a Poisson-σ model (PSM) is again a PSM with
the same number of target space coordinates [8]. Since
dilaton gravity without matter in 2D is merely a very
special PSM [9] this result applies to it as well. Thus,
generic consistent deformations of dilaton gravity in 2D
are mathematically feasible.

The description of dilaton gravity in terms of a PSM
has turned out to be very fruitful � e.g. all classical
solutions have been obtained locally and globally within

this approach [10] and even in the presence of matter
an exact quantization of geometry has been achieved
[11], with interesting phenomenological applications for
scattering processes [12]. For a recent review on dilaton
gravity in 2D ref. [13] can be consulted.

In the present note we intend to discuss a very simple
question in the framework of twodimensional dilaton
gravity: are κ-deformations trivial or not (and in what
sense are they (non)trivial)?

1. Triviality of Deformations

Let the momenta pa and the generator of boosts J satisfy
the undeformed Poincar�e algebra in 2D:

[p0, p1] = 0, [J, p0] = p1, [J, p1] = p0 . (1)

An elementary calculation shows that the generators

Pa =
pa

1 + p0/κ
, J , (2)

with a = 0, 1 satisfy the κ-deformed relations:

[Pa, Pb] = 0 ,
[J, J ] = 0 ,

[J, P0] = P1 − κ−1P1P0 ,

[J, P1] = P0 − κ−1P 2
1 .

(3)

Obviously for κ → ∞ the undeformed algebra is
recovered. It is also instructive to invert (2):

pa =
Pa

1− P0/κ
. (4)

Clearly the deformation is algebraically trivial. 4 The
whole effect is a change of variables (2). Therefore, it

1This article was presented at the II International Symposium �Fundamental Problems in Modern Quantum Theories and
Experiments� (September 2�7 2002, Odessa, Ukraine) on the occasion of Professor Walter Thirring's 75th birthday.

2Of course, κ-deformations do not automatically imply DSR, nor vice versa.
3By κ-deformation of Poincar�e algebra only the deformation of the algebraic sector is considered in the present work, characterized

by some fundamental mass parameter κ. In [5] there was proposed the framework with quantum κ deformation, introducing as well the
deformed nonsymmetric coproducts in the coalgebra sector, which leads to noncommutative space-time [6].

4This has been pointed out in ref. [2]. This statement also reminds one of the rigidity results on deformations of Lie algebras [14].
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seems natural to do the same change of variables in the
PSM, the action of which reads [9]

LPSM =
∫
M2

[
dXI ∧AI +

1
2
PIJAJ ∧AI

]
. (5)

For dilaton gravity (assuming Lorentzian signature for
definiteness) the three gauge field 1-forms are AI =
(ω, e−, e+), where e± is the dual basis of 1-forms in light-
cone gauge for the anholonomic frame and ω is related
to the spin-connection 1-form via ωab = εabω. The three
target space coordinates XI = (X,X+, X−) contain the
so-called �dilaton� X and two auxiliary fields X± =
(X0 ± X1) (again in light-cone representation). The
Poisson-tensor PIJ depends solely on the target space
coordinates, it is antisymmetric and fulfills the Jacobi-
identity PIN∂NPJK + cycl.(IJK) = 0. Due to the odd
number of target space coordinates this tensor cannot
have full rank and hence for non-trivial models exactly
one Casimir function exists, related to the �energy� of
the spacetime [15].

The simplest dilaton gravity model is obtained with
the �free� Poisson tensor

P =

 0 0 −X1

0 0 −X0

X1 X0 0

 , (6)

yielding vanishing curvature and torsion. In primed
coordinates

Xa′ =
Xa

1 +X0/κ
, X ′ = X (7)

the Poisson tensor transforms as

PI
′J′ =

∂XI′

∂XI

∂XJ′

∂XJ
PIJ . (8)

Consequently, in the primed coordinates we obtain again
the free PSM with an extra term,

κ−1X1′Xa′ω ∧ ea
′
, (9)

which is the result of Mignemi [4].
It seems natural to deform other dilaton models

(spherically reduced gravity, the CGHS model [16], the
JT model [17], etc.) in the same way [18] and to study
the corresponding global structure. Thus, the starting
point is the (undeformed) dilaton gravity action

L =
∫
M2

[
XaDe

a +Xdω + ε
(
X+X−U(X) + V (X)

)]
,

(10)

with ε = e+∧e− being the volume 2-form and XaDe
a =

X+(d− ω) ∧ e− +X−(d+ ω) ∧ e+ contains the torsion
2-form in light-cone representation. It is actually not
necessary to restrict oneself to potentials of the type
X+X−U(X) + V (X) � a particular class of relevant
counter examples can be found in ref. [19] � but for sake
of simplicity this special form will be assumed in the
present work because it covers all special models referred
to above. The following equations will be useful

∂X0′

∂X0
=

(
1− X0′

κ

)2

,
∂X1′

∂X1
= 1− X0′

κ
,

∂X1′

∂X0
= −X

1′

κ

(
1− X0′

κ

)
. (11)

By employing (8), (11) together with the relation

X+X− =
X+′X−

′(
1− X0′

κ

)2 , (12)

the transformation law for the potentials is established:

U → U ′ = U

(
1− X0′

κ

)
, V → V ′ = V

(
1− X0′

κ

)3

(13)

Of course, the change of variables considered above
is not an equivalence transformation: (i) it is singular;
(ii) it changes the definition of the metric.

Invariants of the deformed model can be traced back
easily to the undeformed case. For example, the �line
element�

(ds)2 = e0′ ⊗ e0′
(

1− η0

κ

)4

−
(
e1′ ⊗ e0′ + e0′ ⊗ e1′

) η1

κ
×

×
(

1− η0

κ

)3

− e1′ ⊗ e1′
(

1− η0

κ

)2
(

1− η2
1

κ2

)
(14)

with ηa := Xa′ results from a target space
diffeomorphism (8) of the PSM, applied to the standard
(ds)2 and therefore must be invariant under the
deformed transformations. Clearly, a description of the
deformed geometry by means of (14) does not make
much sense because the deformation would be without
effect on classical solutions since all singularities in
e0′ , e1′ are compensated by corresponding zeros. This
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follows already from the previous general considerations,
but it can be checked explicitly by plugging the explicit
solutions (15) below into (14). The result is the original
line element (ds)2 = e0 ⊗ e0 − e1 ⊗ e1.

On the other hand, taking a non-invariant object as
�metric� seems to be questionable from a physical point
of view. For instance, the curvature scalar related to
the metric presented in [4, 18] depends on the choice
of gauge, which from a relativistic point of view is an
inconvenient feature.

Thus there seems to be no way to evade both, the
Scylla of triviality and the Charybdis of non-invariance.

2. Deformed Solutions

For a more explicit analysis we have to express
the deformed �zweibein� in terms of the undeformed
variables,

e0′ =
(

1 +
X0

κ

)2

e0 +
X1

κ

(
1 +

X0

κ

)
e1 ,

e1′ =
(

1 +
X0

κ

)
e1 . (15)

If we require non-triviality of the deformation a non-
invariant �metric� has to be employed, as discussed in
the previous section. Since there does not seem to exist
a better alternative (there is no canonical choice), let us
assume that the �physical metric� is constructed in the
usual way from the deformed �zweibein� (15), namely
g′µν = ea

′

µ ⊗ eb
′

ν ηab, where ηab is the flat metric.5

As a demonstration one can choose spherically
reduced gravity (from arbitrary dimension D) as
undeformed starting point. Equations of motion imply

Xa = εµνeaµ∂νX . (16)

The discussion will be restricted to the behavior of
the deformed solution in the asymptotic region of the
undeformed one. This is the simplest test for the validity
of the deformed model. In this region we can apply
Schwarzschild gauge (ds)2 = ξ(dt)2−ξ−1(dr)2 with ξ(r)
and X(r) defined by [20]

ξ (r) = 1 + 2C0 |1− a|
a
a−1 r

a
a−1

(
B

a

) 2−a
2(a−1)

, (17)

and

r =
√
a

B

1
|1− a|

X1−a , (18)

respectively. The constants in these equations have
the following meaning: a = (D − 3)/(D − 2), B is a
normalization constant (which can be set to 1) and C0 is
the value of the Casimir function (for positive/negative
values a naked singularity/black hole is described,
respectively; if it vanishes the Minkowskian ground state
is reached). The (singular) limit D →∞, if treated with
care, yields the CGHS model.

Asymptotically (r →∞) one readily obtains

X ∼ r1/(1−a), X1 = 0, X0 ∼ ra/(1−a). (19)

One observes that for 1
2 ≤ a < 1 (i.e. for spherical

reduction with 4 ≤ D <∞) the function

χ(r) = 1 +
X0

κ
(20)

which characterizes the �strength� of the deformation is
large, implying that asymptotically the model is being
deformed noticeably.6 This indicates that we are dealing
in fact with the old Fock version [21] of the deformations
which modifies physics at large distances. Indeed, the
way in which the generators XI have been interpreted
corresponds to a deformation in coordinate space rather
than in momentum space: for instance, the dilaton X has
been regarded as some (power of) a �radius� and thus as a
coordinate space entity. However, these interpretational
issues are not pivotal for the present discussion.

Despite of this sizable asymptotic deformation the
scalar curvature for the primed zweibein reads

R(r) ∼ r−2/(1−a) . (21)

Thus, the asymptotically flat region remains
asymptotically flat after the deformation, which is an
attractive feature and indicates that it may be sensible
to talk of an �asymptotic region� even in the deformed
case.

It should be emphasized strongly, though, that
one should not over-interpret results extracted from a
�metric� which does not possess the (deformed) Lorentz
invariance.

5The words �metric� and �zweibein� have been put under quotation marks to indicate that this nomenclature is too suggestive.
Neither ea

′
nor g′µν transform as the notation seems to promise (unless κ is taken to ∞).

6It is somewhat amusing that D = 4 is the limiting case.
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Conclusion

We have shown that κ-deformed dilaton gravity in
2D is either classically equivalent to a corresponding
undeformed model (and thus the deformation would be
trivial) or one has to deal with a �non-invariant metric�.

However, this does not imply that all deformations
are without effect. In particular, the question of the
�correct� metric turns out to be a non-trivial one, even
after imposing the invariance condition. This will be the
subject of work in progress dealing with these issues in
a much more comprehensive manner [22, 23].

We stress that only the classical part of the full
κ-deformed Poincar�e bialgebra is being used in our
construction. Our procedure may be as well called
�deformed gravity with an invariant energy scale�. An
interesting development may consist in a combination
of the Poisson-σ models with the quantum algebra
approach to DSR described in the recent papers [24].

It also would be worthwhile to investigate to which
extent our conclusions depend on a particular choice of
the basis in the κ-deformed Poincar�e algebra.

During the final preparations of this proceedings
contribution an e-print appeared which has partial
overlap with our discussion [25]. The authors of
that paper conclude that DSR is operationally
indistinguishable from special relativity.
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ÇÀÓÂÀÆÅÍÍß ÏÐÎ ÒÐÈÂIÀËÜÍIÑÒÜ κ-ÄÅÔÎÐÌÀÖIÉ
ÃÐÀÂIÒÀÖI�

Ä. Ãðóìiëëåð, Â. Êóììåð, Ä.Â. Âàñiëåâi÷

Ð å ç þ ì å

Â ðàìêàõ 2D äèëàòîííî¨ ãðàâiòàöi¨, ñôîðìóëüîâàíî¨ â òåðìi-
íàõ ïóàññîíiâñüêî¨ ñèãìà-ìîäåëi, îáãîâîðþþòüñÿ ïðîñòi ñïîñòå-
ðåæåííÿ ñòîñîâíî ïåâíèõ κ-äåôîðìàöié, óâàãà çîñåðåäæó¹òüñÿ
íàâêîëî (íå-)òðèâiàëüíîñòi öèõ äåôîðìàöié.

ÇÀÌÅ×ÀÍÈÅ Î ÒÐÈÂÈÀËÜÍÎÑÒÈ κ-ÄÅÔÎÐÌÀÖÈÉ
ÃÐÀÂÈÒÀÖÈÈ

Ä. Ãðóìèëëåð, Â. Êóììåð, Ä.Â. Âàñèëåâè÷

Ð å ç þ ì å

Â ðàìêàõ 2D äèëàòîííîé ãðàâèòàöèè, ñôîðìóëèðîâàííîé â
òåðìèíàõ ïóàññîíîâñêîé ñèãìà-ìîäåëè, îáñóæäàþòñÿ ïðîñòûå
íàáëþäåíèÿ îòíîñèòåëüíî îïðåäåëåííûõ κ-äåôîðìàöèé, âî-
ïðîñ ñîñðåäîòî÷åí âîêðóã (íå-)òðèâèàëüíîñòè ýòèõ äåôîðìà-
öèé.
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