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The description of BPS D-branes of type II superstring theories
compactified on Calabi�Yau manifolds is discussed. For a subclass
of D-branes defined by the derived category of coherent sheaves
on a Calabi�Yau manifold at an arbitrary point of the moduli
space, the property of a D-brane Π-stability is clarified.

Introduction

It turned out that, besides of the one-dimensional
objects, strings, string theories describe extended higher-
dimensional obiects, branes [1, 2]. Branes, in particular
D-branes carrying Ramond�Ramong (RR) charges, of
the superstring theory represent the theoretical and
phenomenological interest. They are the probes for the
study of the true nature of the stringy background
and its quantum geometry. BPS D-branes are the
most important objects for the better understanding
of nonperturbative effects in the string theory and
supersymmetric gauge field theories. They provide a
nontrivial check for the conjectured web of dualities in
the string theory.

D-branes have been investigated from the geometric
and the field theoretical points of view. In the latter
case, they appear as �defects� of various dimensions to
which closed strings can be coupled. The backgrounds
of the supersymmetric compactifications of superstring
theories are described mainly by two-dimensional
superconformal field theories.

The most general point of view of a vacuum structure
is a priori not geometric but �highly stringy�, the
ambient space being defined by the abstract conformal
field theory. In this regime, the equations of motion
of field theories (the Yang Mills eq., the Einstein eq.,
and others) will not be valid and should be drastically
modified. In some cases (for example, the Gepner
models), there are points in the moduli space where
these modified equations are connected to the ordinary
equations by variations of parameters. They are called
�large volume limit� points of the K�ahler moduli space.

The particular cases of the vacua described by

the N = (2, 2) superconformal field theories have
geometric realizations by Calabi�Yau manifolds M . The
N = 2 supersymmetric algebra admits a topological
twisting, and the physical interest to these models
implies that they lead to string theories with spacetime
supersymmetries. Therefore, in a compactification
of the superstring theory, we restrict ourselves by
configurations of the form

M ×RD, D = 10− 2d, (1)

where M is a compact Calabi�Yau manifold of
the complex dimension d, RD is the D-dimensional
Minkowski space. The Calabi�Yau threefolds provide
natural arena for studying the nonperturbative string
geometry.

These Ricci flat K�ahler manifolds are T 2 for d = 1
(the resulted D = 8 theory has 32 supercharges), T 4 (32
supercharges) and K3 (16 supercharges) for d = 2, and
Calabi�Yau threefolds M (8 supercharges) for d = 3.
The moduli space of the Ricci flat K�ahler metrics on
a Calabi�Yau space M has the dimension h11(M) +
2h12(M), h11 defines the dimension of module space of
K�ahler forms and 2h21 is the dimension of the space of
inequivalent complex structures on M .

The starting point of view for the description within a
world-sheet conformal field theory of D-branes wrapped
around supersymmetric cycles in the Calabi�Yau space
is superconformal invariant boundary conditions on
world-sheet superconformal fields. The D-branes in
the superstring theory are introduced by imposing the
appropriate boundary conditions on the closed string
coordinates in the world-sheet superconformal field
theory.

The phenomenological interest is served to study the
space-filling BPS D-branes in the type II superstring
theories. These configurations are described by the
boundary conditions preserving of the N = 1 world-sheet
symmetry and the half of the space-time symmetry.
The general classification of these conditions for the
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N = (2, 2) superconformal field theory has been done
in [5]: the A-type boundary conditions are

J+ = −J̃−, G+ = ±G̃−, eiφ
+

= e−iφ̃
−
, (2)

and the B-type boundary conditions are

J+ = J̃−, G+ = ±G̃−, eiφ
+

= (±)deiθ = e−iφ̃
−
, (3)

where G±(G̃±) are the superpartners of the energy-
momentum tensor T (T̄ ) of the conformal weight 3

2 ,

J±(J̃±) are U(1) currents of the conformal weight 1,
φ±(φ̃±) are scalars associated with the bosonization of
U(1) currents in the left- (right-) moving sectors. The
parameter θ is called the �phase� of supersymmetric
cycles.

Such a compactification leads to the gauge field
theories with space-time supersymmetry. The geometric
realization of these boundary conditions is specified by
the supersymmetric cycles in Calabi�Yau manifolds, i.e.
by submanifolds X on which the fields must take the
boundary values at the boundary of a Riemann surface
(the complex linear bundles E over it together with their
U(1) connections), and supersymmetry and conformal
symmetry are conserved in the boundary field theory.

In the case of the compactification type II superstring
theories on the Calabi�Yau threefold, the N = (2, 2)
superconformal field theory with ĉ = 3 admits the
tpological twisting redefinition of supercharges.

Each of the two supercharges G+ and G− can be
choosen as the BRST charge Q, (i.e. Q2 = 0), and
we obtain two distinct A-type and B-type twisted
topological superstring theories.

Topological BPS D-branes are the boundary
conditions of the open string world-sheet of the twisted
topological field theory preserving the half world-sheet
superconformal and N = 1 spacetime supersymetries.
These BPS topological D-branes of the superstring
IIA and IIB theories are called, respectively, A-type
and B-type topological D-branes. We consider the
situation where some of spatial directions of a D-brane
are wrapped around some cycles in the Calabi�Yau
manifold.

The main problem in the world-sheet description of
the D-branes is to find their connection with geometry
beyond of the large volume points of the moduli space.
One of the main conjecture in this direction claims
that the holomorphic properties of the B-type D-branes
do not depend on the K�ahler moduli space (i.e. the
holomorphic properties D-branes in the K�ahler moduli
space are the same as at the large volume points). In

general, the properties of the D-branes are changed if
K�ahler moduli are varied.

The natural language for the study of classical BPS
D-branes at an arbitrary point of the compactified
moduli space of the type II superstring theories on
the Calabi�Yau manifold is a homological algebra and
the theory of derived categories. In this approach,
topological B-type D-branes are descibed by the
category of the boundary conditions of topological open
strings which, in turn, form a category equivalent to
the derived category of the coherent sheaves D(cohM)
on the Calabi�Yau manifold [8]. As we mentioned
above, the topological D-branes decribed by the derived
category of coherent sheaves do not depend on the
K�ahler moduli space. To proceed from topological branes
to physical ones, one has to add the K�ahler dependent
information, in particular, a notion of stability.

1. Calabi�Yau Spaces

The investigations of possible options of background
configurations of the superstring theory have shown
that they are constrained. The only known way to
satisfy these constrains is to take Calabi�Yau manifolds
which are compact, complex K�ahler manifolds with Ricci
flat K�ahler metric. We recall the primary definitions
and mathematical statements connected with these
manifolds which are of their application to the D-brane
theory.

• A linear connection on a differentiable manifold M
generated by a bundle O(M) of orthogonal frames
is called the metric connection.

• Every Riemannian manifold admits only one
metric connection with zero torsion (the
Riemannian connection).

• A complex structure on a real manifold M is a
tensor field Jνµ such that JνµJ

σ
ν = −δµσ and a certain

integrability condition.

• A complex manifold is a real manifold suplied with
complex structure.

• Let gik̄ be a Hermitian metic. If the form J =
gik̄dz

i ∧ dz̄k̄ is closed, then J and gik̄ are called,
respectively, the K�ahler form and the K�ahler
metric.

• A Hermitian metric is a Riemaniann metric gµν
such that Jµρ J

ν
σgµν = gρσ. A Hermitian metric is a

K�ahler one if and only if Jµν is covariantly constant
with respect to the connection defined by gµν .
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• If we denote the Hodge numbers hp,q =
dimHp,q

∂̄
(M), then, for every K�ahler threefold, we

have the Hodge diamond:

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0.

(4)

• A Ricci form is defined by R = iRik̄dz
i∧dz̄k̄, where

Rik̄ = ∂2(ln det g)/∂zi∂z̄k̄ is the Ricci tensor of the
K�ahler metric. The Ricci form is closed, dR = 0. It
defines a class of the cohomology droup H2(M,R).
This class does not depend on a K�ahler metric and
is the first Chern class c1 of the manifold M.

• If c1 6= 0, then the form R is not exact and there
is no Ricci flat metric on the manifold M .

• The Hodge diamond for Calabi�Yau threefold
take the following form:

1
0 0

0 h2,2 0
1 h2,1 h1,2 1

h1,1

0 0
1.

(5)

We see that the only nonzero Hodge numbers in
this case are h1,1 = h2,2 and h2,1 = h1,2. The
fact is that h3,0 = 1 reflects the property of a
canonical linear bundle (canonical sheaf) on M to be
trivial and therefore it admits a global holomorphis
section Ω. The three-form Ω allows us to establish
the canonical isomorphism between H2,1(M) and
H1(M,T ), where T is a holomorphic tangent bundle.
We have ω : H1(M,T ) → H2,1(M) or, in the local
coordinats, Bj

ī
dX ī ∂

∂Xj → ΩijlB
j
ī
dXidX ldX ī. These

groups are connected with the special class of fields
(marginal operators) which generate deformations of
the theory preserving the superconformal structure in
a superconformal field theory.

A calibration φ on a Riemannian manifold (M, g) is
a p-form on M which is closed, dφ = 0, and provides a
lower bound for the volume form: for any p-dimensional
oriented linear subspace V of the tangent space at any
point of the manifold, one has φ|V ≤ (volume)V (here

φ|V = α · (vol)V for some α ∈ R and φ|V ≤ (vol)V if
α ≤ 1).

Let Σ be an oriented submanifold of the manifold M
of the dimension p. Then each tangent space TxΣ for
x ∈ Σ is an oriented tangent p-plane. We say that Σ is
a calibrated submanifold if φ|TxΣ=(vol)|TxΣ for all x. All
calibrated submanifolds are minimal submanifolds. This
is true for compact calibrated manifolds but noncompact
calibrated submanifolds are locally volume minimized.

A calibration φ on (M, g) can only have nontrivial
calibrated submanifolds if there exists an oriented
tangent p - plane V onM with φ|V = volV . For instance,
φ = 0 is the calibration on M , but it has no calibrated
submanifolds.

Every Calabi�Yau manifold M (dimM = m) with
the complex volume m-form Ω and K�ahler form J admits
only two types of calibrations:

• φ = J , the calibrated submanifolds correspond to
the cyles defined in (2).

• φ = ReΩ, the calibrated submanifolds correspond
to the cycles in (3).

Let us consider the complex projective space CPn

formed by taking n + 1 the complex coordinates and
identify

(z1, . . . , zn+1) ≈ (λz1, . . . , λzn+1) (6)

for any complex number λ. This identification is
important because it makes CPn to be a compact
manifold. CPn is a K�ahler manifold but not a
Calabi�Yau one. Many Calabi�Yau manifolds can be
obtained as its submanifolds. In particular, let P be a
homogeneous polynomial

P (z1, . . . , zn+1) = λkP (λz1, . . . , λzn+1). (7)

The submanifold M of the manifold CPn defined by
equation

P (z1, . . . , zn+1) = 0 (8)

is a K�ahler manifold in general. But if we choose k = n+
1, then this manifold has c1 = 0 and therefore will be a
Calabi�Yau manifold. For n = 3 the Hodge numbers of
a quintic hypersurface in CP 4 are (h11, h21) = (1, 101).
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2. The Donaldson�Uhlenbeck�Yau Theorem

A holomorphic bundle E of rank r on M is given by
a collection of trivial bundles Ui × Cr over the open
cover {Ui}i∈I ofM patched together by the holomorphic
transition functions φij : Ui ∩ Uj → GL(r, C). A
holomorphic section of E (locally) are the the r-tuple
of holomorphic functions which can be patched under φ.
A Cauchy�Riemann ∂̄-operator is patched together of
the local operators ∂̄ ◦ φij = φij ◦ ∂̄ to give a linear map

∂̄E : Ω0(E)→ Ω0,1(E), (9)

whose kernel is coincides with the space of the
holomorphic sections of E. Here, Ωp,q(E) denotes C∞

forms of the type (p, q) with values in E. Any connection

dA : Ω0(E)→ Ω1(E) = Ω1,0(E)⊕ Ω0,1(E) (10)

splits into ∂A⊕∂̄A according to the above decomposition.
dA is compatible with the holomorphic structures of E
if ∂̄A = ∂̄E . If we define Hermitian metrics h on E, then
there exists a unique connection dA compatible with the
metric and holomorphic structure (i.e. dA(h) = 0, ∂̄A =
∂̄E .), (dAsi = ∂As = Σ∂hij(h−1)jksk). The curvature of
this connection is

FA = d2
A = F 0,2

A ⊕ F 1,1
A ⊕ F 2,0

A =

= ∂2 ⊕ (∂∂̄A + ∂A∂̄A)⊕ ∂̄2
A. (11)

We have ∂̄2
A = 0 so that F 0,2

A = 0 and F 2,0
A = 0 by

conjugation.
On the contrary, a connection on any complex bundle

satisfying F 0,2
A = 0 defines a holomorphic structure on

that bundle, ∂̄2
A = 0. The F 0,2

A = 0 is the integrability
condition for that equation. If we attempt to solve the
remaining Hermitian�Yang�Mills equation

F 1,1
A = 0 (12)

on a Calabi�Yau manifold M with c2(E) = c2(TM),
then solutions will exist for E holomorphic if and only if

µ(E′) < µ(E) (13)

for all 0 −→ E′ −→ E, where

µ(E) =
1

rkE

∫
M
c1(E) ∧ Jd−1, (14)

i.e. when the holomorphic bundle E is µ-stable (the
Donaldson � Uhlenbek�Yau theorem).

At large volume points of a D-brane moduli space,
the type-B BPS branes are described by Hermitian
holomorphic vector bundles whose stability defines one
of the D-branes.

3. Central Z(E) Charges and D-brane RR
Charges Q(E)

There exists the relation between RR charges of D-
branes and the topology of a Chan�Paton vector bundle.
The RR charge of a wrapped D-brane is defined by the
topology of the embedded cycle f : S →M and topology
of the Chan�Paton vector bundle E :

Q = ch(f!E)
√
Â(TM), (15)

where TM is the tangent bundle to M , f! is the
Gysin map. But D-brane charges can be understood
most naturally as classes in topological K-theory. The
crucial observation for this was the following: addional
brane � antibrane pairs with the same gauge bundle do
not change the total charge. In what follows, we shall
consider the type II superstring theory on a complex
variety and wrapped branes on a complex subvariety.
The BPS central charge Z(E) of aD-brane is determined
by its RR charges Qi by the relation

Z(E) = ΣQi(E)Πi =
∫
S

exp{−B − iJ}ch(E)
√
td(Tx)+

= quantum corrections. (16)

4. The Classical Geometry and the Boundary
Conformal Field Theory of D-branes on
Calabi�Yau Manifolds

At a large volume limit points and large-complex
structure limit, BPS D-branes are wrapped on
holomorphic cycles or special Lagrangian submanifolds
of the Calabi�Yau manifold M . These are submanifolds
X on which the open strings can end. In the presence
of D-branes, the boundary conditions for open strings of
sigma models are modified in such a way that Dirichlet
boundary conditions are allowed in addition to Neumann
boundary conditions. The role of the equations of motion
in this case is played by the conformal invariance.
The requirement that the boundary conditions preserve
the superconformal invariance impose the constraints
on a submanifold X. Ooguri at al. [5] specified the
boundary conditions on the world sheet for N = (2, 2)
supersymmetry generators and explained their geometric
significance. The further efforts have been concentrated
on extending the boundary conformal field description of
D-branes to the case of Calabi�Yau manifolds. In the
supersymmetric Calabi�Yau sigma model, there are two
kinds of supersymmetric cycles:
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• the A-type supersymmetric cycles (X,E). The
submanifold X is a special Lagrangian submanifold
of M with a flat U(1) connection such that

i∗ω = 0, (“Lagrangian“),
i∗[Ime−iθΩ] = 0, (“special“),

FA = 0, (17)

where FA is the curvature of A, and i : X →M.

• the B-type supersymmetric cycles (X,E). The
submanifold X is a complex submanifold of M
with a flat U(1) connection such that

F 0,2
A = 0, Im(e−iθ(ω + FA)n) = 0, (18)

where n = dimM .

For a more general conformal field theory, we don't
have the Lagrangian description of the theory, so the
classification and interpretation of boundary conditions
is not so straightforward. The branes define Dirichlet
and Neumann boundary conditions in nonlinear sigma
models with a Calabi�Yau treefold target space:

• the A-type D-branes are 3-branes wrapped on
what are called special Lagrangian submanifolds;

• the B-type D-branes are 2p-branes wrapped on
holomorphic cycles carrying holomorphic vector
bundles.

At the first sight, this notation may contradict the
discussion of the previous section. Since 2p cycles
and masses of B branes are controlled by K�ahler
moduli (and thus are calculable in the A-twisted
topological closed string theory), 3-cycles and masses of
A branes are controlled by the complex structure moduli.
Nevertheless, it is correct because, in going from the
open to closed string channel, the boundary conditions
of the U(1) current change a sign interchanging A and
B twistings. This switch has an important consequence
(if we combine it with the known properties of CY
sigma models): the A-twisted models receive world-
sheet instanton corrections, and the B-twisted models
receive no quantum corrections. This means (physically)
that the N = 2 superpotential in the compactified IIB
theory (it depends only on complex structure moduli) is
classicaly exact. In the large volume limit, the central
charges and the masses of A-type branes are already
exact. The masses of the BPS B-type D-branes of
type II superstring theories receive world-sheet instanton
corrections.

In spite of a detailed undrestanding of the D-
brane dynamics in a flat space, their behaviour in the
abstract conformal field theory is less understood. The
string vacua, where the D-branes spectra are essentialy
interesting, form N = (2, 2) superconformal field theory.
The moduli space of the N = (2, 2) SCFT are affected
by the string quantum corrections and has a rich phase
structure. In the geometric phase of the string vacua, one
can use the classical geometry description. In the non-
geometric phase, the semiclassical description is broken.
In the geometric phase, a new degree of freedom can be
described by semiclassically as a gauge field living on
the various submanifolds of the space-time. Therefore,
in the geometric phase, the D-branes can be described
byK-theory classes (rather than by singular cohomology
classes).

However, such an explicit and intuitive description is
lacking in the deep stringy regimes. In these regions of
the moduli space, one has to rely on the abstract SCFT
techniques in order to classify the D-brane charges and
study their dynamics. In the closed string case, the
string propagating on the Calabi�Yau manifolds can
be described by variety techniques depending on which
region of the complex structures and K�ahler moduli of
the Calabi�Yau manifolds one concentrates.

A complete microscopic description of D-branes
wrapped on supersymmetric cycles is available in the
case where these cycles are submanifolds in a flat space
like tori. This description is extended to spaces where
the technique of conformal field theories constructed
from fields can be easily applied as in the case of
orbifolds. However only recently, the case of D-branes
living in nontrivial curved spaces and wrapped on
the supersymmetric cycles in these spaces has been
investigated from the microscopic point of view.

The spectrum of a brane can depend on the particular
vacuum (point in the moduli space). For a given N =
(2, 2) supersymmetry, this dependence of the spectrum
of moduli is highly constrained: it is well known that the
BPS spectrum can be change only on lines of marginal

stability , defined by the condition

Im
Z(Q1)
Z(Q2)

= 0. (19)

The problem of finding the spectrum of wrapped branes
on Calabi�Yau manifolds and deciding whether it
changes on string scales is not trivial.

The mirror symmetry will exchange the spectrum
and world-sheet theories of A-type branes on a Calabi�
Yau M isomorphic to that of the B-type branes on its
mirror W . The branes define Dirichlet and Neumann
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boundary conditions in nonlinear sigma models with the
Calabi�Yau treefold target space.

5. The Category and Topological D-branes of
the Type IIB Superstring Theory

The topological string theory is obtained by twisting
the N = (2, 2) superconformal field theory. We
will consider the type IIB model. Recall that the
N = (2, 2) superconformal algebra is generated by
the holomorphic T (z), G±(z), J(z) and antiholomorphic
T̃ (z̄), G̃±(z̄), J̃(z̄) currents corresponding to the
generators of the superconformal algebra from relations
(2),(3). The twisted topological sigma model for the
type IIB superstring theory with boundaries Ck ∈ M
and with the Chan�Paton factors living in the finite-
dimensional complex vector bundle E on the Calabi�
Yau manifold M was studied in [6].

T (z) −→ T (z)top = T (z)± 1
2∂J(z)

T̃ (z̄) −→ T̃ (z̄)top = T̃ (z̄)± 1
2 J̃(z̄)

(20)

and, as a result, we will have shift of the conformal
weight of all operators in the theory, h→ htop = h− 1

2q,
where q is the U(1) charge.

Deformation (20) generates two types of topological
string models: type A when signs are opposite in (20),
and type B when, in (20), signs are the same. One of
the supercharges, for example, G+

− 1
2
of the N = (2, 2)

superalgebra can be reinterpreted as the BRST operator
Q = G+

− 1
2
. Hence, Q2 = 0 and the Hilbert space of the

twisted theory can be defined as the Q-cohomology of
the Hilbert space states of the original conformal field
theory. The U(1) charge becomes a ghost charge and
current J(z) becomes the ghost number operator.

Note that type A and type B twists (20) are
comparable only with A and, respectively, B boundary
conditions (2),(3). The open-closed type B theory was
investigated in [6]. The open string in this case can be
consistently coupled to a holomorphic bundle E on M
[6].

The Fermi fields ηī, θī are the sections of
Φ∗(T 0,1(M)), ρi is the section of T ∗(Σ)⊗Φ∗(T 1,0), and
θj = gj,̄iθ

ī. The Lagrangian of the B model is

L = t

∫
Σ

d2z
(
gij̄∂zφ

i∂z̄φ
j̄ + iηī(Dzρ

i
z̄ +Dz̄ρ

i
z̄)gīi+

+iθi(Dz̄ρ
i
z −Dzρ

i
z̄) +Rīijj̄ρ

i
zρ
j
z̄η
iθkg

kj
)
. (21)

This Lagrangian is invariant under the fermionic
supersymmetry. The supersymmetries of the model are
generated by the infinitesimal BRST transformations

δφi = 0,
δφī = iεηī,

δηī = δθi = 0,
δρi = −εdφi.

(22)

This model can be coupled to a background gauge field
A on each boundary Ck:

LCk =
∫
Ck

Φ∗(A)− ηīFījρj . (23)

The Lagrangian L+LCk preserves the BRST symmetry
if and only if

Fīj̄(A) = 0, (24)

that is, the operator ∂A = ∂̄+A0,1 defines an integrable
holomorphic structure on the gauge bundle E and ∂̄E
denotes the covariant Dolbeault operator on E. The
BRST operator Q is defined by δΛ = −iα{Q,Λ} for
any operator Λ. The Hilbert space of states in this
topological field theory is given by the cohomology of the
BRST operator Q. The operators corresponding to the
open string states φ belong to the Dolbeault cohomology
H0,p

∂̄
(M,EndE) [6].
The U(1) supercharge will define a grading of the

superalgebra, in which Q will have degree 1. For open
string states, the operators correspond to the bundle-
valued Dolbeault cohomology

φ ∈ Hp,0(M,EndE), (25)

where p is the ghost number of the operator φ. The
topological operators will have integral U(1) charges.

To each D-brane the phase shift between the left-
moving and right-moving spectral flow operators at the
boundary ending on that D-brane corresponds. This is
the grade of a D-brane [8].

The grading of the B-type branes is defined by

1
π

Im log
∫
X

eB+iJchE
√
Td (TX) + . . . .

This grading depends on B+ iJ, and therefore it will
not appear as physical data in the topological B-model.
The Witten's B-model needs to be modified in order to
include grading. For this, the collection of D-branes is
decomposed as

E =
∞⊕
−∞

En,
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where only the finite number of bundles En is nonzero.
The notation of the grading in the Witten's B-model
leads to the substitution of the relation (25) by

φ ∈ H0,p(M, (Em)∨ ⊗ En), (26)

and now the ghost number of the operator φ is p−m+n.
Using the properies of the sheaf cohomology [11], relation
(26) can be rewritten as

φ ∈ Extp(Em, En), (27)

where En is the locally free sheaf corresponding to the
vector bundle E of rank n. The product of operators is
defined by the Yoneda pairing:

Extp(Em, En)⊗ Extq(En, Ep)→ Extp+q(Em, Ep). (28)

It is easy to see that, for the finite collection of
nontrivial sheaves En, and the sets of operators φ of the
form (27) define the category of D-branes:

• The objects are locally free sheaves En (D-branes).

• The morphisms are operators φ defined in (27) (the
open strings stratched between D-branes).

The verification of the axiom of the category
is trivial. For this, it is necessary to take a
deformed topological conformal field theory by adding
a topological world-sheet action given by the term

δφ = t

∫
Gk

{G,φ} (29)

to it. It is amounted to the adding of the boundary
term equation δQ = tφ = d to the BRST current
Q0. The operator φ is supported on the boundary Ck.
The deformed topological field theory will conserve the
properties of the twisted N = 2 superconformal field
theory if the ghost number h of the operator φ will
be equal to one (in the nontwisted theory, φ is a
marginal operator). The nontrivial and most important
step is the choice of the deformation operators φ living
in Ext0(En, En+1) = Hom(En, En+1). Now the content
of the deformed topological field theory is defined by
the collection of locally free sheaves En and by the
holomorphic mapping dn (which corresponds to the
marginal operators of the deformed topological field
theory)

dn : En → En+1. (30)

The BRST operator of the theory becomes

Q = Q0 + δQ = Q0 + d(σ = 0) + d(σ = π). (31)

The nilpotency of this operator yields

dn+1dn = 0, (32)

that is, the deformed topological field theory is defined
by the bounded complexes

E• : . . .
d−2−→ E−1 d−1−→ E0 d0−→ E1 d1−→ . . . . (33)

For the new deformed topological field theory, one needs
to find the cohomology of the new BRST operator Q.
Let us find the operator algebra of the new deformed
topological field theory. One needs to include both
boundary operators: a boundary operator defined for
a given boundary condition and a boundary condition-
changed operator. For each n we consider the direct sum
of two sheaves En ⊕Fn and homomorphisms

. . . −→ En ⊕Fn

 dEn 0
0 dFn


−→ En+1 ⊕Fn+1 −→ . . .(34)

This complex gives a notation of two branes:

• E• � the boundary condition for the start of the
string,

• F• � the boundary condition for the end of the
string.

In order to work with such strings, we have to develop
a technique collapsing a double complex into a single
complex. Using relation (34), we can form the double
complex of the sheaves as

↓ dE1 ↓ dE1
dF−1−→ Hom(E1,F0)

dF0−→ Hom(E1,F1)
dF1−→

↓ dE0 ↓ dE0
dF−1−→ Hom(E0,F0)

dF0−→ Hom(E0,F1)
dF1−→

↓ dE−1 ↓ dE−1 .

(35)

From (35) we can form the single complex

. . . −→ Hom0(E•,F•)
~d0−→ Hom1(E•,F•)

~d1−→ . . . , (36)

where Homq(E•,F•) = ⊕nHom(E ,Fn+q) and ~d =
dE + dF . The cohomology of complex (36) is
Hn−mHom•(E•,F•) (the calculation can be fulfiled
using the spectral sequence with the initial term
(E0)nm = Hom(Em,Fn). The another complex

↑ Q0 ↑ Q0

d̄→ Ω1(Hom0(E•,F•)) d̄→ Ω1(Hom1(E•,F•)) d̄→
↑ Q0 ↑ Q0

d̄→ Ω0(Hom0(E•,F•)) d̄→ Ω0(Hom1(E•,F•)) d̄→
↑ Q0 ↑ Q0

(37)
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defines the spectral sequence with the initial term
Ep,q2 = Hp(X,Hq(Homq(E•,F•))) which converges to
the cohomology group Hp+1

Q = HomP (E•,F•).
It turns out futhermore that this group coincides with

the cohomology group of the chain complex

hom• : . . .→ homP (E•,F•inj)→

→ homP+1(E•,F•inj)→ . . . . (38)

Here,

homP (E•,F•inj) = ⊕n Hom(En,Fn+P
inj ). (39)

Every locally free sheaf Fn has the injective
resolution

0→ Fn → I0(Fn)→ I1(Fn)→ . . . , (40)

where Is(Fn) are the injective objects of quasicoherent
sheaves. We can construct the complex F•inj of the
injective objects of a locally free sheaf Fn

F•inj : . . .→ F0
inj → . . .→ Fsinj → . . . , (41)

where Fninj = ⊕sIs(Fn−s).
The operators of the deformed topological field

theory corresponding to open string states belong to
HomP (E•,F•), where P is their ghost number and the
operator product is defined by the Yoneda product

HomP (E•,F•)×HomQ(E•,F•) = HomP+Q(E•,F•).(42)

5.1. The Category of Topological D-branes

The category of all possible topological D-branes T (M)
on a Calabi�Yau manifold M up to the physical
equivalence can be defined as the category of all possible
topological field theories of the type considered above
with the target space M . In another way, T (M) is the
category with objects of all possible bounded complexes
of locally free sheaves on M and the morphisms of the
open string operators given by HomP (E•,F•). These
definitions take place up to physical equivalence. For
a final definition of the category T (M), it is necessary
to take into account the equivalence relations. Two D-
branes described by complexes of locally free sheaves are
physically equivalent if and only if

HomP (E•1 ,F•) = HomP (E•2 ,F•),
HomP (F•, E•1 ) = HomP (F•, E•2 ).

(43)

for all P and F .
Now we can give the precise definition of the category

of topological D-branes T (M) as the category of all

complexes of locally free sheaves on M with the above-
mentioned morphisms of the modulo above-mentioned
relations.

Let us consider the functor F : KLF (M) → T(M)
from the category of complexes of locally free sheaves to
the category of D-branes such that:

• chain complexes in KLF (M) map to the
corresponding D-branes in T (M);

• chain maps of KLF (M) transform to those of
Hom0(E•,F•) in T(M).

A quasi-isomorphism f : E•1 → F•2 of the category
KLF (M) induces a map

f∗ :
P

Hom(E•1 ,F•)→
P

Hom(E•1 ,F•), (44)

or, graphically for P = 1,

−→ E0
1 −→ E1

1 −→ E2
1 −→

↓ f ↓ f ↓ f
−→ E0

2 −→ E2
2 −→ E2

2 −→
↘ ↘ ↘ ↘
−→ F0 −→ F1 −→ F2 −→,

(45)

which is an isomorphism in T (M). Indeed, f∗ in (44) is
the canonical isomorphism.

The category T (M) satisfies almost all the conditions
to say that it is the derived category of the category

KLF (M). The last is not Abelian. Therefore, we change
the category of the complexes of locally free sheaves

KLF (M) by the category of complexes of coherent
sheaves Kom(M) and denote the corresponding derived
bounded category by Db(M).

The derived category D(A) of an Abelian category
A is defined by the following universal properties:

1. there exists a functor Q from category Kom(A)
to D(A) which transform quasi-isomorphisms to
isomorphisms;

2. for any other category D′(A) and a functor F
satisfying similar to the previous condition, there
exists a functor G such that the following diagram
is commutative:

Kom(A)
Q−→ D(A)
F

↘ ↓ G
D′,

(46)

i.e. F = GQ.
In such a way, we can obtain the bounded derivative

category Db(M) of a category of coherent sheaves
Kom(M) for which KLF (M) is a subcategory.
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If we replace the category of the complexes of
coherent sheaves Kom(M) in (46) for this case by
the category of the complexes of locally free sheaves

KLF (M) and the category D′ by the category of
the topological D-branes T (M), take the functor F
constructed above for T (M) which has the same
objects as T (M) but the set of the morhisms is
restricted to Hom0(E•,F•). In this case, there is the
functor G : Db(M) → T0(M) which establishes
the equivalence of the categories. It is easy to see
that the functor G is full, faitful, and dense i.e.,
it determines the equivalence of the categories. The
relation Homp(E•,F•) = Hom0(E ,F [p]) ensures the
existence of branes in the category T (M) connected by
the strings with nonzero ghost numbers.

5.2. The Category of Physical D-branes

In the previous sections, we have elaborated the
construction of the category of boundary conditions in
the topological string theory (a category of topological
D-branes). The category of BPS boundary conditions
in the conformal field theory (a category of physical
D-branes) will be a subcategory of the category of
topological D-branes. Every physical D-brane has a
topological analog but not vice versa. The physical
D-branes are, first of all, determined by the stability
property [9, 10, 15]. These are objects of Db(cohM)
which are Π stable against all possible decays. The basic
characteristcs of the BPS D-brane E are its RR charge
Q(E) and its BPS central charge Z(E) depending on
Q(E) and a point of the K�ahler moduli space u.

Recall the stability property of solutions of the
Yang�Mills equations. The solutions of the Yang�
Mills equations preserving the N = 1 supersymmetry
correspond to holomorphic vector bundles satisfying the
condition of µ-stability: the holomorphic vector bundle
E is µ-stable if, for all subbundle E′, we have (14).
All quantities which depend on the K�ahler class J are
modified in the string theory by world-sheet instanton
corrections. In (14), the dependence on the K�ahler class
is replaced by the dependence on the period Π on the
Calabi�Yau manifold M . For BPS D-branes of the
superstring theory, the slope of (14) is replaced by the
�grade�

φ(E, u) =
1
π

Im logZ(E),

φ(E, u)− φ(Ē, u) = 1(mod2), (47)

where u is a point of the moduli space and Z(E) is the
central charge of the object E. The central charges of

the brane E and its antibrane Ē are connected by the
relation Z(E) = −Z(Ē). It would be natural to replace
the condition µ-stability by the comdition of Π-stability,
the string version of the µ-stability condition. But the
direct generalization of condition (13) such as the BPS
D-brane will be a Π-stable object of the category of
topological branes at a point u if φ(E′) < φ(E) for all
subobjects E′ of the object E is incorrect. The derived
category is not Abelian and we have no natural definition
of subobjects, a kernel, and a cokernel.

For the conformal field theoretical generalization of
stability arguments, we need the physical interpretation
of the grading p of the morphisms Extp(E,F ). It is, in
fact, the world-sheet U(1) charge of a bosonic open string
connecting the branes E and F . Its most direct physical
meaning is developed by the relation

m2 =
1
2

(p− 1), (48)

where m (in string units) is the mass of the boson in
string theory. In category terms, two branes (or brane-
antibrane pair) E and F may make up a bound state
formation G if all gradnigs p of all the morphisms
Extp(E,F ) will be less than one. For any exact sequence

0 −→ E −→ G −→ F −→ 0, (49)

the object G goes unstable if the grading p of
Extp(E,F ) between any of its subobjects E and
quotients F becomes greater than one. This is because
the negative U(1) charges of chiral operators in the
unitary superconformal field theory are not allowed. The
contradiction can only be resolved by the decay of G.

The flow of gradings is induced by the variation
of the K�ahler moduli space (B-type D-branes) and
complex structures (A-type D-branes). In the large
volume limit, each brane corresponds to some stable
coherent sheaf, and for each pair of branes E and F, we
have graded morphisms Extn(E,F ) = Hom1(E,F [n]).
The morphism of degree n at starting point K of
the K�ahler moduli space will undergo �flow grading�
determined by the degree of the phase

n→ n′ = n+ φL(F )− φK(E)− φL(E) + φK(F ). (50)

An equivalent rule can be expressed in a similar
way by grading varying with φ: Hom(E[φK(E)], F [n +
φK(F )])→ Hom(E[φL(E)], F [n+ φL(F )]).

As we said above, holomorphic B-type D-branes
are described everywhere in the moduli space by the
formalism of derived categories. The fundamental reason
why one is forced to use derivative category in the
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study of D-branes is discussed in [16, 17]. Those autors
showed that Fourier�Mukai transforms corresponding
to monodromies are associated with general loops in the
K�ahler moduli space and act naturally on the derived
category (not a category coherent sheaves).

By analogy with the exact sequence (49) of an
Abelian category, we introduce �distinguished triangles�
in a derived category:

Cf
[1]

↙ ↖
A

f−→ B,

(51)

where �[1]� denotes the morphism from Cf to A[1].
Every morphism f : A → B in the derived category
is completed to a distinguished triangle

. . . −→ Cf [−1]
ψ−→ A

f→ B
φ−→ Cf [1] −→ . . . , (52)

where Cf = Cone{A f−→ B} is the complex with the

terms A[1]⊕B and the morphisms

(
dA 0
−f dB

)
.

. . . −→ An+1⊕Bn

 dAn 0
−f dBn−1


−→ An⊕Bn−1 −→ . . . .(53)

The morphism �[1]� can be shuffled around any edge,
and triangle (51) can be rewritten as

C
↙ ↖

A[1]
[1]−→ B,

(54)

or as

C[−1]
↙ ↖ [1]

A
f−→ B.

(55)

Certain triplets of D-branes {A,B,C} are
distinguished because of the tachyon condensation
between a pair of them can produce the third one as
a bound state. The rules for Π-stability of D-branes
are explained in [10]. The distinguished triangles (51),
(54),(55) tell us that

• the object C = Cone(f : A → B) is potentially a
bound state of objects A[1] and B,

• the object B is potentially a bound state of objects
A and C,

• the object A is a bound state of objects B and
C[−1].

In distinguished triangles, the gradings involving
open strings need to keep track. The data for Π-stability
are the grading φ ∈ R associated to the objects in
Db(cohM).

The D-brane C in (51) is stable with respect to A
and B if and only if φ(A)− φ(B) < 1. The �stability� of
a given vertex of some triangle is relative to this triangle
only, a given D-brane may decay by other channels.

If the difference in φ's exceeds one on any of the
edges of triangles (51),(54),(55), then the D-brane in the
opposite vertex will decay.

As we mentioned above, the stringy version of the
stability condition which reduces to the conditions in
large volume and orbifold limits is called Π-stability. In
short, this problem can be stated as follows. Let Stab p
be the set of Π-stable objects at p. All triangles must
satisfy the constraints given above. Consider the path
from p1 to p2.

Suppose M contains a rational curve S which can
contracted down to a point by varying the complexified
K�ahler form. Let us consider the basic set of objects
{A,B,C} in D(M):

• A � the skyscraper sheaf Ox, where x ∈ S, φ(Ox =
= 0);

• B � the skyscraper sheaf Oy, where y /∈ S,
φ(Oy) = 0 ;

• C � the structure sheaf OS of the flopping curve
S (D2-brane wrapped on S), φ(OS) = − θ

π ,

where eiθ ∼ t =
∫
S
D + iJ. The grading φ depends

continuously on the complexified K�ahler form B + iJ.
We consider the following cases:

A

u
[1]

↙ ↖ w

OS
v−→ OX .

(56)

A = Cone(OC → OX) = OC(−1)[1] u = 1 − θ
π , v =

θ
π , w = 0. If θ < 0 (we pass from phase M to phase M ′),
OX brane will decay into A and OS branes.

B

u
[1]

↙ ↖ w

OC [−1] v−→ A.

(57)

Hom(OS [−1]→ A) = C2,
B = Cone(OC [−1] → A) = OC(−1)[1], u = θ

π ,

v = 1 + θ
π , w = 0.
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If θ < 0 (we pass from phase M to phase M ′), the
B-brane jumps into existence.

C

u
[1]

↙ ↖ w

OC [−1] v−→ B.

(58)

Hom(OS [−1] → B) = C = Cone(OC [−1] → B) =
OC(−1)[1], u = − θ

π , v = 1 + θ
π , w = 0. If θ < 0 (we

pass from phase M to phase M ′), the C-brane jumps
into existence.

Conclusions

The existence of D-branes in string theories gives
convincing arguments to conclude that five consistent
and perturbatively non-equvivalent supersymmetric
theories in ten dimensions belong to the unique eleven-
dimensional M -theory. The D-brane dynamics used to
be an object of numerous investigations in last years.

In this report, we consider the fundamental picture
of BPS B-type D-branes on Calabi�Yau manifolds.
The topological B-type D-branes are not, in general,
just holomorphic vector bundles or coherent sheaves on
analytic submanifolds of these Calabi�Yau manifolds.
They can be identified with arbitrary objects of the
derived category of coherent sheaves. The triangulated
structure of this category allows one to formulate the
conditions of Π-stability of D-branes, which generalizes
the conditions of µ-stability for vector bundles. The Π-
stability enables us to extract the physical D-branes
from the topological D-branes.

The direct physical applicationes of such
investigations extends the nonperturbative methods
of field theories, promotes a better understanding of
the dualities in N = 1 and N = 2 supersymmetric
compactifications, enables computations of the black
hole entropy, and gives a qualitative approach to the
study of the supersymmetry breaking.
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D-ÁÐÀÍÈ ÍÀ ÌÍÎÃÎÂÈÄÀÕ ÊÀËÀÁI�ßÓ

I.Ì.Áóðáàí

Ð å ç þ ì å

Îáãîâîðþ¹òüñÿ ïðîáëåìà îïèñó ÁÏÇ D-áðàí ñóïåðñòðóííèõ òå-
îðié òèïó II íà ìíîãîâèäàõ Êàëàái�ßó. Äëÿ ïiäêëàñó D-áðàí,
âèçíà÷åíèõ ïîõiäíîþ êàòåãîði¹þ êîãåðåíòíèõ ïó÷êiâ íà ìíîãî-
âèäàõ Êàëàái�ßó â äîâiëüíié òî÷öi ¨õ ïðîñòîðó ìîäóëiâ, âèâ÷à-
¹òüñÿ ¨õ âëàñòèâiñòü Π-ñòàáiëüíîñòi.

D-ÁÐÀÍÛ ÍÀ ÌÍÎÃÎÎÁÐÀÇÈßÕ ÊÀËÀÁÈ�ßÓ

È.Ì.Áóðáàí

Ð å ç þ ì å

Îáñóæäàåòñÿ ïðîáëåìà îïèñàíèÿ ÁÏÇ D-áðàí ñóïåðñòðóííûõ
òåîðèé òèïà II íà ìíîãîîáðàçèÿõ Êàëàáè�ßó. Äëÿ ïîäêëàñ-
ñà D-áðàí, îïðåäåëåííûõ ïðîèçâîäíîé êàòåãîðèåé êîãåðåíòíûõ
ïó÷êîâ íà ìíîãîîáðàçèÿõ Êàëàáè�ßó â ïðîèçâîëüíîé òî÷êå èõ
ïðîñòðàíñòâà ìîäóëåé, èçó÷àåòñÿ èõ ñâîéñòâî Π-ñòàáèëüíîñòè.
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