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Compact nonabelian lattice models (like 3D QCD, 2D SU(N)
principal chiral models) are formulated in terms of plaquette (or
link) variables which correspond to the continuum field-strength
representation. Using this representation, we derive an exact dual
formulation for the partition function and some observables like
a Wilson loop, two-point correlation function, etc. It is applied to
the study of the low-temperature region of the models relevant
to the construction of the continuum limit. In particular, we
compute the leading term of the asymptotic expansion of the dual
Boltzmann factor and prove that it converges at low temperatures
to a certain Gaussian distribution uniformly in all fluctuations
of dual variables. The possible applications of our construction
to a calculation of long-distance observables are discussed. Of
independent interest might be the derivation of a new asymptotic
expansion for matrix elements of the SU(2) rotation matrix in the
vicinity of unity which is uniform in representations and magnetic
numbers.

Introduction

Dual transformations for lattice spin and gauge models
have a long history. In the context relevant to this
paper, we would like to mention duals of the abelian
U(1) model [1] which have been used to prove the
existence of a soft phase at low temperatures with
power-like decay of the correlation function in the
2D XY model [2] and confinement of static charges
at all couplings in the 3D gauge model [3]. In these
cases, the dual of Abelian models is a local theory
for certain discrete variables. No similar representation
was known so far for any nonabelian model. The
conventional dual transformations [4—6] for nonabelian
gauge models also leads to a local dual theory for
integers which label irreducible representations of a
local or global group, but these transformations are not
complete. First of all, the resulting dual variables are
not independent but are subject to certain constraints
known as triangular conditions, and as such they
cannot really be associated with elements of a dual
lattice. Secondly, although the local dual formulation

is expressed in terms of group invariants (for gauge
models) like 6j-symbols, etc., it involves also the
summation over auxiliary representations resulting from
the multiplication of nonabelian matrices. Such a
formulation is so mathematically involved that one can
hardly hope that it can be useful for an analytic study
of the model.

On the other hand, there exists a representation of
two-dimensional (2D) models in terms of link variables
[7], and this representation can be formulated directly
on the dual lattice. For lattice gauge theories (LGT),
there is the so-called plaquette representation [8] which
also have a corresponding dual interpretation. It is
a first goal of the present paper to use link and
plaquette representations for the derivation of exact dual
formulations of 2D SU(N) principal chiral models and
3D LGT. The resulting dual formulations appear to be
quite different from the formulations mentioned above.
We shall discuss their properties in the corresponding
places. Here we want to stress only that, in our
opinion, the most essential advantage of our dual
formulations is that it is much more suitable for analytic
investigations of the model, especially in the low-
temperature region. We refer to our papers [9—11] for
the detailed explanation of why it is so. In the last of
those papers, we have already presented a model dual of
the 2D SU(2) spin one and the proposed an approximate
representation for the dual partition function at low
temperatures.

Low-temperature properties of the models under
consideration are crucial for the construction of
their continuum limit. E.g., in the case of 2D
nonabelian models, it is widely expected that models
possess no phase transition, the correlation function
has exponential decay at any coupling, and models
are asymptotically free. Despite being more than
twenty years old, this expectation has not been
proven rigorously. On the contrary, certain percolation
theory arguments supported by numerical computations
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suggest that all nonabelian models have soft low-
temperature phase with power-like decay of the
correlation function [12]. In [11], under certain
approximation, within our dual formulation we have
shown that a two-point correlation function may indeed
decay with power law, thus supporting results of
[12]. Another important motivation of the present
investigation is to get a deeper insight into the nature
of a mass gap in nonabelian spin models and into
the string tension of gauge theories. For instance, in
many papers devoted to 2D nonabelian models, it
is written that “there is a nonperturbative mass gap
generation at arbitrarily small couplings”. It is not
really clear, however, what is the precise meaning of
this “nonperturbative generation”. It cannot be a simple
consequence of the link decorrelation which happens in
1D models. Then, one could ask if this “nonperturbative
generation” follows from the existence of some non-
trivial background of defects like vortices of the XY
model or is due to the strong but smooth disorder of
nonabelian spins, e.g. like center vortices [13].

As is well known, the dual formulations of abelian
models have been extremely useful in clarifying all these
important physical problems. Moreover, practically all
rigorous mathematical results on the behaviour of
abelian lattice models at low temperatures have been
obtained within dual approaches. It is thus our second
goal to develop a technique within dual formulation of
nonabelian models which would allow one to investigate
them in the limit of bare weak coupling, i.e. in the low-
temperature region.

1. Dual of 2D SU(N) Spin Models

We begin our consideration with the 2D SU(N)x SU(N)
principal chiral model whose partition function is given
by

Z = /HDUQC exp [ﬁZRe U, UL,

where U, € SU(N), DU, is the invariant measure,
and we impose periodic boundary conditions. The
fundamental degrees of freedom U, belong to sites of
a 2D lattice. It is quite possible to construct the dual
formulation starting from this representation, namely
performing the Fourier expansion of the Boltzmann
factor on the SU(N) group and integrating over all
U,. This program was recently accomplished in [6] for
an arbitrary group in various dimensions. As explained
in Introduction, we develop here a different approach

; (1)
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to duality transformations based on the so-called link
representation for partition and correlation functions.
The partition function (1) can be exactly reformulated
in terms of link variables V; = UIU;_M as [7]

Z:/HdVlexp By TV
l l

X

IIv1] - (2)

lep

<TT 1D drxr
P T

where V; € SU(N), dV; is the invariant measure on
the group. Hp is a product over all plaquettes of a 2D
lattice, the sum over r is a sum over all representations
of SU(N), d, = x,(I) is the dimension of the r-th
representation. The SU (V) character y, depends on a
product of link matrices V; = V,,(z) around a plaquette

H Vi = V() Vi (x + n)VnT (x+ m)V,L () . (3)
lep

For more details on this formulation, we refer the reader
to our paper [9], where we have developed a weak
coupling expansion for SU(N) spin models using the
link representation. From now on, we concentrate on
the SU(2) model (extension to any other SU(N) is
straightforward; moreover, all general formulae below
are applicable to any SU(N)). Now, let = be a site
of the dual lattice (center of the original plaquette),
and [ be a link of the dual lattice (i.e., orthogonal to
the original links). We want to reformulate model (2)
on the dual lattice only in terms of discrete variables
that are, in our case, the SU(2) representations r, and
magnetic quantum numbers m;(p). On the dual lattice,
these variables can all be associated with the sites of this
lattice. As follows from (2) and from the definition of the
SU(2) character

r

S v (4)

n=-—r

XT'(V) =

on the dual lattice, the partition function may be written
as

7= f: II|@r=+1

0 1
rz=0,3,1,...

Tx

> [[2@. ©

mi(z)=—ry l

Due to the trace, there are 4 independent variables m; at
each dual site, thus ¢ = 1,2,3,4. The dual weight Z¢(I)
is given by the following one-link integral:

Eo(l) = Zo(rz, m1, N1 Togn, M2, n2; B) =
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TrV
/dveﬁ lenl‘/;t’j:in? 7 (6)
where V™" is a matrix element of the r-th

representation.

A similar form for the two-point correlation function
in the representation j reads

SRR

- SR=—]

—S5iSi41

Zsis ()
A =m0

zy

Lj(z,y) =

(7)

where spy1 = s; and the link integral on [ € Cy, is

—8; §1+1
Te4+n

/ dV PV y iy imana sty (8)

Here, C,, is some path connecting points x and y and
consisting of links dual to links of the original lattice.

Let us give some comments on the formulae obtained.
There is the obvious resemblance of this representation
to the dual of the XY model

Z = Z H"XY S

Tg=—00

=l (B) . (9)

A similar equation can be written also for the correlation
function. Tt is obvious from here that our dual
formulation is much closer to the Abelian analog than
one presented in [6]. However, there is also a difference
from the Abelian case. While the dual of the XY
model is a local theory for integers which label the
representation of the U(1) group, this is not exactly
the case for a non-abelian model. Tt is clear from the
equations above that the summation over magnetic
numbers makes the effective theory for r, highly non-
local, and this non-locality persists at any temperatures.
On the other hand, a priori it is not obvious that
this non-locality has anything to do with expected non-
perturbative phenomena like the mass gap generation.
Indeed, consider, for example, the partition function of a
three-component Gaussian field written in the spherical
coordinates. Integration over anglular variables produces
a complicated non-local theory for the radial component
of the Gaussian field. Such non-locality, however, cannot
change the Gaussian nature of the field and has no non-
perturbative origin by itself.

It is very easy to make integration in (6) expanding
the result in Clebsch—Gordan series. One then finds
the following representation for the dual weight of a
nonabelian model (an analog of Z{Y (1) given just above)

|
20) = 577 ;cv(ﬂ)

T2M2
rimiJk

T2M2
riniJk

(10)
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where we have denoted 1 =1y, 19 = 734, and

2J+1

C;(B) = Iy541(20) . (11)

For the correlation function in Eq.(8), using the
Clebsch—Gordan expansion, one gets

!—!S Sl+1 z :

J(¥1()42

CJO(Q

TiIN1g 52

CJ(X]

r1mijsi

xZ0(J, a1, ag; 1o, ma,ng; B) . (12)
It is clear from the last equations that, in order to
investigate the dual model, it is crucial to understand the
properties of the link function =y(I) which enters both
the partition and correlation functions. We therefore
finish this section with the brief description of the most
important features of Zg(l):

e As follows from the properties of the coefficients
of the expansion Cj;(f), the series in J in (10)
gives directly the strong coupling expansion of the
model written in closed and compact form. Much
less trivial is to get weak coupling expansion for
Eo(l) since all J in series (10) become relevant.

e On all configurations {r;,m;,n;}, Zo(l) is strictly
positive, E¢(l) > 0. Though we could not prove it
rigorously, this claim is supported by the following
facts: 1) the first term in the strong coupling
expansion is strictly positive, thus Z (1) is positive
at sufficiently small 8 where the series converges
very fast; 2) the leading term of the asymptotic
expansion of Eg(l) at large [ is strictly positive
on all configurations; 3) numerical computations
of Z¢(!) on a number of configurations and in a
wide region of [ also support this conclusion. If
Zo0(l) > 0 on all configurations, this gives a chance
for numerical Monte-Carlo simulations of the dual
model.

e The dominant contribution to Zg(l) at large
8 comes from the diagonal components of
rotation matrices, the non-diagonal contribution
is suppressed roughly as [(m — n)!]~!. This is,
of course, a consequence of the fact that, when
8 — oo, the link matrix performs only small
fluctuations around unity. In turn, this property
gives a possibility to compute the low-temperature
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asymptotic expansion of the Zg(l). In fact, the
knowledge of such asymptotics is necessary if one
wants to investigate the weak-coupling regime of
the theory. We consider this problem below after
the presentation of the dual formulation for gauge
models.

2. Dual of 3D SU(N) LGT

This section deals with nonabelian LGT in three
dimensions whose partition function is given by [14]
Z= [ DU exp(BS[U, ) (13
where S is the Wilson action (extension to any other
gauge-invariant action is quite simple). The integral
is calculated over the Haar measure on the group
at every link of the lattice. As in the case of spin
models, dual representations of LGT can be obtained
in two different ways. The first one starts from the
character expansion of the Boltzmann factor in (13).
Then, one can explicitly integrate out the gauge degrees
of freedom and finally introduce dual variables. This
program can be accomplished both for Abelian [1]
and for nonabelian [4—6] LGT. In case of nonabelian
models, one should also calculate sums over all magnetic
numbers (corresponding to calculation of group traces).
The resulting dual representation appears to be a local
theory of discrete variables which label the irreducible
representations of the underlying gauge group and can
be written solely in terms of group invariant objects
like the 6j-symbols, etc. Unfortunately, this form of
dual theory is rather complicated and hardly can be
used for a direct analytical study. Moreover, there is
an essential difference between the duals of Abelian and
nonabelian LGTs. While, in the first case, the dual
variables reside on sites of the dual lattice and are
completely independent, it is not the case for nonabelian
models. Here, it was not possible to achieve such a level
of generalization and, therefore the dual variables are
those which reside on links and plaquettes of the original
lattice and are still subject to the so-called triangular
constraints embedded into 6j-symbols. The second way
to get the dual form is to first rewrite the theory in
terms of plaquette variables which can be considered by
themselves as certain dual variables. Plaquette variables
are subject to the Bianchi constraint which has nonlocal
form for nonabelian models. Nevertheless, in this case,
one can obtain a dual representation for nonabelian
models which is close to the corresponding Abelian
analog. In particular, dual variables are those associated
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with sites of the dual lattice and, at least in certain cases,
the difficulties related to triangular constraints can be
overcome. The essential advantage of this dual form is
that it appears to be more suitable for an analytical
study of both the high and low-temperature regions of
nonabelian LGT.

The plaquette formulation on the lattice was
obtained in [8]. We use here a slightly different form
obtained by us in [10], though all general formulae given
below are applicable to both formulations. We begin
with the following partition function in the maximal
axial gauge:

Z = / [[dVoexp [8> ReTaV, | [T J(V2) (14)
where

J(Ve) = dixr(Ve) (15)
Vo=(IIw|c|IIW%]|ct. c=]]v. (6)

peEA pEB pEc

The product over ¢ runs over all cubes of a 3D lattice.
J(V.) is the SU(N) delta-function which introduces a
constraint on plaquette matrices (the Bianchi identity).
C is the connector of nonabelian Bianchi identity. For
details of this representation, we refer the reader to our
paper [10].

In what follows, we write explicitly all formulae
only for the SU(2) gauge group. Generalization to other
groups is straightforward. Let = be a site dual to the
cube of the original lattice and [ be a link dual to the
plaquette of the original lattice. Then it follows from
(14) and from the expression for the Jacobian that, in
the case of the SU(2) gauge group, the partition function
on the dual lattice can be written in the following form:

[ee] Tz
z= % Il|en+1n >
re=0,4,1,... T m(z)=—ry l

(17)

The summation over r, corresponds to the summation
over all irreducible representations of the SU (2) group.
The sums over magnetic numbers m;(z) correspond to
the calculation of SU(2) traces. The index ¢ may run
from 6 to 6+4L depending on the position of the original
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cube, L is the linear extent of the lattice. The link
integral Zy(l) is given by

Z0(Tz, M1, M1 Pogn, M2, N2 75, Kiy ki1, Diy P13 B) =

_ dVeBTrV V;"{f'll ni VT manz o

Tztn

—

M(z)
% (‘/;fjikwlvrt P'ipH»l) ’ (18)
i=1
where V™" is a matrix element of the r-th
representation. The integer number M(z) = L — z

depends on the position of a plaquette on the lattice
and indicates how many times a given plaquette (dual
link) serves as a connector in the Bianchi identities.

A similar form for the Wilson loop in the

representation j reads
1 ¢ =)
W.j(c):2j+1 Z ( H ]:W% (19)
{si}=—j lesi(c) O

where the link integral on | € S¢(C) is
—S8i8q _ BTrV 8§85 miniysT mans
E; +1(l)—/dVe VoL mene

N(x)
% H (‘/'r’:‘?ikiﬁ»lVrt Pipri+1) . (20)

i=1

In general, M(x) # N(x) for some x if Wilson loop also
contains connectors. Here, S¢(C) is some surface dual to
the surface S(C') which is bounded by the loop C and
consists of links dual to plaquettes of the original lattice.
Using the Clebsch—Gordan expansion, one finds

—=S8iSit+1 _ Jaq Jao
=J (l)_ Z Crzmmslcrmnljs‘zx

.]Ozlaz

xEZo(J, a1, a2; Teq2, Mo, na; iy kiy kivy, pi, pig1; B) - (21)
This representation of the Wilson loop reduces the
problem again to the calculation of the basic link integral
Eo(l). Similar dual formulae can be obtained for a
number of other observables like the plaquette-plaquette
correlation function, 't Hooft loop, etc.
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3. Low-temperature Asymptotics of Link
Functions

As we have mentioned in Introduction, the most
important application of the dual formulation could
be the investigation of the low-temperature region of
nonabelian models. As can be seen from the formulae of
last two sections, the basic quantity both in the spin and
gauge models is a one-link integral which is essentially
the dual Boltzmann factor. The investigation of the low-
temperature region is thus reduced to the establishing
of the asymptotic expansion for this function at large
B. Tt is necessary to get asymptotics uniformly valid
in all fluctuations of dual variables. It turns out that
such asymptotics can be constructed, and this is, in
our opinion, one of the most important advantages of
the dual formulation. Calculation of the asymptotic
expansion relies essentially on the fact that, when g —
00, the plaquette matrix performs only small fluctuations
around unity both in the finite volume and, most
importantly, in the thermodynamic limit. Note that this
is not the case for the original link degrees of freedom:
in the large volume limit, their fluctuations are not
bounded even in the maximal axial gauge.

As a first step, in the investigation of the large-
[0 region, we derive the low-temperature asymptotic
expansion of the link function defined by Eq.(6) for spin
models and by Eq.(18) for gauge models. We consider
first the more general case of gauge models and then
give a result for spin models.

For SU(2) matrix elements, we use the Wigner
D-function parametrized by Euler angles

D:nn(aa w? ¢) = eilmaizn¢d:ﬂn (w) * (22)
Let us recall that the fundamental trace in this
parametrization reads

w 1
TrV = 2cos 5 cos 5(04 +7) (23)

and the invariant measure on the group takes the form

1 4 2 ™
/dV:167/0 ch/0 da/o dwsinw .

Substituting last expressions into (6), one can exactly
integrate over a and v angles. This gives

(24)

= _ gmi—nit+ys, (ki—kig1) 2 . .
Eo(l) = 57l2_'f”2+2i(11i+1—[)i) /0 dw sin w cos wx
xI5(2B cosw)dys ,, (2w)dyztn (2w) x
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M(z)

< T (4., o), (20)) (25)
i=1

where

s=m1—ng+ Z(kz — Dit1) - (26)

g

To get the asymptotics when (§ — oo uniformly valid
in all field configurations, we first use the following
asymptotics for the modified Bessel function:

BI

exp(— —n?) (1 + O()) (27)

I(z) = —
() 21X 2z

when x — oo and such that n?/z ~ O(1). It leads to

203 1
e
—— 5% — Bsin?w)x

(28 cosw) = T exp( 3

x (14 O(sin’w)) . (28)
Since w ~ O(B~1/?), the remainder is bounded like
O(B~1). The second step is to construct asymptotic
expansion for matrix elements dJ . (w) uniform in r
and in all magnetic numbers when w — 0. As we
have verified, all the standard asymptotics given in
the literature do not satisfy all possible criteria. In
particular, in certain important cases, a one-link integral
can be computed exactly. All standard asymptotics
fail to reproduce such exactly solvable cases. We have
derived a new asymptotic expansion for the matrix

R
y) an—m2 (

e R, sind,
— d -3ty (B
/0 yye 1—n1 ( 25

M(z)

R; sin 951) R; sin 91(
X H <Jk —kit1 <Wy Ipi1—ps W

where R and sin @ are defined in Eq.(47).

In the case of 2D models, the one-link integral does
not contain any connectors. Also, integrals on time-like
links in the gauge model are free of connectors due to
the construction of the original plaquette representation.
Therefore, in these cases, the integrand includes only
two rotation matrices. Then, the last integral can be
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elements which satisfy all the criteria we are aware
of and which we believe is new. Therefore, we give
some details of this derivation in Appendix below.
The final result is given in Eq.(46). Here we are
interested only in the leading term of that expansion.
Combining Eqs.(28) and (46), we arrive finally at the
following asymptotic representation for the one-link
integral:

my—ni1+y,; (ki—kiy1)
n2—ma+3-,; (Pi+1—pi)

c(B)é

1
X exp <—@a2> B(l) (1 + (’)(ﬁ_l)) , (29)
where we have used the notations
o) = (30)
_ , 30
283
a=mi+ny—mg—no+
+ Z(kz + kiy1 — Pi — Pig1) - (31)

i

Making change of variables sinw = y/v/28 in
the last integral and extending the integration
region over y to infinity (what introduces only
exponentially small corrections which can be
properly bounded), the last integral can be written
as

T+n sin 9w+n y

(32)

done exactly. Hence, the leading term of the asymptotic
expansion of a one-link integral in 2D spin models as well
as of time-like integrals in gauge models can be given
as
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1

13 (R% + Ri_m — 2R, Ryt cos O, cos 9$+n)} X

xexp[

I <Rz sinf, Ryt sin,, > (33)

20
4. Discussion

The present article deals with the low temperature
asymptotics of 2D spin and 3D gauge nonabelian
models in the dual formulation [9—11]. Since the models
under consideration are commonly expected to be
asymptotically free and have no phase transition, the
low-temperature region plays an extremely significant
role. Thus, our results besides a purely academic interest
can be engaged as a method in different fields of
mathematical physics, solid state physics, and high-
energy physics.

First of all, we hope that our formulation will allow
one to generalize the analytical study of the U(1) lattice
gauge theory of [2] to nonabelian cases.

Among possible physical applications of our
approach, we could mention an analytical investigation
of two-dimensional quantum Heisenberg ferromagnets.
The description of magnetic properties of solid 3He films
adsorbed on graphite by means of the 2D principal
chiral model [15] should be mentioned since the second
layer of 3He provides an excellent example of a nearly
ideal 2D quantum 1/2-spin system on a triangular
lattice.

Another field of research, where our asymptotic
expansion can be wused, the nonabelian gauge
models such as QCD. Nowadays, the rigorous
investigation of the phase diagram of these models
attracts an increasing interest, especially in the
low-temperature region. The asymptotic expansion
proposed in the present paper can be applied to
nonperturbative analysis of physical observables such
as a Wilson loop or a plaquette-plaquette correlation
function.

Lastly, we would like to mention the possibility of
the correspondence between nonabelian spin and gauge
models and the simplectic quantum gravity formalism.
This would allow our formulation to be applicable to
some problems of quantum gravity.

APPENDIX. ASYMPTOTICS OF d,,,, (w)

Here we compute the asymptotic expansion of the SU (2) matrix
elements d7, . (w) in the classical region R = (2r+1) > 1 uniformly
valid in the vicinity of the point w = 0 for all allowed values of m
and n.
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To get such an asymptotics, we first present the d-function in
terms of the hypergeometric function F = oF}

) = S [CEREPRE LD (5, 2)

><(cosg)ipF(s—l—k—ﬁ—1,—s—p;k+1;sin2E), (34)
2 2
where &mn = 1 if n > m, &mn = —1 otherwise, and
1
k:|m_n‘7 p:|m+n|,s:r—f(k+p). (35)

2

As is seen from the arguments of the hypergeometric function, the
infinite series in F' terminates so that the right-hand side of (34)
2 w

is polynomial in sin® %,

A7, (@) = Emn [Ar(2)Ap(y)] 2 (Sm g) g (COS g) >

2
T+%(p_k> ia2 whl
(sin® £)
)27 _F(z,y), 36
x ;} D eyt ron @) (36)
where we introduced the notations
D(x— k4 1)
Ap(z) = ———F——=2, (37)
I'(z+ §k+ 5)
Fz+ik+31) Tw+ik+1+D
]:l(xvy): 12 12 21 21 s (38)
F($—5k+§—l) F(y—5k+§)
1 1
e=r+ (0+p), y=r+01-p). (39)

The second step consists in expanding the ratio of gamma
functions. This can be done with help of the following formula:

D(z+b) sles ¢ (a)

N-1 s
P(e+a) _ (Z (1) pla-b+1)

x (b—a)s +0@™™)) (40)
where Bgy)(ac) is the generalized Bernoulli polynomial. An
important point concerns the large expansion parameter we use.
We take not simply the classical angular momentum r + % but
rather the quantities « and y defined above. Such a choice gives a
more accurate asymptotics valid in a wider region of parameters.
Then, in the case of the quantity F;(z,y), the series in (40)
terminates because a — b = k + [ and representation (40) becomes
exact. This leads to

Ik 1
Fi(w,y) = (zy)'+* TS
’ 51,22::0 zY*251 155!

[0+ k)12 1) (1
(l+k—51)!(l+k»_32)!351 <§(k’+l)> X

1
XB§§+H—1) (5(k+1)+l>

what is essentially the desired expansion at large = and y. It follows
from the last representation that

Fiz,y) = (xy)'tF [1 + %l(l +k) (é - %) -

(41)
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Pl+k)? 1
&y +ﬁ(l+k)(l+k71)><
X (3l2flfkfl)(:t%+yi2)+0(x73,y73)} . (42)

For Ag(z), following the same procedure, one finds

1
2412

Ap(z) =a~F [1 + k(k? —1) + O(w“‘)} . (43)

Substituting the last expressions into (36), we get after some
algebra

") = R I s
dmn(w) 7€7nn(COb 5) lgo m (5> X

x{1+%l(z+k)<l,l>,w+

y dxy
k(k2—1) (1 1
*T(ﬁ*ﬁ)*
1 11
+ﬂ(l+k)(l+k71)(312717k71)<x—27y—2>}. (44)

Here, we have extended the summation over [ to infinity since it
introduces corrections of the order O(w?") or less. Remembering
now the series representation for the Bessel function

o] (_1)l t k+21
Ji(t) = — | = , 45
w(®) ;J(Hk)m (2) (4)
we can easily sum up all series in the last formula.

Finally, we arrive at the following asymptotic expansion for the
d-function

B (@) = € { 20+ § (04

+351tm(1 — 2COS2 9)(]}6,1(15) — JkJrl(t))f
C082
LS [ Dk a0) — (k= D2 0)]] +
+ O(sin® 5)} . (46)

Here, we introduced the following notations:

R=2r+1, cos@:g, b:sinzi,
R 2

t = RsinOVb . (47)
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JYAJIbHE ®OPMYJTIOBAHHSI HEABEJIEBIX
I'PATKOBUX MOJIEJIEN TA BIJIIOBIIHUX
MATEMATITYHUX TTPOBJIEM

O. Bopucenko, B. Kywnip, C. Boaowun
Pesmowme

Ilo6ynoBaHO myIaKeTHe Ta JIIHKOBe (DOPMYJIIOBAHHS KOMIAKTHHX
HeabesIeBUX IPATKOBUX MOJenedl (Takux, siK TOJIOBHI Kipasbhi
Mogeni 3D KXJI 2D SU(N)), mo BiJuOBiZaOTh KOHTHHYaJIb-
HOMY ONHCYy [HMX MOJeseil B TepMiHaX TEH30pa HAIPYXKEHOCTI
mosisi. Brmepre ogep:kano TouHe gyasbHe (DOPMYJIIOBAHHS [JIst
CTATUCTUYIHOI CYMH i ANd TakKuX (DI3UYHUX BEJUYIUH, 9K METIIS
Binscona, gBoroukoBa kopessmiiina dymknis i T.in. Bomo mo-
3BOJIsI€E BUBYATH HU3BKOTEMIEPATYpPHI 0OsacTi HeabeaeBUX MOje-
Jle#, BaXX/IMBUX [JJisi NOOYyAOBH KOHTHHYAJIbHOI rpanumi. 3Haii-
JeHO ACHMITOTHYHUU pO3KJaJ AyadbHOI OOJIBIIMAHIBCHKOI Ba-
ra i J0BeseHO, mWo B 00JacTi HU3BKUX TeMIeparyp Leid pos-
KJ1ag piBHOMIpHO 36iraerncst 3a BciMa QUuyKTyamisMu IyaabHHAX
3MIiHHUX IO MEeBHOTO raycCiBChbKOro posmoxiny. B po6oti obroso-
DIOETHCsI, sIK OJ€PIKAHi Pe3yJIbTaTH MOXKYTb BHKOPHCTOBYBATH-
cs i OOYMCIEHHS PI3HUX BEJHYUH B iH(padepBOHiil obsacTi.
OcobuBuit iHTepec craHOBATH HmOOYJOBA HOBOrO, PIBHOMIPHOrO
33 MPEICTABJIEHHSIMH Ta MATHITHEMH YHCJIAMH, ACHMITOTHIHO-
ro PO3KJIAY IS MATPUYHUX €JIEMEHTIB B Marpuil oOepTaHHs
SU(2).
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O. BORISENKO, V. KUSHNIR, S. VOLOSHIN

AYAJIBHOE ®OPMYJINPOBAHUE HEABEJIEBBIX
PEIIETOYHBIX MOJEJEN 1 COOTBECTBYIOIINX
MATEMATUYECKUX ITPOBJIEM

0. Bopucenko, B. Kywnup, C. Boaowun
Peszwowme

[TocTpoeHBI MIAKETOYHAA W JHHKOBAA (hOPMYJIHPOBKH KOMIAKT-
HBIX Hea,6ef[eBbIX penreToIHbIX Moﬂeﬂeﬁ (TaKI/IX, KaK I'JIaBHBIE KU-
panbubie mMogenn 3D KXII 2D SU(N)), COOTBETCTBYIOIME KOH-
THHYaJIbHOMY ONHCAHHIO STHX MOJEJeil B TepMHEHAX TEH30pa Ha-
OPAXKEHHOCTHA TIOJIA. BHepBBIe TOJIYy4Y€Hbl TOYHBIE IYyaJIbHBIC (bop—
MyJIUPOBKH /Il CTATHCTHIECKOH CyMMBI U JUISl TAKAX (DH3HTIEC-
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KX BEJIWYWH, KaK TeTJIdA BI/IJ’ILCOH&, ABYXTOYCYHAA KOPpPeasanu-
oHHasl (DYHKIHUSA U T.I. DTO IO3BOJISAET U3YUATh HU3KOTEMIIEpa-
TypHBbIE 00/1aCcTH HEabeseBBIX MO e, BAYKHBIX JIJIsI [IOCTPOEHUS
KOHTHHYaJbHOrO npenena. HalileHO acHMIOITOTHYECKOe pa3ioxKe-
HHe JyaJIbHOrO OOJIBIIMAHOBCKOI'O BECa U JOKa3aHO, YTO B 0bJiac-
TH HHU3KHX TEMIEDPATYp 3TO PA3JIOXKEHHe DABHOMEPHO CXOMHUTCS
1m0 BceM (UIYKTyaIl[dsiM AyaJIbHBIX LIEPEMEHHBIX K OMPeesIeHHO-
My rayCCOBCKOMY pacupejesieHuro. B pabore obcyxxKmaercs, Kak
[IOJTy9€HHBIE PE3YJIbTATHl MOTYT HCIONb30BATHCS [JIsI BBIYUCIIE-
HUSI PA3IHYIHBIX HAOII0JaeMbIX B HH(ppakpacHoit obractu. Ocobsrit
HHTEpeC MOXKET NPEeCTABIATH IIOCTPOEHNe HOBOIO, PABHOMEPHO-
TO IO mpenCTraBJICHUAM W MATHUTHBIM 9UCIAM, aCAMITOTHUYECKO-
IO pa3/IOKEHUS AJIsI MATPUIHBIX SJIEMEHTOB B MATPHUIE BPAIIEHUST
SU(2).
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