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Compact nonabelian lattice models (like 3D QCD, 2D SU(N)
principal chiral models) are formulated in terms of plaquette (or
link) variables which correspond to the continuum field-strength
representation. Using this representation, we derive an exact dual
formulation for the partition function and some observables like
a Wilson loop, two-point correlation function, etc. It is applied to
the study of the low-temperature region of the models relevant
to the construction of the continuum limit. In particular, we
compute the leading term of the asymptotic expansion of the dual
Boltzmann factor and prove that it converges at low temperatures
to a certain Gaussian distribution uniformly in all fluctuations
of dual variables. The possible applications of our construction
to a calculation of long-distance observables are discussed. Of
independent interest might be the derivation of a new asymptotic
expansion for matrix elements of the SU(2) rotation matrix in the
vicinity of unity which is uniform in representations and magnetic
numbers.

Introduction

Dual transformations for lattice spin and gauge models
have a long history. In the context relevant to this
paper, we would like to mention duals of the abelian
U(1) model [1] which have been used to prove the
existence of a soft phase at low temperatures with
power-like decay of the correlation function in the
2D XY model [2] and confinement of static charges
at all couplings in the 3D gauge model [3]. In these
cases, the dual of Abelian models is a local theory
for certain discrete variables. No similar representation
was known so far for any nonabelian model. The
conventional dual transformations [4�6] for nonabelian
gauge models also leads to a local dual theory for
integers which label irreducible representations of a
local or global group, but these transformations are not
complete. First of all, the resulting dual variables are
not independent but are subject to certain constraints
known as triangular conditions, and as such they
cannot really be associated with elements of a dual
lattice. Secondly, although the local dual formulation

is expressed in terms of group invariants (for gauge
models) like 6j-symbols, etc., it involves also the
summation over auxiliary representations resulting from
the multiplication of nonabelian matrices. Such a
formulation is so mathematically involved that one can
hardly hope that it can be useful for an analytic study
of the model.

On the other hand, there exists a representation of
two-dimensional (2D) models in terms of link variables
[7], and this representation can be formulated directly
on the dual lattice. For lattice gauge theories (LGT),
there is the so-called plaquette representation [8] which
also have a corresponding dual interpretation. It is
a first goal of the present paper to use link and
plaquette representations for the derivation of exact dual
formulations of 2D SU(N) principal chiral models and
3D LGT. The resulting dual formulations appear to be
quite different from the formulations mentioned above.
We shall discuss their properties in the corresponding
places. Here we want to stress only that, in our
opinion, the most essential advantage of our dual
formulations is that it is much more suitable for analytic
investigations of the model, especially in the low-
temperature region. We refer to our papers [9�11] for
the detailed explanation of why it is so. In the last of
those papers, we have already presented a model dual of
the 2D SU(2) spin one and the proposed an approximate
representation for the dual partition function at low
temperatures.

Low-temperature properties of the models under
consideration are crucial for the construction of
their continuum limit. E.g., in the case of 2D
nonabelian models, it is widely expected that models
possess no phase transition, the correlation function
has exponential decay at any coupling, and models
are asymptotically free. Despite being more than
twenty years old, this expectation has not been
proven rigorously. On the contrary, certain percolation
theory arguments supported by numerical computations
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suggest that all nonabelian models have soft low-
temperature phase with power-like decay of the
correlation function [12]. In [11], under certain
approximation, within our dual formulation we have
shown that a two-point correlation function may indeed
decay with power law, thus supporting results of
[12]. Another important motivation of the present
investigation is to get a deeper insight into the nature
of a mass gap in nonabelian spin models and into
the string tension of gauge theories. For instance, in
many papers devoted to 2D nonabelian models, it
is written that �there is a nonperturbative mass gap
generation at arbitrarily small couplings�. It is not
really clear, however, what is the precise meaning of
this �nonperturbative generation�. It cannot be a simple
consequence of the link decorrelation which happens in
1D models. Then, one could ask if this �nonperturbative
generation� follows from the existence of some non-
trivial background of defects like vortices of the XY
model or is due to the strong but smooth disorder of
nonabelian spins, e.g. like center vortices [13].

As is well known, the dual formulations of abelian
models have been extremely useful in clarifying all these
important physical problems. Moreover, practically all
rigorous mathematical results on the behaviour of
abelian lattice models at low temperatures have been
obtained within dual approaches. It is thus our second
goal to develop a technique within dual formulation of
nonabelian models which would allow one to investigate
them in the limit of bare weak coupling, i.e. in the low-
temperature region.

1. Dual of 2D SU(N) Spin Models

We begin our consideration with the 2D SU(N)×SU(N)
principal chiral model whose partition function is given
by

Z =
∫ ∏

x

DUx exp

[
β
∑
x,n

Re TrUxU
†
x+n

]
, (1)

where Ux ∈ SU(N), DUx is the invariant measure,
and we impose periodic boundary conditions. The
fundamental degrees of freedom Ux belong to sites of
a 2D lattice. It is quite possible to construct the dual
formulation starting from this representation, namely
performing the Fourier expansion of the Boltzmann
factor on the SU(N) group and integrating over all
Ux. This program was recently accomplished in [6] for
an arbitrary group in various dimensions. As explained
in Introduction, we develop here a different approach

to duality transformations based on the so-called link
representation for partition and correlation functions.
The partition function (1) can be exactly reformulated

in terms of link variables Vl = UxU
†
x+n as [7]

Z =
∫ ∏

l

dVl exp

[
β
∑
l

TrVl

]
×

×
∏
p

∑
r

drχr

∏
l∈p

Vl

 , (2)

where Vl ∈ SU(N), dVl is the invariant measure on
the group.

∏
p is a product over all plaquettes of a 2D

lattice, the sum over r is a sum over all representations
of SU(N), dr = χr(I) is the dimension of the r-th
representation. The SU(N) character χr depends on a
product of link matrices Vl = Vn(x) around a plaquette∏
l∈p

Vl = Vn(x)Vm(x+ n)V †n (x+m)V †m(x) . (3)

For more details on this formulation, we refer the reader
to our paper [9], where we have developed a weak
coupling expansion for SU(N) spin models using the
link representation. From now on, we concentrate on
the SU(2) model (extension to any other SU (N) is
straightforward; moreover, all general formulae below
are applicable to any SU(N)). Now, let x be a site
of the dual lattice (center of the original plaquette),
and l be a link of the dual lattice (i.e., orthogonal to
the original links). We want to reformulate model (2)
on the dual lattice only in terms of discrete variables
that are, in our case, the SU(2) representations rp and
magnetic quantum numbers mi(p). On the dual lattice,
these variables can all be associated with the sites of this
lattice. As follows from (2) and from the definition of the
SU(2) character

χr(V ) =
r∑

n=−r
V nnr (4)

on the dual lattice, the partition function may be written
as

Z =
∞∑

rx=0, 12 ,1,...

∏
x

(2rx + 1)
rx∑

mi(x)=−rx

∏
l

Ξ0(l) . (5)

Due to the trace, there are 4 independent variables mi at
each dual site, thus i = 1, 2, 3, 4. The dual weight Ξ0(l)
is given by the following one-link integral:

Ξ0(l) ≡ Ξ0(rx,m1, n1; rx+n,m2, n2;β) =

ISSN 0503-1265. Óêð. ôiç. æóðí. 2003. Ò. 48, N 4 301



O. BORISENKO, V. KUSHNIR, S. VOLOSHIN

=
∫
dV eβTrV V m1n1

rx V †m2n2
rx+n

, (6)

where V mnr is a matrix element of the r-th
representation.

A similar form for the two-point correlation function
in the representation j reads

Γj(x, y) =
1

2j + 1

j∑
s1=−j

...

j∑
sR=−j

〈
∏
l∈Cxy

Ξsisi+1
j (l)
Ξ0(l)

〉 ,

(7)

where sR+1 = s1 and the link integral on l ∈ Cxy is

Ξsisi+1
j (l) =

∫
dV eβTrV V m1n1

rx V †m2n2
rx+n

V
sisi+1
j . (8)

Here, Cxy is some path connecting points x and y and
consisting of links dual to links of the original lattice.

Let us give some comments on the formulae obtained.
There is the obvious resemblance of this representation
to the dual of the XY model

Z =
∞∑

rx=−∞

∏
l

ΞXY0 (l), ΞXY0 (l) = Irx−rx+n(β) . (9)

A similar equation can be written also for the correlation
function. It is obvious from here that our dual
formulation is much closer to the Abelian analog than
one presented in [6]. However, there is also a difference
from the Abelian case. While the dual of the XY
model is a local theory for integers which label the
representation of the U(1) group, this is not exactly
the case for a non-abelian model. It is clear from the
equations above that the summation over magnetic
numbers makes the effective theory for rx highly non-
local, and this non-locality persists at any temperatures.
On the other hand, a priori it is not obvious that
this non-locality has anything to do with expected non-
perturbative phenomena like the mass gap generation.
Indeed, consider, for example, the partition function of a
three-component Gaussian field written in the spherical
coordinates. Integration over anglular variables produces
a complicated non-local theory for the radial component
of the Gaussian field. Such non-locality, however, cannot
change the Gaussian nature of the field and has no non-
perturbative origin by itself.

It is very easy to make integration in (6) expanding
the result in Clebsch�Gordan series. One then finds
the following representation for the dual weight of a
nonabelian model (an analog of ΞXY0 (l) given just above)

Ξ0(l) =
1

2r2 + 1

∑
J,k

CJ(β)Cr2n2
r1m1Jk

Cr2m2
r1n1Jk

, (10)

where we have denoted r1 = rx, r2 = rx+n and

CJ(β) =
2J + 1
β

I2J+1(2β) . (11)

For the correlation function in Eq.(8), using the
Clebsch�Gordan expansion, one gets

Ξsisi+1
j (l) =

∑
Jα1α2

CJα1
r1m1js1

CJα2
r1n1js2

×

×Ξ0(J, α1, α2; r2,m2, n2;β) . (12)

It is clear from the last equations that, in order to
investigate the dual model, it is crucial to understand the
properties of the link function Ξ0(l) which enters both
the partition and correlation functions. We therefore
finish this section with the brief description of the most
important features of Ξ0(l):

• As follows from the properties of the coefficients
of the expansion CJ(β), the series in J in (10)
gives directly the strong coupling expansion of the
model written in closed and compact form. Much
less trivial is to get weak coupling expansion for
Ξ0(l) since all J in series (10) become relevant.

• On all configurations {ri,mi, ni}, Ξ0(l) is strictly
positive, Ξ0(l) > 0. Though we could not prove it
rigorously, this claim is supported by the following
facts: 1) the first term in the strong coupling
expansion is strictly positive, thus Ξ0(l) is positive
at sufficiently small β where the series converges
very fast; 2) the leading term of the asymptotic
expansion of Ξ0(l) at large β is strictly positive
on all configurations; 3) numerical computations
of Ξ0(l) on a number of configurations and in a
wide region of β also support this conclusion. If
Ξ0(l) > 0 on all configurations, this gives a chance
for numerical Monte-Carlo simulations of the dual
model.

• The dominant contribution to Ξ0(l) at large
β comes from the diagonal components of
rotation matrices, the non-diagonal contribution
is suppressed roughly as [(m − n)!]−1. This is,
of course, a consequence of the fact that, when
β → ∞, the link matrix performs only small
fluctuations around unity. In turn, this property
gives a possibility to compute the low-temperature
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asymptotic expansion of the Ξ0(l). In fact, the
knowledge of such asymptotics is necessary if one
wants to investigate the weak-coupling regime of
the theory. We consider this problem below after
the presentation of the dual formulation for gauge
models.

2. Dual of 3D SU(N) LGT

This section deals with nonabelian LGT in three
dimensions whose partition function is given by [14]

Z =
∫
DU exp{βS[Uµ(x)]} , (13)

where S is the Wilson action (extension to any other
gauge-invariant action is quite simple). The integral
is calculated over the Haar measure on the group
at every link of the lattice. As in the case of spin
models, dual representations of LGT can be obtained
in two different ways. The first one starts from the
character expansion of the Boltzmann factor in (13).
Then, one can explicitly integrate out the gauge degrees
of freedom and finally introduce dual variables. This
program can be accomplished both for Abelian [1]
and for nonabelian [4�6] LGT. In case of nonabelian
models, one should also calculate sums over all magnetic
numbers (corresponding to calculation of group traces).
The resulting dual representation appears to be a local
theory of discrete variables which label the irreducible
representations of the underlying gauge group and can
be written solely in terms of group invariant objects
like the 6j-symbols, etc. Unfortunately, this form of
dual theory is rather complicated and hardly can be
used for a direct analytical study. Moreover, there is
an essential difference between the duals of Abelian and
nonabelian LGTs. While, in the first case, the dual
variables reside on sites of the dual lattice and are
completely independent, it is not the case for nonabelian
models. Here, it was not possible to achieve such a level
of generalization and, therefore the dual variables are
those which reside on links and plaquettes of the original
lattice and are still subject to the so-called triangular
constraints embedded into 6j-symbols. The second way
to get the dual form is to first rewrite the theory in
terms of plaquette variables which can be considered by
themselves as certain dual variables. Plaquette variables
are subject to the Bianchi constraint which has nonlocal
form for nonabelian models. Nevertheless, in this case,
one can obtain a dual representation for nonabelian
models which is close to the corresponding Abelian
analog. In particular, dual variables are those associated

with sites of the dual lattice and, at least in certain cases,
the difficulties related to triangular constraints can be
overcome. The essential advantage of this dual form is
that it appears to be more suitable for an analytical
study of both the high and low-temperature regions of
nonabelian LGT.

The plaquette formulation on the lattice was
obtained in [8]. We use here a slightly different form
obtained by us in [10], though all general formulae given
below are applicable to both formulations. We begin
with the following partition function in the maximal
axial gauge:

Z =
∫ ∏

p

dVp exp

[
β
∑
p

ReTrVp

]∏
c

J(Vc) , (14)

where

J(Vc) =
∑
r

drχr(Vc) , (15)

Vc =

∏
p∈A

Vp

C

∏
p∈B

Vp

C† , C =
∏
p∈c

Vp . (16)

The product over c runs over all cubes of a 3D lattice.
J(Vc) is the SU(N) delta-function which introduces a
constraint on plaquette matrices (the Bianchi identity).
C is the connector of nonabelian Bianchi identity. For
details of this representation, we refer the reader to our
paper [10].

In what follows, we write explicitly all formulae
only for the SU(2) gauge group. Generalization to other
groups is straightforward. Let x be a site dual to the
cube of the original lattice and l be a link dual to the
plaquette of the original lattice. Then it follows from
(14) and from the expression for the Jacobian that, in
the case of the SU(2) gauge group, the partition function
on the dual lattice can be written in the following form:

Z =
∞∑

rx=0, 12 ,1,...

∏
x

(2rx + 1)
rx∑

mi(x)=−rx

∏
l

Ξ0(l) .

(17)

The summation over rx corresponds to the summation
over all irreducible representations of the SU (2) group.
The sums over magnetic numbers mi(x) correspond to
the calculation of SU(2) traces. The index i may run
from 6 to 6+4L depending on the position of the original
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cube, L is the linear extent of the lattice. The link
integral Ξ0(l) is given by

Ξ0(rx,m1, n1; rx+n,m2, n2; ri, ki, ki+1, pi, pi+1;β) =

=
∫
dV eβTrV V m1n1

rx V † m2n2
rx+n

×

×
M(x)∏
i=1

(
V kiki+1
ri V † pipi+1

ri

)
, (18)

where V mnr is a matrix element of the r-th
representation. The integer number M(x) = L − z
depends on the position of a plaquette on the lattice
and indicates how many times a given plaquette (dual
link) serves as a connector in the Bianchi identities.

A similar form for the Wilson loop in the
representation j reads

Wj(C) =
1

2j + 1

j∑
{si}=−j

〈
∏

l∈Sd(C)

Ξsisi+1
j (l)
Ξ0(l)

〉 , (19)

where the link integral on l ∈ Sd(C) is

Ξsisi+1
j (l) =

∫
dV eβTrV V

sisi+1
j V m1n1

rx V † m2n2
rx+n

×

×
N(x)∏
i=1

(
V kiki+1
ri V † pipi+1

ri

)
. (20)

In general, M(x) 6= N(x) for some x if Wilson loop also
contains connectors. Here, Sd(C) is some surface dual to
the surface S(C) which is bounded by the loop C and
consists of links dual to plaquettes of the original lattice.

Using the Clebsch�Gordan expansion, one finds

Ξsisi+1
j (l) =

∑
Jα1α2

CJα1
rxm1js1

CJα2
rxn1js2

×

×Ξ0(J, α1, α2; rx+2,m2, n2; ri, ki, ki+1, pi, pi+1;β) . (21)

This representation of the Wilson loop reduces the
problem again to the calculation of the basic link integral
Ξ0(l). Similar dual formulae can be obtained for a
number of other observables like the plaquette-plaquette
correlation function, 't Hooft loop, etc.

3. Low-temperature Asymptotics of Link
Functions

As we have mentioned in Introduction, the most
important application of the dual formulation could
be the investigation of the low-temperature region of
nonabelian models. As can be seen from the formulae of
last two sections, the basic quantity both in the spin and
gauge models is a one-link integral which is essentially
the dual Boltzmann factor. The investigation of the low-
temperature region is thus reduced to the establishing
of the asymptotic expansion for this function at large
β. It is necessary to get asymptotics uniformly valid
in all fluctuations of dual variables. It turns out that
such asymptotics can be constructed, and this is, in
our opinion, one of the most important advantages of
the dual formulation. Calculation of the asymptotic
expansion relies essentially on the fact that, when β →
∞, the plaquette matrix performs only small fluctuations
around unity both in the finite volume and, most
importantly, in the thermodynamic limit. Note that this
is not the case for the original link degrees of freedom:
in the large volume limit, their fluctuations are not
bounded even in the maximal axial gauge.

As a first step, in the investigation of the large-
β region, we derive the low-temperature asymptotic
expansion of the link function defined by Eq.(6) for spin
models and by Eq.(18) for gauge models. We consider
first the more general case of gauge models and then
give a result for spin models.

For SU(2) matrix elements, we use the Wigner
D-function parametrized by Euler angles

Dr
mn(α, ω, φ) = e−imα−inφdrmn(ω) . (22)

Let us recall that the fundamental trace in this
parametrization reads

TrV = 2 cos
ω

2
cos

1
2

(α+ γ) (23)

and the invariant measure on the group takes the form∫
dV =

1
16π2

∫ 4π

0

dγ

∫ 2π

0

dα

∫ π

0

dω sinω . (24)

Substituting last expressions into (6), one can exactly
integrate over α and γ angles. This gives

Ξ0(l) = δ
m1−n1+

∑
i(ki−ki+1)

n2−m2+
∑
i(pi+1−pi)

∫ π
2

0

dω sinω cosω×

×I2s(2β cosω)drxm1n1
(2ω)drx+n

n2m2
(2ω)×
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×
M(x)∏
i=1

(
drikiki+1

(2ω)dripi+1pi(2ω)
)
, (25)

where

s = m1 − n2 +
∑
i

(ki − pi+1) . (26)

To get the asymptotics when β → ∞ uniformly valid
in all field configurations, we first use the following
asymptotics for the modified Bessel function:

In(x) =
ex√
2πx

exp(− 1
2x
n2)

(
1 +O(x−1)

)
(27)

when x→∞ and such that n2/x ∼ O(1). It leads to

I2s(2β cosω) =
e2β

√
4πβ

exp(− 1
β
s2 − β sin2 ω)×

×
(
1 +O(sin2 ω)

)
. (28)

Since ω ∼ O(β−1/2), the remainder is bounded like
O(β−1). The second step is to construct asymptotic
expansion for matrix elements drmn(ω) uniform in r
and in all magnetic numbers when ω → 0. As we
have verified, all the standard asymptotics given in
the literature do not satisfy all possible criteria. In
particular, in certain important cases, a one-link integral
can be computed exactly. All standard asymptotics
fail to reproduce such exactly solvable cases. We have
derived a new asymptotic expansion for the matrix

elements which satisfy all the criteria we are aware
of and which we believe is new. Therefore, we give
some details of this derivation in Appendix below.
The final result is given in Eq.(46). Here we are
interested only in the leading term of that expansion.
Combining Eqs.(28) and (46), we arrive finally at the
following asymptotic representation for the one-link
integral:

Ξ0(l) = C(β)δm1−n1+
∑
i(ki−ki+1)

n2−m2+
∑
i(pi+1−pi)×

× exp
(
− 1

4β
α2

)
B(l)

(
1 +O(β−1)

)
, (29)

where we have used the notations

C(β) =
e2β

2β
√
πβ

, (30)

α = m1 + n1 −m2 − n2+

+
∑
i

(ki + ki+1 − pi − pi+1) . (31)

Making change of variables sinω = y/
√

2β in
the last integral and extending the integration
region over y to infinity (what introduces only
exponentially small corrections which can be
properly bounded), the last integral can be written
as

B(l) =
∫ ∞

0

dy y e−
1
2y

2
Jm1−n1

(
Rx sin θx√

2β
y

)
Jn2−m2

(
Rx+n sin θx+n√

2β
y

)
×

×
M(x)∏
i=1

(
Jki−ki+1

(
Ri sin θ(1)

i√
2β

y

)
Jpi+1−pi

(
Ri sin θ(2)

i√
2β

y

))
, (32)

where R and sin θ are defined in Eq.(47).

In the case of 2D models, the one-link integral does
not contain any connectors. Also, integrals on time-like
links in the gauge model are free of connectors due to
the construction of the original plaquette representation.
Therefore, in these cases, the integrand includes only
two rotation matrices. Then, the last integral can be

done exactly. Hence, the leading term of the asymptotic
expansion of a one-link integral in 2D spin models as well
as of time-like integrals in gauge models can be given
as

Ξ0(l) = C(β)δm1−n1
n2−m2

×
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× exp
[
− 1

4β
(R2

x +R2
x+n − 2RxRx+n cos θx cos θx+n)

]
×

×Ik
(
Rx sin θxRx+n sin θx+n

2β

)
. (33)

4. Discussion

The present article deals with the low temperature
asymptotics of 2D spin and 3D gauge nonabelian
models in the dual formulation [9�11]. Since the models
under consideration are commonly expected to be
asymptotically free and have no phase transition, the
low-temperature region plays an extremely significant
role. Thus, our results besides a purely academic interest
can be engaged as a method in different fields of
mathematical physics, solid state physics, and high-
energy physics.

First of all, we hope that our formulation will allow
one to generalize the analytical study of the U(1) lattice
gauge theory of [2] to nonabelian cases.

Among possible physical applications of our
approach, we could mention an analytical investigation
of two-dimensional quantum Heisenberg ferromagnets.
The description of magnetic properties of solid 3He films
adsorbed on graphite by means of the 2D principal
chiral model [15] should be mentioned since the second
layer of 3He provides an excellent example of a nearly
ideal 2D quantum 1/2-spin system on a triangular
lattice.

Another field of research, where our asymptotic
expansion can be used, the nonabelian gauge
models such as QCD. Nowadays, the rigorous
investigation of the phase diagram of these models
attracts an increasing interest, especially in the
low-temperature region. The asymptotic expansion
proposed in the present paper can be applied to
nonperturbative analysis of physical observables such
as a Wilson loop or a plaquette-plaquette correlation
function.

Lastly, we would like to mention the possibility of
the correspondence between nonabelian spin and gauge
models and the simplectic quantum gravity formalism.
This would allow our formulation to be applicable to
some problems of quantum gravity.

APPENDIX. ASYMPTOTICS OF drmn(ω)

Here we compute the asymptotic expansion of the SU (2) matrix
elements drmn(ω) in the classical region R = (2r+1)� 1 uniformly
valid in the vicinity of the point ω = 0 for all allowed values of m
and n.

To get such an asymptotics, we first present the d-function in
terms of the hypergeometric function F ≡ 2F1

drmn(ω) =
ξmn

k!

[
(s+ k + p)!(s+ k)!

s!(s+ p)!

] 1
2 (

sin
ω

2

)k
×

×
(

cos
ω

2

)−p
F (s+ k + 1,−s− p; k + 1; sin2 ω

2
) , (34)

where ξmn = 1 if n ≥ m, ξmn = −1 otherwise, and

k = |m− n|, p = |m+ n|, s = r −
1

2
(k + p) . (35)

As is seen from the arguments of the hypergeometric function, the
infinite series in F terminates so that the right-hand side of (34)
is polynomial in sin2 ω

2
,

drmn(ω) = ξmn [Ak(x)Ak(y)]
1
2

(
sin

ω

2

)k (
cos

ω

2

)−p
×

×
r+ 1

2 (p−k)∑
l=0

(−1)l
(sin2 ω

2
)l

Γ(k + 1 + l)l!
Fl(x, y) , (36)

where we introduced the notations

Ak(x) =
Γ(x− 1

2
k + 1

2
)

Γ(x+ 1
2
k + 1

2
)
, (37)

Fl(x, y) =
Γ(x+ 1

2
k + 1

2
)

Γ(x− 1
2
k + 1

2
− l)

Γ(y + 1
2
k + 1

2
+ l)

Γ(y − 1
2
k + 1

2
)

, (38)

x = r +
1

2
(1 + p), y = r +

1

2
(1− p) . (39)

The second step consists in expanding the ratio of gamma
functions. This can be done with help of the following formula:

Γ(x+ a)

Γ(x+ b)
= xa+b

(
N−1∑
s=0

(−1)s

s!xs
B

(a−b+1)
s (a) ×

× (b− a)s +O(x−N )
)
, (40)

where B
(y)
s (x) is the generalized Bernoulli polynomial. An

important point concerns the large expansion parameter we use.
We take not simply the classical angular momentum r + 1

2
but

rather the quantities x and y defined above. Such a choice gives a
more accurate asymptotics valid in a wider region of parameters.
Then, in the case of the quantity Fl(x, y), the series in (40)
terminates because a− b = k+ l and representation (40) becomes
exact. This leads to

Fl(x, y) = (xy)l+k
l+k∑

s1,s2=0

1

xs1ys2s1!s2!
×

×
[(l + k)!]2

(l + k − s1)!(l + k − s2)!
B

(k+l+1)
s1

(
1

2
(k + 1)

)
×

×B(k+l+1)
s2

(
1

2
(k + 1) + l

)
(41)

what is essentially the desired expansion at large x and y. It follows
from the last representation that

Fl(x, y) = (xy)l+k
[
1 +

1

2
l(l + k)

(
1

y
−

1

x

)
−
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−
l2(l + k)2

4xy
+

1

24
(l + k)(l + k − 1)×

× (3l2 − l − k − 1)(
1

x2
+

1

y2
) +O(x−3, y−3)

]
. (42)

For Ak(x), following the same procedure, one finds

Ak(x) = x−k
[
1 +

1

24x2
k(k2 − 1) +O(x−4)

]
. (43)

Substituting the last expressions into (36), we get after some
algebra

drmn(ω) = ξmn(cos
ω

2
)−p

∞∑
l=0

(−1)l

(l + k)!l!

(
t

2

)k+2l

×

×
{

1 +
1

2
l(l + k)

(
1

y
−

1

x

)
−
l2(l + k)2

4xy
+

+
k(k2 − 1)

48

(
1

x2
−

1

y2

)
+

+
1

24
(l + k)(l + k − 1)(3l2 − l − k − 1)

(
1

x2
−

1

y2

)}
. (44)

Here, we have extended the summation over l to infinity since it
introduces corrections of the order O(ω2r) or less. Remembering
now the series representation for the Bessel function

Jk(t) =

∞∑
l=0

(−1)l

(l + k)!l!

(
t

2

)k+2l

, (45)

we can easily sum up all series in the last formula.
Finally, we arrive at the following asymptotic expansion for the
d-function

drmn(ω) = ξmn

{
Jk(t) +

b

4
[Jk(t)+

+
t

3 sin2 θ
(1− 2 cos2 θ)(Jk−1(t)− Jk+1(t))−

−
1 + cos2 θ

6 sin2 θ
[(k + 1)Jk−2(t)− (k − 1)Jk+2(t)]

]
+

+ O(sin4 ω

2
)
}
. (46)

Here, we introduced the following notations:

R = 2r + 1, cos θ =
p

R
, b = sin2 ω

2
,

t = R sin θ
√
b . (47)
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ÄÓÀËÜÍÅ ÔÎÐÌÓËÞÂÀÍÍß ÍÅÀÁÅËÅÂÈÕ
ÃÐÀÒÊÎÂÈÕ ÌÎÄÅËÅÉ ÒÀ ÂIÄÏÎÂIÄÍÈÕ
ÌÀÒÅÌÀÒÈ×ÍÈÕ ÏÐÎÁËÅÌ

Î. Áîðèñåíêî, Â. Êóøíið, Ñ. Âîëîøèí

Ð å ç þ ì å

Ïîáóäîâàíî ïëàêåòíå òà ëiíêîâå ôîðìóëþâàííÿ êîìïàêòíèõ
íåàáåëåâèõ ãðàòêîâèõ ìîäåëåé (òàêèõ, ÿê ãîëîâíi êiðàëüíi
ìîäåëi 3D ÊÕÄ 2D SU(N)), ùî âiäïîâiäàþòü êîíòèíóàëü-
íîìó îïèñó öèõ ìîäåëåé â òåðìiíàõ òåíçîðà íàïðóæåíîñòi
ïîëÿ. Âïåðøå îäåðæàíî òî÷íå äóàëüíå ôîðìóëþâàííÿ äëÿ
ñòàòèñòè÷íî¨ ñóìè i äëÿ òàêèõ ôiçè÷íèõ âåëè÷èí, ÿê ïåòëÿ
Âiëüñîíà, äâîòî÷êîâà êîðåëÿöiéíà ôóíêöiÿ i ò.ií. Âîíî äî-
çâîëÿ¹ âèâ÷àòè íèçüêîòåìïåðàòóðíi îáëàñòi íåàáåëåâèõ ìîäå-
ëåé, âàæëèâèõ äëÿ ïîáóäîâè êîíòèíóàëüíî¨ ãðàíèöi. Çíàé-
äåíî àñèìïòîòè÷íèé ðîçêëàä äóàëüíî¨ áîëüöìàíiâñüêî¨ âà-
ãè i äîâåäåíî, ùî â îáëàñòi íèçüêèõ òåìïåðàòóð öåé ðîç-
êëàä ðiâíîìiðíî çáiãà¹òüñÿ çà âñiìà ôëóêòóàöiÿìè äóàëüíèõ
çìiííèõ äî ïåâíîãî ãàóññiâñüêîãî ðîçïîäiëó. Â ðîáîòi îáãîâî-
ðþ¹òüñÿ, ÿê îäåðæàíi ðåçóëüòàòè ìîæóòü âèêîðèñòîâóâàòè-
ñÿ äëÿ îá÷èñëåííÿ ðiçíèõ âåëè÷èí â iíôðà÷åðâîíié îáëàñòi.
Îñîáëèâèé iíòåðåñ ñòàíîâèòü ïîáóäîâà íîâîãî, ðiâíîìiðíîãî
çà ïðåäñòàâëåííÿìè òà ìàãíiòíèìè ÷èñëàìè, àñèìïòîòè÷íî-
ãî ðîçêëàäó äëÿ ìàòðè÷íèõ åëåìåíòiâ â ìàòðèöi îáåðòàííÿ
SU(2).
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O. BORISENKO, V. KUSHNIR, S. VOLOSHIN

ÄÓÀËÜÍÎÅ ÔÎÐÌÓËÈÐÎÂÀÍÈÅ ÍÅÀÁÅËÅÂÛÕ
ÐÅØÅÒÎ×ÍÛÕ ÌÎÄÅËÅÉ È ÑÎÎÒÂÅÑÒÂÓÞÙÈÕ
ÌÀÒÅÌÀÒÈ×ÅÑÊÈÕ ÏÐÎÁËÅÌ

Î. Áîðèñåíêî, Â. Êóøíèð, Ñ. Âîëîøèí

Ð å ç þ ì å

Ïîñòðîåíû ïëàêåòî÷íàÿ è ëèíêîâàÿ ôîðìóëèðîâêè êîìïàêò-
íûõ íåàáåëåâûõ ðåøåòî÷íûõ ìîäåëåé (òàêèõ, êàê ãëàâíûå êè-
ðàëüíûå ìîäåëè 3D ÊÕÄ 2D SU(N)), ñîîòâåòñòâóþùèå êîí-
òèíóàëüíîìó îïèñàíèþ ýòèõ ìîäåëåé â òåðìèíàõ òåíçîðà íà-
ïðÿæåííîñòè ïîëÿ. Âïåðâûå ïîëó÷åíû òî÷íûå äóàëüíûå ôîð-
ìóëèðîâêè äëÿ ñòàòèñòè÷åñêîé ñóììû è äëÿ òàêèõ ôèçè÷åñ-

êèõ âåëè÷èí, êàê ïåòëÿ Âèëüñîíà, äâóõòî÷å÷íàÿ êîððåëÿöè-
îííàÿ ôóíêöèÿ è ò.ï. Ýòî ïîçâîëÿåò èçó÷àòü íèçêîòåìïåðà-
òóðíûå îáëàñòè íåàáåëåâûõ ìîäåëåé, âàæíûõ äëÿ ïîñòðîåíèÿ
êîíòèíóàëüíîãî ïðåäåëà. Íàéäåíî àñèìïòîòè÷åñêîå ðàçëîæå-
íèå äóàëüíîãî áîëüöìàíîâñêîãî âåñà è äîêàçàíî, ÷òî â îáëàñ-
òè íèçêèõ òåìïåðàòóð ýòî ðàçëîæåíèå ðàâíîìåðíî ñõîäèòñÿ
ïî âñåì ôëóêòóàöèÿì äóàëüíûõ ïåðåìåííûõ ê îïðåäåëåííî-
ìó ãàóññîâñêîìó ðàñïðåäåëåíèþ. Â ðàáîòå îáñóæäàåòñÿ, êàê
ïîëó÷åííûå ðåçóëüòàòû ìîãóò èñïîëüçîâàòüñÿ äëÿ âû÷èñëå-
íèÿ ðàçëè÷íûõ íàáëþäàåìûõ â èíôðàêðàñíîé îáëàñòè. Îñîáûé
èíòåðåñ ìîæåò ïðåäñòàâëÿòü ïîñòðîåíèå íîâîãî, ðàâíîìåðíî-
ãî ïî ïðåäñòàâëåíèÿì è ìàãíèòíûì ÷èñëàì, àñèìïòîòè÷åñêî-
ãî ðàçëîæåíèÿ äëÿ ìàòðè÷íûõ ýëåìåíòîâ â ìàòðèöå âðàùåíèÿ
SU(2).
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