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Strongly coupled one-component plasmas confined in a quasi-two-
dimensional geometry are investigated by means of Monte Carlo
(MC) computer simulations. The structure of the layers occuring
in these systems is studied in terms of the two-dimensional radial
pair intra- and interlayer distributions and bond-orientational
order parameters. The most remarkable finding is a series of
structural transitions with the alternating square (body-centered
cubic) and hexagonal (face-centered cubic or hexagonal closely
packed) symmetries, as dependent on the interlayer separation.
The results of simulations correlate well with the experimental
observations of similar transitions in one-dimensionally confined
charged colloids and ions in Penning traps.

Introduction

Two-dimensional (2D) and quasi-two-dimensional
(quasi-2D) strongly coupled Coulomb systems attracted
considerable attention of researchers during decades.
The well-known examples are charged colloids confined
between two plates, dusty plasmas trapped in one-
dimensional potential profiles, electron plasmas in the
inversion layers and quantum wells in semiconductors,
etc. [1-5]. Most interesting feature of these systems is
their capability to form a strongly correlated condensed
state at sufficiently strong coupling (i.e., at low
temperatures and high densities), in particular, various
crystal structures.

The simplest theoretical model for strongly coupled
Coulomb systems is the model of one-component
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plasmas (OCP). The latter is suitable in the cases where
the properties of a system are determined predominantly
by the subsystem of charges of one kind, and the effects
produced by the other components (e.g., screening)
are negligible. In other words, in OCP, only one kind
of charges is dynamically or statistically taken into
account, while the rest of charges is considered as the
immobile neutralizing background.

The properties of infinite three-dimensional (3D)
OCP are known rather well due to extensive computer
simulations [6,7]. It has been established that, for strong
coupling, i.e., as the coupling constant exceeds the
melting point '), ~ 178, OCP freezes in the body-
centered cubic (BCC) lattice. Computer simulations
of strictly 2D OCP have revealed the hexagonal
(triangular) type of 2D lattice [8,9] with the 2D melting
point I';,, ~ 125 consistent with the experiments on the
melting of 2D Coulomb lattice formed by electrons on
the surface of liquid helium [10].

At the same time, the detailed structure of
strongly coupled OCP in quasi-2D case, i.e., with the
deviation from a strictly 2D geometry, remains an open
question up to now. Theoretical estimates obtained
by minimizing the energy (i.e., for zero temperature)
evaluated within the fluid theory with keeping the local
density correlations, predict a possibility of structural
transitions with increasing the system width [11]. Similar
transitions with alternating square and hexagonal
symmetries have been observed in computer simulations
of one-dimensionally (1D) confined hard spheres [12]
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and in the experiments with charged colloids confined
between two plates [1] and with planar ion structures in
Penning traps [13]. However, a direct numerical evidence
based on microscopic computer simulations which could
confirm the above assumption, is missing up to now.
Molecular dynamics simulations for 1D-confined OCP
have revealed only the regular triangular type of an
intralayer structure in multilayered Coulomb systems
[14].

The goal of this work is to study the crystal structure
of 1D-confined strongly coupled OCP by means of
precise microscopic Monte Carlo (MC) simulations,
in particular, to answer the above question about a
possibility of structural transitions with alternating
symmetry in this system.

1. Calculation of the Coulomb Energy in
Quasi-two-dimensional Systems

In computer simulations of Coulomb systems, one of
the most difficult problems is to combine the periodic
boundary conditions with the long-range Coulomb
interactions between particles. In order to tackle this
problem, we employ the method developed in [15] for
two-component plasmas.

Let us examine a one-dimensionally (along the Z-
axis) confined Coulomb system consisting of point-like
charges of one kind (each carrying a charge @) in the
immobile neutralizing background. The simplest case
related to a quasi-2D geometry is that the background
is uniform and occupies a volume of finite width in
the Z-direction (—H < Z < H) and infinite in the
XY-directions. Following the treatment conventional
for MC simulations, we consider a basic rectangular
configurational cell (0 < X,Y < L) with a finite number
N of particles, which periodically repeats itself in the
XY -directions.

Thus, the problem is to evaluate the Coulomb
energy for a given configuration {r;} of particles. The
total energy of the system contains the contributions
stemming from the interparticle interactions

N N !

ZZZ It —r; +Lm| (1)

lljlm

VCoul

taking account of the interactions with the infinite
array of repeating image cells, and the contributions
Vg associated with the presence of the uniform
background.

Here the two-dimensional vector m with the integer
components m, = 0,+*1,... & 00; my = 0,+£1,... + o0
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enumerates the cells in the array; r; = (z,y:,2:) is
the radius vector of the i-th particle, and the prime
sign at the sum means that the term with ¢ = j and
mg = my = 0 should be omitted.

Straightforward calculations of sum (1) is
impractical, since the series converges very slowly. Much
more efficient approach for calculating the Coulomb
sums is Ewald’s technique adapted for quasi-2D case.
As is shown in [15], expression (1) can be split into a
number of terms

Veoul = Vair + Viny + Voinv — Vielts (2)
where
Vair =

N N

, Q%erfc(alr; —r; + Lm)|)
|r; —r; + Lm)|

)

i J mal,my|<1
Viny = Ll ZZ Z —eq‘”erfc (— + az”>
i |al#0
xcos(qu;), (4)
™ 2 [ —a2:2,
Vo,iny = _a—\/L_z > [6 i+ azij\/;rerf(azij)} , (5)
4,
Veelt = aNQ?//7. (6)
Here, a is the so-called splitting parameter which

determines the relative contributions of the sums in the
direct and inverse spaces; q = 2mn/L are the 2D wave
vectors (ng, = 0,%1,... £ c0), over which the sums
in the inverse 2D space are calculated; u;; = u; — u;
with u; = (z;,y;) being the 2D radius vector of the i-th
particle; z;; = z; — z;.

Expression (3) is the fast converging sum in the direct
3D space which is taken only over those particles in
adjacent cells, for which the difference in any of three
coordinates does not exceed a certain maximal cutoff
length Lpax; expressions (4) and (5) represent the sums
in the inverse 2D space.

In a way quite similar to that employed in [15] for the
evaluation of the zero-th component of the energy V iny
in the inverse space, one can obtain the interaction with
the uniform background (BG) (assuming the particles to
reside within the immobile background and omitting the
irrelevant constants) in the form

= oreg &5 @
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Thus, the above expressions were employed in
the present MC simulations to calculate the total
configurational energy Viot = Vioour+Vaa of 1.D-confined
OCP.

2. Monte Carlo Simulations

The state of 1D-confined OCP can be unambiguously
specified by the two quantities, the dimensionless width
h = 2H/d and the coupling I' = e?>/kgT'd. The quantity
d=1L/ V7N has the meaning of the average interparticle
distance and is used throughout this paper as the length
unit. Let us mention that, in the case of one layer in the
system, the quantities d and I coincide with ones defined
for strictly 2D systems, whereas, in the case of K layers,
they differ from the relevant intralayer parameters by
the factor ~ /K. Note that the interaction with the
uniform background (rewritten in the dimensionless
form)

N
VBG r )
=_ . 8
kBT h;’zl7 ( )

can be viewed as a confining oscillator field in Z-
dimension (here, Z = z/d). In what follows, we regard
this expression as the one including both effects of
neutralizing background and the additional external
oscillator fields, i.e., the width parameter h relates to
the overall confining field.

The structure is studied in terms of 2D radial intra-
and interlayer pair distribution functions and the bond-
orientational order parameter for 2D m-fold symmetry

[16]
> ) 9)

om:<
b= 3 exp(imbie)
l_mkexplmlka

1
M2

where

(10)

Ny, is the number of particles within the layer, and @y
is the angle between the bond connecting the I[-
th particle with its nearest neighbours and some fixed
axis.

The sum in (10) is taken over the bonds connecting
the [-th particle with all the nearest neighbours, i.e. the
particles at the distance less than the first minimum
rmin in the radial intralayer distribution function; the
brackets (- - -) denote the canonical averaging. The type
of 2D symmetry within layers can be simply estimated
by the average number of 2D nearest neighbours N,
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Fig.1. Freezing of 1D-confined OCP to a two-layered crystal
structure with the four-fold symmetry at I' = 220 in MC

simulations

which is expected to be close to 4 or 6 for the square or
hexagonal types of symmetry, respectively.

MC simulations were carried out for the canonical
(NVT) ensemble by using the conventional Metropolis
algorithm [17] with the number of particles being within
the range N = 112 + 390. Computer simulations of
strongly coupled Coulomb systems are difficult due to
the well-known ergodicity problem. In other words,
OCP tends to get trapped in glassy states, and, as a
result, the equilibration time needed for the system to
freeze into a crystal lattice is very long. In the present
simulations, this time is, on average, ~ 107 — 10® trial
configurations. Another difficulty is that the difference
in the average energies between the crystal and the
glassy disordered states is rather small for the range
[ = 300 = 800, on the order ~ 10~%. This necessitates
high precision calculations of the configurational energy.
In these simulations, the relative error in the calculation
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Fig.2. Layered structures in 1D-confined OCP, I' = 300. Top: transverse probability (density) distributions; bottom: side view of
equilibrium MC configurations. The width is increasing from the left to the right: h = 0.78; 2.53; 4.21

of the Coulomb energy was controlled to be less than
10~%, which was achieved by using the appropriate
number of wave vectors in the inverse space and the
values of the splitting parameter in computations of
2D Ewald sums. Each computer run started from a
randomly generated initial configuration. After reaching
the equilibrium, every N-th configuration of the MC
chain was assumed to be statistically independent
and added to the canonical ensemle. In most of the
simulations, the canonical averaging was performed over
~ 2000-10000 statistically independent configurations.
An example of the typical behavior of the system
during relaxation (freezing) is displayed in Fig.1. The
equilibrium is associated with the steady average
energy, and the ordered state can be detected by the
considerable steady magnitude of the order parameter
for a long MC time.

3. Results of Numerical Simulations

MC simulations were performed for the range of
parameters I' = 300 + 800, h = 0.02 + 4.8, which
correspond to the crystal structures with the number
of layers K = 1+ 3. The results are presented in figures
and the table.
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In Fig.2, the transversal probability distributions are
displayed as a function of the width h. As is seen from the
figure, with increasing the width parameter, the system
undergoes transitions from one- to two-layered and from
two- to three-layered structures. These transitions occur
at the points h ~ 1.1 and h ~ 2.9, respectively.

One of the most interesting results is a series
of tramsitions in the internal structure of the layers
occuring with increasing the width of the system, Fig.3.
The structure obtained for one-layered systems is well-
known, it is a simple hexagonal lattice quite similar
to that observed in strictly 2D case [8,9]. Just above
the point h = 1.1, the system crystallizes in a two-
layered square structure, which is a feature of a BCC
lattice in {100} plane. With increasing the width, above
the point h =1.8, the system undergoes a transition
to a hexagonal FCC {111} structure with the same
number of layers K = 2. The associated changes in
the intra- and interlayer distribution functions can be
seen in Fig.4. The type of symmetry can be determined
(along with visual observations) by the comparison with
radial distributions of ideal BCC and FCC lattices, and
by the position of the first minimum in the intralayer
distribution function, which moves from 3.0 to 3.6 with
increasing the width. Accordingly, the computed number

ISSN 0503-1265. Yxp. ¢iz. orcypn. 2003. T. 48, N 10



CRYSTAL STRUCTURE OF STRONGLY COUPLED ONE-COMPONENT PLASMAS CONFINED

. . 0 . . hd . .
. 0 . 0 . 0 . . ° e o °® L]
. . 0 . . ° . .
. . . . . . . o« o ‘e © ©
3 . . . . . ° o .
.
. . . . . . . « o e o ©
. . . °
. . ° ° .
. . . . . . . b . e
o . . . . . . ° e o °
. . . . . . . b © . .
o . . . . . . e P °
. . . . ] . ° e o * ° « .
. . . . . . o e
° . . . . . . ° o © °
3 . . . . . . . e et
. . . . . . . . . °
. . . . . o o °® . .
. . . . . . . . . o o
. . o . . e o o ° .
. 0 . . . . . . .
0
> . . . . . ° o () e o 4
. . 0 . . . . . . .
> . . . . . e ° e © © o
. . . . . . . o © .
.
. . . . . .« o
. . . . . e © o e o
. . ° .
. . 0 . ° . .
a 3 o 2 . Y . g © o o

v
° 9
o o o e o o o ° °
. . O (] ) Ld )
. . e ® . e «® , 0,
. ° p . .
. .
o °© R o, ® c®c 0 0,0 o o o °
o o . . . . . . . .
.
e o ° o
o © . o o ° L0 .0 . % .0 o ° o
. o« o . . . .
e o © e °® ©° o o o o o
° . e co e ®. o e LI S
. .
e © o ©° o e o
° e o o e. 0%, ", ¢« e 0,0 ",
. e 9
.
e o o o o o o
e o © o o e® o 0, %,7 0T 0 0,0 ,0 0
LI e, 0 © o o o o o
e o © © ° L4 . . 0 . . . «® , 0,
PR
. e, 0 o e .
.
e o © e 0,0, %0 0 0, 000,
.
. M ° e o o .
o o o o o,
‘e ® o © e e e T eV 0 0 T 0 e, o
° « ° e © ° o o . 0 o, 0 ® o .e.0
L. e o o o c0, 0 ® 0 .0,
.
« ® 9, ® © 0o o o o .0 o °
L4 . ° . . . . . . . M
. ° e O o .
« e, e ° o o o e o o ° o
. L ., o %, % o 0,0 e, .,
‘e © ° o d . .
“ e * e e © © ° o o o ° o o

Fig.3. Equilibrium MC configurations of 1D-confined OCP, I' = 500. From the left to the right: one-layered hexagonal lattice, h = 0.5;
two-layered square lattice BCC{100}, h = 1.28; two-layered hexagonal lattice FCC{111}, h = 2.65. Points and larger circles indicate

the positions of particles in different layers

Structural properties of layered systems obtained in MC

simulations
hlrlk] s In|N]oi]os| b |nN
1 triangles 6 1.00*
0.02 300 6.00 0.88 224
0.5 300 6.00 0.88 224
500 6.00 0.93 224
2 BCC{100} 4 1.00* 0.50*
1.28 300 3.96 0.90 0.41 288
500 3.98 0.94 0.41 288
1.45 300 4.06 0.84 0.52 288
1.62 300 4.16 0.80 0.62 288
500 4.00 0.90 0.61 288
2 FCC{111} 6 1.00* 0.82*
2.42 300 6.00 0.82 0.90 390
500 6.00 0.90 0.90 390
2.74 300 6.00 0.80 1.04 112
500 6.00 0.90 1.05 112
3 BCC{100} 4 1.00* 0.50*
3.13 500 4.18 0.82 0.67 192
3 BCC{110} 4 0.78* 0.82*
(rhombic)
3.65 500 4.41 0.65 0.77 192
3 FCC{111} 6 1.00* 0.82*
4.26 500 6.00 0.88 0.87 168
3 HCP 6 1.00* 0.82*
4.26 500 6.00 0.87 0.87 168
N o t e. h — width parameter, I' — coupling parameter,

K — number of layers, S — structure, N — 2D coordination
number, N, — average number of 2D nearest neighbours, O4/O¢
— orientational order parameter for four/six-fold symmetry, N —
number of particles in MC cell, D — ratio of the interlayer to
the lattice spacing (defined by the first maximum in the relevant
radial distributions). The values marked with the asterisk relate
to the ’ideal’ lattices. The absolute error in the computations of
the order parameters does not exceed 0.016.
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of the nearest 2D neighbours increases therewith from
Np,=4to N, =

The range h = 1.5 + 1.8 can be regarded as the
region of transition, where the behavior of distributions
gradually changes and BCC{100} lattice acquires large-
scale deformations. This is reflected by some decrease in
the order parameter Oy.

A similar transition from the square to hexagonal
structure is observed in three-layered systems within the
range h = 2.9+4.8, Fig.5. Note that, at wider interlayer
separations, two competing hexagonal structures are
observed, FCC{111} and HCP, as dependent on initial
random configurations. The average energies obtained in
simulations for these structures are equal (with accuracy
of these MC simulations). Since the lattices HCP and
FCC{111} differ only by the arrangement of the third
layer (the former has the order of layers ABABAB...
and the latter has ABCABCABC...), it means that the
structure type is determined by the interactions between
the nearest layers only (i.e., the interaction between the
outer layers is insignificant).

The intermediate deformed square lattice consisting
of elongated hexagons (or elongated squares) is better
defined in this case and can be regarded as the same
BCC structure in {110} orientation, or, more generally,
as a rhombic lattice.

Some information related to a number of selected
runs is summarized in the table. As is seen from it, the
interlayer spacing may considerably deviate from the
corresponding ’ideal’ values, so that the terms 'BCC’
and 'FCC’ lattice used throughout this paper apply to
intra- and interlayer correlations rather than to the 3D
structure as a whole.
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Fig.4. Radial 2D intralayer (top) and interlayer (bottom) distributions for two-layered structures at I' = 400 as dependent on the width
parameter. From the left to the right: h = 1.28, 1.71, 2.42. The vertical impulses relate to the ideal BCC{100} (left) and FCC{111}

(right) lattices
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Fig.5. Equilibrium MC configurations for three-layered structures for I' =500. From the left to the right: BCC{100}, h =3.13; BCC{110}
(rhombic), h =3.38; FCC{111}, h =4.26; HCP, h =4.26. The positions of particles are marked with points (the inner layer) and larger

circles (outer layers)

The MC simulations performed for the range I' =
300800 resulted in similar structural properties, except
that the peaks in the radial distributions are broader for
higher temperatures. It should be pointed out that only
5-10% of MC runs starting from randomly generated
initial configurations result in perfect lattices given in
the figures. In the rest of the cases, the system gets
stuck in the states with lower symmetry or in the defect
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lattices, especially, for a larger number of particles.
The above-presented structures are accepted as the final
equilibrium ones, since i) they are formed spontaneously,
as a result of the relaxation of the system to the
thermodynamical equilibrium, ii) they have the lowest
average energy, and iii) inverse spontaneous relaxation
to metastable states with lower symmetries and higher
energies is never observed.
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Fig.6. Crystal structure for 1D-confined strongly coupled OCP
obtained in MC simulations

Conclusions

Thus, the MC simulations of strongly coupled
OCP confined in quasi-2D geometry reveal a series
of structural transitions with alternating square
(BCC{100} or BCC{110}) and hexagonal (FCC{111}
or HCP) symmetries, which occur with increasing the
width of the system. The relevant diagram for the
anticipated crystal structure within the range I' = 300+
800 is presented in Fig.6. Note the good correlation of
the results obtained with the experimental observations
of similar transitions in 1D-confined charged colloids [1]
and planar ion structures in Penning traps [13], as well
as the results of computer simulations of 1D-confined
hard spheres [12]. This indicates that the structural
transitions under consideration are the rather general
properties of systems with repulsive forces confined in
quasi-2D geometry.
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KPUCTAJIIYHA CTPYKTYPA
CIJIBHO3B’SI3AHOI OJTHOKOMIIOHEHTHOI
IIJIABMU B KBA3IJIBOBUMIPHIII TEOMETPII.
MOJIEJJIIOBAHHA METOJIOM MOHTE-KAPJIO

0. B. Bucmpenko
Peszwowme

CunpHO3B’sA3aHa OJHOKOMIIOHEHTa IIJIa3Ma JOCTIIKYEThCSI Me-
TOJOM KOMI'IOTEpHUX MozesaoBanb Monre-Kapiso. Crpykrypa
mapiB, BUHUKAIOYHX B TaKiii CHCTEeMi, JOCTiIKEHAa 3a JOIMOMO-
o0 [JBOBHMIDHHX [ApPHUX BHYTDPIIIHHOMIAPDOBHX Ta MIXKIIAPO-
BuX GYHKIN po3moxminy i opieHTamiiiHuX mapaMerpiB HOPAIKY.
HaificyrreBimumM pe3ysbTaTOM € CIOCTEDPEXKEHHS Py CTPYKTYD-
HUX IEePeXOAiB 3 KBaJPaTHOI (06’€MOIEHTPUIHOI KyOidHOI)
Ta IeKCArOHAJIBbHOK (IPAHENEHTPHYIHOK KyObiuHOI a0 rexcaro-
HAJIBHOIO IIJIBHOIIAKOBAHOK) CHMETDIEI0, SKi 9epryloThCs B 3a-
JIeXKHOCTI Bifm BifcTani Mixk mapamu. PesysnbraTu MOIesrOBaHb
100pe  y3rOofpKyHThCsi 3 EKCIEePUMEHTAJBHUMHU CIIOCTEPEeXKEHHSI-
MH AHAJOLIYHUX IIE€PEXOdiB B OJHOBHMipDHOOOMEXKEHHX 3apsiaiKe-
HAX KO/UIOIZAX Ta B IOHHHX CTPDYKTypax B macrkax llemmin-
ra.

KPUCTAJIJINYECKAA CTPYKTYPA

CUJIbHOCBA3AHHOW OJJHOKOMIIOHEHTHOM
[IJIASMBI B KBABUIBYMEPHOI 'EOMETPUH.
MO/IEJIMPOBAHUE METO/IOM MOHTE-KAPJIO

A. B. Bucmpenko
Peszwowme

CHIBHOCBSI3aHHAST OJHOKOMIIOHEHTHAS ILIA3Ma HCCIIELYyeTCsS Me-
TOIOM KOMIIBIOTEpHBIX MogenupoBanuit Moute-Kapmo. Ctpyk-
Typa CJI0€B, BO3HHUKAIOIIUMX B TAaKOM cuUCTEMe, HCCIeJOBaHA C
NOMOIIBIO [JBYMEDHBIX IIAPHBIX BHYTPHUCIOMHBIX U MEXKCIIOii-
HBIX (DYHKOUHE pacOpenesieHdus H OPHEHTAIUMOHHBIX I[IapaMeT-
poB mnopsaika. Hawmbosee 3HAYUTENbHBIM pE3yJIbTATOM SIBJISET-
ca HabJIofleHue pala CTPYKTYPHBIX IEPEXOJ0B C 4Yepeayrolleii-
csi KBagPaTHOH (00BEMOIEHTPUIECKOH KyOWYecKo#) U rexcaro-
HAJIBHOM (IpaHENEeHTPUYECKOH KyOUIeCKOH sHubO IeKCAroHAJIb-
HOH IUIOTHOYNAKOBAHHOI) cuMMeTrpmed, B 3aBHCHEMOCTH OT DPac-
CTOAHHUS MEXJy CJI0dMH. Pe3ysbTaTbl MOIENTHPOBAHHI XOpO-
IO COIJIACYIOTCS C SKCIEPUMEHTAJbHBIMUA HAOJIIOAEHUsIMU AHa-
JIOTUYHBIX II€PEXOJ0B B OJHOMEDHOOIDAHHYEHHBIX 3aPAKEHHBIX
KOJUIOMJAX X B HMOHHBIX CTPYKTypax B JjoBymkax IlemHun-
ra.
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