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A precise study within variational approach of the basic
properties of the three-particle spectrum and structure functions
with Gaussian potential near the critical coupling constant of
interaction where the Efimov effect takes place is carried out.
A method is developed to calculate highly excited states with
very small binding energies, and numerical analysis is carried out
for the ground and three excited energy states. For these states,
one-particle density distributions, formfactors, pair correlation
functions, and momentum distributions are calculated. It is found
that the second excited state has already all the basic features of
a level from the infinite Efimov series. An essential asymmetry is
found in the position of energy levels with respect to the critical
constant point. A halo-type structure is revealed in the one-
particle density distributions, and formfactors are shown to have
specific dips of finite depth, the number of dips being equal to the
number of the state. The behaviour of pair correlation functions
and momentum distributions is studied for three-particle states.

Introduction

As known, the Efimov effect [1-3] reveals itself in a
system of three particles with finite-range interaction as
the appearance of the infinite number of levels near the
threshold with very small energies under the condition
that the two-particle subsystems have an infinitely small
binding energy or an infinitely large scattering length.
In the case of three identical particles, the energy ratio
for neighboring highly excited near-threshold Efimov
states [1,4] is Ag = nll,néo(En/E”H) ~ 515. In three-
nucleon systems, the conditions necessary for the effect
to take place can be easily broken by taking into account
the spin structure of the nuclear interaction [3,6] or the
Coulomb long-range repulsive potential.

Theoretical studies of the Efimov near-threshold
energy spectrum were carried out both by asymptotic
expansions with the use of the small parameter ro/a < 1
(being the ratio of the range of forces to the two-
particle scattering length) [1-3,5, 6] and by numerical

1014

calculations [7, 8] based on the Faddeev equations
by using separable interaction potentials. The main
properties of the energy states are universal to the
great extent and do not depend on a specific form of
the potential. For the special choice of an interaction
potential in the form of two components with essentially
different radii, new additional excited energy levels
appear in the three-particle system — the “trap”
effect [9]. In the case of local potentials, numerical
calculations of the Efimov energy spectrum were not
carried out systematically because of essential difficulties
due to the different scales of very small near-threshold
excited states energies and the ground-state energy. This
requires to develop the precise methods of calculation
of the highly excited weakly bounded states of three-
particle systems with local interactions.

Due to the use of Gaussian bases in the variational
calculations of a few-particle systems [10], noticeable
progress was achieved in the calculations of the main
properties of few-body systems [11-14] with interactions
of different nature in recent years. In the present paper,
within the precise variational approach, a study of the
near-threshold Efimov states of a three-particle system
with Gaussian potential out up to the third excited
level is carried, and all the main structure functions for
various energy states are found.

1. Statement of the Problem

Consider a system of three identical particles

h2 3 3 7'2.
H:—%ZAi—VO Z exp (—%) (1)
i=1 i>j=1 0

with a two-particle interaction taken in the Gaussian
form for simplicity, where Vj is the intensity and rq is
the radius of forces. Let us study the properties of the
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energy spectrum and the main structure functions of the
system in symmetric (with respect to permutations of
particles) states with zero total angular momentum in
the range of parameters where the Efimov effect takes
place. It is convenient to use the dimensionless variables
and to measure all the distances in ry and energies in
7% /mr2. In this case, the dimensionless Hamiltonian

13 3
H = —EZAi -9 Z exp (_T?j) (2)
i=1

i>j=1

contains only one combination of physical parameters,
the coupling constant g = mr2Vy/h*, which determines
the properties of the spectrum and wave functions of the
system.

The solution of the problem on eigenvalues and
eigenfunctions for bound states is carried out in
the framework of the variational Galerkin method in
the Gaussian representation with the use of special
optimization schemes (see [12-14]) which enhance
the convergence and ensure a high accuracy of
calculations with the least dimensions of variational
bases. Within this approach, the variational wave
function of symmetric states of the three-particle system
with zero total angular momentum can be presented
as the expansion in Gaussian functions depending on
relative distances r;; = |r; —r;],

K
v (7'12,T13,T'23) = ZDkS |¢k>
k=1

K
= Z Dy Sexp (—akr%2 - ka'%g - cw'%g) ) (3)
k=1

with a set of variational parameters aj, bg, cr. For
the bound states, the linear coefficients D}, are found
in the variational approach from the system of linear
algebraic equations of a problem on eigenvalues (which
is equivalent to the Schrédinger equation in the chosen
Gaussian basis):

K
> Du (St |H| Sta) — B (Sthi [Stn) ) =0,
n=1

k=1,2,...,K. (4)

Note that all the matrix elements in Eq. (4) for
Hamiltonian (2) can be calculated in explicit form.
The chosen method of calculation has proved its high
efficiency and accuracy in a number of problems of a few
particles with interactions of different nature. But, in the
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case of the near-threshold Efimov spectrum, we are faced
with an additional difficulty due to very small values of
the energies of these levels. Since the ratio of the Efimov
neighboring energy levels Ag = nh—>ngo (En/Ept+1) =~ 515
is rather large, there exists a real difficulty for all the
methods (including the method based on the Faddeev
equations [9] and variational methods as well) in
calculating the energies with essentially different scales
and the corresponding wave functions with oscillations
at essentially different distances.

In the present work, the main structure properties of
the ground and three excited states of a system of three
particles are calculated with the coupling constants near
g & ¢ger, Where a two-particle bound state appears and
the Efimov effect reveals itself. The numerical analysis
of highly excited near-threshold Efimov levels appears to
be a nontrivial problem for all the methods including the
variational method because of the necessity to prepare
the “initial” configurations for the wave functions of
highly excited near-threshold bound states to start the
minimization of energy in the nonlinear variational
parameters ag, by, Cg.

2. The Problem of Initial Configurations

An advantage of the variational method lies in the
possibility to calculate (in the approximation of a given
number of the basis functions) the whole spectrum
of low-energy bound states for a given Hamiltonian
or to calculate the energy and wave function of the
chosen ground or excited state separately. The further
minimization in the nonlinear parameters ag, bg, cg
enables one to improve the variational estimation for
the energy and to achieve the best result at a fixed
dimension of the basis in (3). It is clear that if the
initial configuration gives, in fact, the bound (ground or
excited) state, we have to approach the exact solution
for this state by minimizing the nonlinear parameters
ag, by, cr and expanding the basis dimension. However,
at a finite and even rather large number K of the
basis functions in (3) and with a random set of the
nonlinear parameters ag, b, cr (we call it a random
“initial configuration”), nobody can be sure not only in
the fact that the studied energy level is close to the exact
value, but, even more, that it is below the threshold
of a decomposition into subsystems at all. In the latter
case, as a rule, the further minimization in nonlinear
parameters should be terminated on approaching the
rated level to the threshold (from the side of the
continuum spectrum), because the wave function can
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Characteristics of three-particle energy levels in the Efimov effect region. In the second and fourth columns, the
corresponding values of the reciprocal scattering length a—! are given for each value of the coupling constant g

n gl(e"fi kn = 8En/3g ggi"g)ht En Rrms
(a Y (a1 (a”'=0) (a"'=0
0 2.13079 -0.147 — ~0.23845 1.21
(-0.22853)

1 2.64396 —4.72x103 — —4.514x10~4 2.25%x 101
(-1.35046x10~2)

2 2.68215 -2.07x10~4 2.7244 —-8.76x10~7 5.04x102
(-6.1717x107%) (1.32485x1072)

3 2.68393 ~1.38x105 2.68567 ~1.7x107° 1.14x10%
(—2.48262x1075) (5.53501x10~%)

have nothing in common with a bound state. Such
problems reveal themselves starting from the second
excited state which exists in a narrow interval near
g & go = 2.684005 (the critical constant for the
chosen Gaussian potential). There is no such problem
for the ground state of three particles, whose initial
configuration can be simply prepared even with one
Gaussian function at sufficienly large g. The mentioned
problem is also easily solved for the first excited state
if one takes several Gaussian functions, among which at
least two or three ones depend on the parameters ay, b,
¢ taken from the ground-state function, while the rest
have to form a cluster function [13]. This enables one
to rather simply construct the necessary configuration
(even in the case where the initial configuration
corresponds to an energy slightly exceeding the two-
particle threshold). For the ground and first excited
states, the problem is simplified also due to the fact
that these levels exist at all the interaction constants
g greater than certain critical values (see Table).
Therefore, it is sufficient to enhance the attractive
potential, to form the initial configurations at a
sufficiently large g, and then, by gradually decreasing
g (the evolution in coupling constant), to achieve the
necessary value of g by minimizing the energy in the
parameters ag, bg, cr. We used both variants to form
the initial configurations for the ground and first excited
states.

For the following excited near-threshold Efimov
states with extremely small binding energies existing
within a narrow interval of g near the critical
two-particle constant g¢.., the problem of initial
configurations requires special methods for its solution.
One way is to use a wider class of Hamiltonians, in
particular, those with an additional interaction giving
a possibility to form relatively easily the configurations
of highly excited levels. Then the above interaction
is eliminated step by step (in order to return to the
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initial problem) with a simultaneous change in the
parameters ay, bg, ¢ within the variational procedure in
order to keep the energies of the formed configurations
below the threshold. The Coulomb attractive interaction
seems to be suitable for this purpose giving rise to the
infinite number of levels for the three-particle system.
An additional advantage of this interaction is the fact
that all matrix elements in the Gaussian basis for the
Coulomb potential are known to be calculated in explicit
form.

Another way to prepare the initial configurations
is to deal with a Hamiltonian with different masses
of particles. It is known that the Efimov effect
takes place in three-particle systems with different
masses [1-3]. Moreover, the ratio of the energies of
neighboring levels depends significantly on the ratio
of masses (see also [15]). From the analysis of the
power asymptotics of a three-particle wave function
in the momentum representation within the approach
based on the Faddeev equations, it can be shown that
the following secular equation is the condition for the
solvability of three-particle equations:

L(1;2,3)L(2;1,3) + L(1;3,2)L(3; 1,2)+
+L(2;3,1)L(3;2,1) + L(1;3,2)L(2; 1, 3) L(3; 2, 1)+
+L(1;2,3)L(2;3,1)L(3;1,2) = 1; (5)

where

L(i;j, k) = N(EE B,

pi |y,
sinh(so8/2) a—b?

N(a; b) = . 9 = . 6
(a; 0) b\/a sy cosh(som/2)’ o8 a+b?’ (©6)
o mymy _ mi(m; +my) 7)

ujk_mj—l—mk’ _mi—f—mj—l—mk'
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In the case of equal masses, the secular equation (5)
becomes essentially simpler [1]:

V(1)

or
8  sinh(7sg/6)

/3 sp cosh(mwso/2)

and one has for the power sg of the asymptotics
of the Faddeev equations solution (the Danilov—
Minlos—Faddeev—Efimov constant), s = 1.0062378.
This constant determines, in particular, the ratio of
Efimov neighboring energy levels (the scale invariance
multiplier),

=1, 9)

n—o0

2
At = lim (E,/Ens1) = exp (S—”> ~515.035.  (10)
0

Fig. 1 shows the dependence of the ratio A\gp =
exp(27/sg) of the energies of Efimov neighboring levels
on the ratio of the masses of particles. It is seen clearly
that the case of equal masses is the most unsuitable for
the Efimov effect to reveal itself (the scale multiplier
Ap is the greatest) and, at the same time, it is the
most difficult case for numerical calculations. But, in
the case of essentially different masses, one may have
the ratio of energies not too far from 1 instead of (10)
(for any ratio of masses, of course, we have Ag > 1). In
particular, in the limit m;/ms = ma/mg — 0 (the one-
center problem), relation (5) yields the limiting secular
equation for sg:

{1 +8[1+ cosh™! (S”T”)] [sinh (S?T”) /30]2} x

x cosh™2 (s()_w) =1.

. (11)

This results in so = 1.139759, and the corresponding
ratio of energies A\ = 247.826. If, vice versa, my/mg =
mo/ms — oo (the two-center problem), the value
of so increases infinitely as so — k+v/mj/ms, where
the coefficient & = 0.40103 is found from the secular
equation

exp(—kv2)

i WA S A |

kv/2
The corresponding ratio of energy levels goes to 1 as
AE = 1+ 27” z—j at mz/m; — 0. It should be noted

that, due to the essential dependence of the parameter
Ag on the ratio of masses, it is more probable to observe

(12)
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Fig. 1. Coefficient A\g for the neighboring Efimov energy levels

versus the mass ratio (e12 = mi1/ma2, and €23 = ma/ma3) for the
system of three particles

the Efimov effect in a real physical system just with
different masses of particles whose pairwise interaction
is of the resonance type. Close to such systems might be
three-cluster nuclei consisting of a rather heavy magic
core and two neutrons. In particular, if the nucleus “°Ca
serves to be the core, it follows from (5) that Ap ~ 262
(i.e., it is twice smaller than that for equal masses). If, to
say, we consider the system of mesoatoms of deuterium
and tritium interacting with an electron, then, due to
the small mass of an electron in comparison with the
masses of mesoatoms, one has a large value of sg from
(5) enough to result in Ag = 1.26. This value is not
essentially greater than 1 and much less than that in
the case of equal masses. This means that the energies
of neighboring Efimov levels would be of the same order
of magnitude if they were observed in such a system.

Returning to the problem of formation of initial
configurations, we note that the configuration for a given
(the n-th excited) state can be prepared rather easily at
different masses. Then one has to restore step by step the
equality of masses by minimization of the energy of this
level in nonlinear parameters. In this way, we can get
the necessary variational wave function corresponding
to the configuration of a bound state.

To obtain the initial configurations for variational
wave functions, we paid the main attention to the
method of evolution in the coupling constant g at a fixed
(zero) energy, which is possible because the interaction
potential in (1) has a definite sign. The method, in
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Fig. 2. Dependence of (E(5) — En)'/? on the reciprocal scattering
length a~! for the ground (n = 0) and excited (n = 1,2, 3) states.
Each of the levels is depicted on another scale with the use of the
A](En72)/2

multiplier for both axes

essence, consists in a variational procedure with respect
to the critical coupling constant g to be determined
for the given ground or excited state at a fixed (zero)
energy. It is the general statement that the variational
method can be formulated with respect to the coupling
constant g at a fixed energy provided that the interaction
potential is negative definite. Taking an arbitrary initial
configuration with a sufficient number of the basis
functions with some parameters ag, by, cx, we find the
corresponding coupling constant g of the chosen excited
state by variational procedure and advance step by step
towards small g by varying the parameters ay, b, cx (or
sometimes, if necessary, by spreading the basis). Thus,
we approach the two-particle critical constant from the
upper side, where a two-particle ground state appears.
When we are close enough to the region g & g.r, where
the Efimov excited state under consideration must exist,
we return to the commonly used variational procedure
in energy using the obtained set of the parameters ag,
b, cr and start to increase the parameter g. If we
were close enough to the critical constant g.., the three-
particle energy level crosses the two-particle threshold
and goes down below the threshold. Thus, we obtain
the required initial configuration. Such a possibility is
connected with the fact that the two-particle energy
threshold behaves itself by the square law near the
critical coupling constant,

By = —0.107 (9 — ger)?
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while three-particle levels reveal a linear behavior [1],

En = kn (g - gl(gz) )
where gl(erg is the critical constant for the n-th level
appearance on the left from the critical constant, and
k, = OE,/0g (at the critical point g = gl(erg) is the
corresponding angular coefficient (see Table). Using the
above method, we succeeded in preparing the initial
configurations for the second and third excited states
which exist near the critical constant g.. and belong
to the Efimov series of levels. Note that the greater
the number of the excited near-threshold Efimov level,
the greater are the difficulties in preparing the initial
configuration. It is not only due to the necessity to
increase the dimension of the variational basis, but also
because the nonlinear variational parameters differ from
one another by several orders of magnitude. Moreover,
there appears a considerable quantity of nonlinear
parameters such that they are roughly by Ag times
smaller than those typical of the previous energy level.
This makes it necessary to significantly decrease the
steps in the process of variation in nonlinear parameters
and decelerates the whole procedure of preparing the
initial configuration. Because the energy of already the
third excited level is less by nine orders of magnitude
in comparison with the ground state energy and the
dimension of the basis which is necessary to ensure a
reliable accuracy achieves several hundreds of functions,
the calculation of levels higher than the third one
becomes a serious problem.

(14)

3. Asymmetry of the Efimov Energy Levels

It is convenient to depict the calculated energies of the
ground and excited states of a three-particle system
as the square roots of the moduli of three-particle
energies minus the two-particle energy threshold versus
the reciprocal scattering length (instead of the coupling
constant g¢), because such dependences are model-
independent [1-3, 5] to the great extent. Since the
orders of magnitude of the values (of both energies and
reciprocal scattering lengths) are essentially different for
different levels (the ratio for neighboring levels being
about A = exp(m/sp) = 22.692 ), Fig.2 shows
each level in its own scale in order to emphasize the
universal properties of highly excited states. Namely,
the horizontal axis depicts a_l)\,(Enfz)/ ? and the vertical
axis shows (Ep) — E)V2A /2 The ground and
first excited states exist at any ¢ greater than the
corresponding critical values (see Table). The reciprocal

ISSN 0503-1265. Yxp. ¢iz. orcypn. 2003. T. 48, N 10



PRECISE STUDY OF THE EFIMOV THREE-PARTICLE SPECTRUM

scattering length a~! is approximately proportional to
g — ger near the two-particle critical constant g =2 g.,.
Note that the separation of three-particle levels from
the zero energy occurs by law (14), though this linear
behavior takes place only in a very narrow interval
near the corresponding three-particle critical coupling
constant, and the angular coefficient £k, decreases
essentially with increase in the number of the excited
state. The second and third excited states appear with
increase in g (in the region g < ger) and then disappear
(in the region g > ger) at the two-particle threshold
(the corresponding values of the coupling constants g
and the reciprocal scattering lengths are given in the
second and third columns in Table). A rather good
coincidence of the curves for the second (n = 2) and
third (n = 3) excited levels depicted in Fig. 2 testifies
to that the asymptotic formulae [1,2] are valid already
starting from the second excited state and indicates
the fact that highly excited Efimov states possess the
scaling property. Although we restricted ourselves by
the calculations of only three excited levels, it should be
assumed that the rest of levels is to be determined by
the asymptotic relations, and thus the properties of the
whole spectrum are completely described. A significant
asymmetry of the curves obtained in our calculations
for the second and third excited states relative to the
critical concentration point g.. of the Efimov spectrum
testifies to the asymmetry of all the rest levels. Each of
them extends to the right side from the critical point
much farther than to the left. This essential asymmetry
of the levels relative to the point g = ger (or a=! = 0) is
connected with the following fact. Though the potential
of the effective long-range interaction ~ —R™? [1-3]
ranges up to distances of the order of |a|, it remains
attractive at essentially larger distances at a > 0.
Whereas, at a < 0, it becomes practically zero out of the
region of about |a| (see also [15]). The above-mentioned
asymmetry is clearly seen in Fig. 3, where the second and
third excited states are depicted in natural scale versus
the coupling constant g. This figure contains a fragment
of the near-threshold area in larger scale in order to make
the third level visible, since it looks almost like a dot and
cannot be distinguished from the two-particle threshold
within the main figure. Note that the largest binding
energy of each of the Efimov levels (minus the energy
of the two-particle threshold) happens at the constants
rather far from the critical concentration point of the
spectrum (see Fig. 2 and Fig. 3), though the infinite
number of levels appears only at the limiting point ge;.
The three-particle levels cross the two-particle threshold
(with increase in g) at very small angles at the points in
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Fig. 3. Dependence of the second and third excited energy levels

on the coupling constant g. The third excited level is shown in the
enlarged fragment

Fig. 3, where the solid lines of these levels become the
dashed line of the two-particle threshold. After crossing
the two-particle threshold, the three-particle levels may
exist over the threshold as virtual states (see [16]). It is
worth to note that, with the essential enlargement of the
coupling constant g up to g > gg) = 16.3, the second
excited level appears below the two-particle threshold,
the third one does at g > g((j) = 30.8, the fourth does at
9> gt = 32,55, the fifth does at g > &) = 50.89,
and so on. Their binding energies increase with the
coupling constant. The angular coefficients determining
the angle between the curve of the n-th level and the
two-particle energy threshold (near the critical point of
the corresponding level appearance),
By = Eoy 2y (9-9) (15)
are as follows: ks = —0.0045, ks = —0.1, ks = —0.01,
and ks = —0.03. The fact that, for the third and fourth
levels, ggf) and ggff) are close one to another, as well as
that the angular coefficients ks and ky are of different
order of magnitude, testifies to a different nature of these
levels.

4. Structure Functions of the Efimov States

The wave functions of the three-particle ground and
excited states calculated within the precise variational
approach enable us to calculate directly such structure
functions of the system as density distributions,
formfactors, pair correlation functions, momentum
distributions, etc. It is a rather simple problem to
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Fig. 4. One-particle density distributions for the ground (n = 0)
and excited (n = 1,2, 3) states

calculate any such an average since the wave functions of
each state have the simple form (3) of a superposition of
Gaussian functions with the already known linear (Dy)
and nonlinear (ag, by, ¢x) parameters.

Fig. 4 presents the one-particle density distributions,

n(r) = <% > o(r—(ri— Rc.m.))> ;

for the ground and excited states at the critical two-
particle coupling constant g... The density distributions
(16) are shown in logarithmic scale on both axes.
This is made, on the one hand, in order that the
typical “halo” structure appearing for different states
at distances of different scales can be shown in
the same figure. On the other hand, on the chosen
logarithmic scale, the density distributions reveal clearly
the almost periodic dependence of the wave functions
of Efimov states on the global radius logarithm [1]

~ sin <|so| In (R\/m |E| /h2> + A). Moreover, this

asymptotic behavior is valid from the distances of about
the radius of forces (in our case, of about 1) to the
distances of about & (m |E|)_1/2. The less the binding
energy of an excited state, the longer is the extension
of this asymptotic behavior. The density distribution
of the first excited state is seen to change sharply its
behavior between the short and long distances. The
long-range “halo” is situated around the more condensed
central core similar to the density distribution of the
ground state. The density distribution of the second
excited state changes its behavior two times having a

(16)

1020

“halo” in the form of two concentric spherical layers
put one into another. They are of essentially different
radii and densities and have the central part of the
same type as in the case of the first excited state. The
density distribution of the third excited state changes
its behavior three times (three concentric layers around
the central core), and so on. The ratio of the radii
of neighboring layers is about v/Ag = 22.7. Since the
density distributions are normalized by [n(r)dr = 1,
they decrease at short distances when the number of the
excited state increases, because the size of the system is
growing.

The fact that the ratio of the sizes of neighboring
states of the system is about +/Ag is a consequence of
the universal model-independent properties of Efimov
states and is confirmed once more by calculations of the
r.m.s. radii (see Table with the calculated R,,s at the
critical value ge;). Note that the smallest value of R,.p,s
for a given Efimov level is achieved at the constant g
corresponding to the largest binding energy, rather far
to the right from the critical point g., (see Fig. 2). When
the coupling constant approaches the value, where the
Efimov levels appear at the threshold (E — 0), the
calculated mean square radius

s 1/2
Ryms = (r?) 2 _ </ rzn(r)dr> (17)
reveals the behavior
<r2>1/2zc—1—|—02+... . (18)

VE

That is, the radius goes to infinity, in accordance with
the general physical principles, as (7"2)1/2 ~ (B)"1/? at
E — 0 (we recall that the energy level near the threshold
depends linearly on the coupling constant according to
(14)). It is important to notice that the growth of the
rm.s. radii at £ — 0 is connected mainly with the
extension of the region where the asymptotic behavior of

the wave function ~ sin (|so| In (R\/m |E]| /h2> + A)

is valid, i.e., up to the distances of order % (m |E|)71/2.

At the same time, the wave function at short and
intermediate distances does not change (except for the
normalization factor depending on the total size of the
system). As a result, in all the intervals of g where
a given Efimov level exists, the behavior of the wave
function and, in particular, the density distribution is
not changed at short and intermediate distances (but
only the normalization does), which is confirmed by
Fig. 5. This figure shows the density distributions of the
second excited state at several different values of the
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9=2.684005

9=2.682195

Fig. 5. Density distribution profiles with several different coupling
constants g for the second excited state

coupling constant, from the point g = 2.682195 near
the level appearance to the point gr(izg)ht = 2.7244 of
its disappearance. Other typical constants chosen by us
are as follows: the two-particle critical constant g., (the
point of the Efimov spectrum concentration) and the
constant g = 2.702, where the energy of the second
excited state (minus the two-particle threshold energy)
is the greatest.

Specific sharp changes in the density profiles near the
distances, where the corresponding wave functions pass
through zero, manifest themselves in formfactors,
F(g) = [ exp(-ia- o, (19)
in the form of specific dips of finite depth. Fig. 6 shows
the formfactors of the ground state (no dips), the first
(one dip), second (two dips), and third (three dips)
excited states. A logarithmic scale commonly used for
formfactors on the vertical axis is accomplished with the
logarithmic scale in the squared momentum transfer in
order to show clearly the almost periodic repetition of the
dips connected with regularities in the “halo” structure
of the density distributions of excited states. Since the
greater distances in a density distribution correspond
to a less momentum transfer in the corresponding
formfactor and vice versa, a new dip in the formfactor
of the next excited state appears at a less momentum
transfer, whereas the previous dips remain practically at
their positions.
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Fig. 6. Formfactors for the ground (n = 0) and three excited
(n =1,2,3) states

Fig. 7 shows the pair correlation functions

3
0:(r) = <§ > 6<r—<ri—rj>>> (20)

i>j=1

of the ground state and three excited states. We multiply
the pair correlation functions by r? in order to show
clearly the following interesting effect. With increase
in the number of the excited state, we observe the
spreading of the area, where the pair correlation function
is proportional to the reciprocal squared distance
between a pair of particles. That is, the two-particle
subsystem in the system of three particles has the
density distribution very similar to the squared two-
particle wave function. This gives rise to the effective
long-range interaction [1-3] ~ —R~2 in the system of
three particles in the region from distances of order of
the radius of forces R ~ ry to the distances of about
R ~ h(m |E|)_1/2, where the wave function starts its
exponential decrease due to a finite binding energy.
The momentum distributions

3
D) = <§ > o —pi>>

for the ground and three excited states are presented
in Fig. 8. It is found that the momentum distributions
vanish at approximately the same limiting momentum
po (in our case, 10° < py < 10'). This is due to the
fact that the largest momenta in the considered three-
particle system are typical of the shortest distances in
the coordinate representation (of order of the radius of
forces). There, the wave function has the sharpest

(21)
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Fig. 7. Pair correlation functions for the ground (n = 0) and three
excited (n = 1,2, 3) states

behavior, but it is practically unchangeable under
growing the number of an excited state. With increase
in the number of a state, the wave function extends to
larger and larger distances almost without change in the
central part (see, for illustration, Fig. 4 depicting the
density distributions). Note that, with increase in the
number 7 of the state, the momentum distribution D(p)
increases essentially at small momenta proportionally to

n
(A%/ 2) . Indeed, since the size of the system increases

by v/Ag times for each of the next excited states and
its volume increases by ()\E)3/ ® times, the region of
momenta where the momentum distribution is mainly
concentrated decreases at the same extent. Taking into
account [ D(p)dp = 1, we get that the momentum

distribution density grows by ()\13)3/2 ~ 1.17 x 10* times
at small p with every increment of the state number.
Fig. 8 also demonstrates the extension (towards zero
momentum) of the area of the power dependence of the
momentum distribution D(p) ~ p~*, which looks like
a linear decreasing function on the logarithmic scale.
Such a behavior is connected with the fact that the
greater the number n of the state, the greater is the
role of the kinetic energy entering the Green’s function
in the formation of the power dependence of the wave
function in the momentum representation. Really, in
the formal operator representation of the Schrodinger

equation solution
|\I!n> = (HO - En)_lv |\I!n> ’ (22)

the energy E, — 0 with increase in n. In this case,
instead of the Green’s function, we have only the kinetic

1022

D(p)

Fig. 8. Momentum distributions for the ground (n = 0) and three
excited (n = 1,2,3) states

energy in the denominator. The expression V |¥,,)
varies slightly, because it is nonzero only within the
region of the short-range interaction, where the wave
function is changed insignificantly at growing n. After
the integration with the d-function, the squared modulus
of the wave function in D(p) leads to the value in the
denominator which is proportional to the squared kinetic
energy of one particle, by giving rise to D(p) ~ p~*.

Conclusions

We have developed a variational approach with the use
of the Gaussian basis and precise optimization schemes
and have studied the spectrum and wave functions
of three particles with Gaussian pairwise interaction
near the critical coupling constant, where the Efimov
effect takes place. A special technique is developed for
preparing the initial configurations of highly excited
near-threshold weakly bounded energy states using both
the deformation of the initial Hamiltonian (by changing
the interaction or the mass ratio) and the method
of evolution in the coupling constant at a fixed (in
particular, zero) energy. For several calculated levels
from the Efimov series, it is shown that they have an
essential asymmetry with respect to the critical point
and the largest binding energy (minus the threshold
energy) significantly far to the right from the critical
coupling constant which is the point of the spectrum
concentration. The scale invariance is confirmed for the
Efimov levels starting from the second excited state of
three particles.
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For the first time, we have carried out the study
of the specific behavior of the density distributions,
formfactors, pair correlation functions, and momentum
distributions for the ground and three excited states
of the Efimov series. The details of the density
distributions are found, and the halo-type structure
is revealed for the excited states. It is shown that
the corresponding formfactors have some dips of finite
depth which are arranged periodically in the momentum
transfer on the logarithmic scale. The behavior of
pair correlation functions and momentum distribution
profiles is found, and the main conclusions following
from the asymptotic formulae for the Efimov spectrum
are confirmed. The main specific properties of the
structure functions of three particles within the area of
parameters where the Efimov effect reveals itself would
take place with other attractive interaction potentials as
well.

The precise calculations of the spectrum and the
wave functions of highly excited near-threshold levels
confirm the high accuracy of the variational method
in the Gaussian representation combined with the
efficient technique for the maximum optimization of the
basis.
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[IPELU3IHI JOCJIIXKEHHS CIIEKTPA €DPIMOBA
I CTPYKTYPHUX ®YHKIIII CUCTEMUI

TPHOX YACTUHOK B PAMKAX

BAPIAIIITHOT'O ILIXOIY

B.€. I'puniok, M.B. Kysvmenko, I.B. Cumeroz
Peszwowme

Ha ocuosi BapiamniiiHoro miaxoay BUKOHAHO Ipenu3iiiHi J0CTiT2KeH-
Hsl OCHOBHHX BJIACTHBOCTEH CIEKTDPA i CTPYKTypHHUX (DYHKIiH cH-
CTEMH TPbOX JACTHHOK 3 rayCCOIJHUM IOTEHIIaJIOM B 00JIaCTi KpU-
THUYHOI KOHCTAHTHU B3AEMOZil, Jie nposiBisieThbCsi edekT Edimona.
Po3BuHYTO CxeMy pO3paxyHKY BHCOKO30Y/I2KEHHX CTaHIB 3 JyXKe
MaJIOK) EHEPri€ro 3B’si3KY 1 IPOBEJEHO YUCEIbHUI aHAJII3 SIK OCHOB-
HOrO, TaK i MepmuX TpboxX 30yKEHHX TPUIACTHHKOBUX DiBHIB
eHeprii. Po3paxoBaHO OJHOYACTUHKOBI PO3NMOAINU I'yCTUHH, (DOPM-
dakropu, nmapHi kopessiiiiai GyHKil Ta iMoyabcHi po3noginu st
nux cTaHiB. Bussieno, mo Bxe npyruit 30y12KeHui piBeHb eHeprii
TPHOX 9aCTUHOK 3a BCiMa. XapaKTEPHUMHU O3HAKaMWU HAJIE2KUTH 0
HecKiH4ueHHOI cepii piBHIB €diMoBa. BcraHOBIEHO HAABHICTD CyT-
TeBol acumerpii y posramryBaHHI eHepreTHYHHX PIBHIB BigHOCHO
KPUTHIHOI KOHCTAHTH. BUABIEHO HASBHICTH XapPAKTEPHOI CTPYK-
TYPH THILYy Iaj0 B OAHOYACTHHKOBUX PO3MOAiNAaX IYCTHHH, & ¥ Bifi-
noBiguux popm-daxropax — crernudivnux “mposasis” ckimueHHOT
rubUHU, KIJBKICTh SKUX JOpiBHIOE HOMepy piBH4A. JlocmimkeHo
XapaKTep MOBEJIHKH MAPHUX KOpeadaniifnux (pyHKmiit ta iMmmysasc-
HUX POBIOAIIIB TPUIACTHHKOBUX PiBHIB.

[IPEIIU3NOHHBIE NCCJIEJIOBAHUS CITEKTPA
E®UMOBA U CTPYKTYPHBIX ®YHKIINII
CUCTEMBI TPEX YACTHUIL B PAMKAX
BAPUAIIMOHHOT'O IOIXOJIA

B.E. I'puwiok, H.B. Kysvmenro, U.B. Cumenoz
Peszwowme

Ha ocHOBe BapHWaIlMOHHOIO MOJXOJA BBIIOJHEHBl IPEIU3UOHHBIE
HCCIIeIOBAHUS OCHOBHBIX CBOMCTB CIEKTPA U CTPYKTYPHBIX (DYHK-
Uil CHCTEeMBI TPeX YaCTHI] C FayCCOMTHBIM IOTEHIIMAJIOM B 00JIaCTH
KPUTHYECKONH KOHCTAHTHI B3AMMOIEHCTBUS, /e MPOSBJISETCS 3(P-
dekr Edumona. Pa3Bura cxema pacyeToB BBICOKOBO30Y2KIEHHBIX
COCTOSHUM C OUeHb MaJIOi 3Heprueil CBA3U U IPOBEIeH IUCIEHHbII
AaHAJIU3 KAK OCHOBHOI'O, TAK U HEPBBIX TPEX BO3OY’KEHHBIX TPEX-
YaCTHUYHBIX yPOBHeN sHepruu. PaccuumTaHBl OJHOYACTUYHBIE DAC-
npeeieHusl IJI0THOCTH, (HOPM-(PAKTOPHI, MaPHBIE KOPPEJIAIIHOH-
Hble DYHKIIUA U UMITYJIbCHBIE DACIIPEIeIeHIS JJIsl STUX COCTOSHUMN.
ObHApy?KEHO, UTO y2Ke BTOPO# BO3OYKIEHHBIH yDPOBEHb SHEPIUU
Tpex YaCTHI] IO BCeM XapaKTEePHBIM IpU3HAKAM IMIPUHAIJIEKUT K
6eckoHe4YHOI cepuu ypoBHeil EdumoBa. YcTaHOBIEHO HagIHYHE Cy-
IIEeCTBEHHOH aCUMMMEeTPUM B PACIOJIOKEHUH YHEPreTHIEeCKUX yPOB-
Hell OTHOCHUTEJIBbHO KPUTUYECKOW KOHCTAHTHI. BBISBIIEHO HalA4dHe
XapaKTepHO# CTPYKTypbl THIA Tajl0 B OJHOYACTHYHBIX Dpaclpe-
JIeJIeHUSX IJIOTHOCTH, & B COOTBETCTBYHOIIUX (GopM-pakTopax —
crenuduIecKux “mpoBaJIOB” KOHEIHOH IIyOHHBI, KOJIUIECTBO KO-
TOPBIX PaBHO HOMepy ypoBH:A. VcciaenoBaH XapaKTep HMOBEIEeHUST
MapHBIX KOPPEJISNUOHHBIX (DYHKIUH U HMITYJIBCHBIX PACIpesese-
HUll TpeX4YaCTUIHBIX YPOBHEH.
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