THE SPECTRAL-GENERATION PROPERTIES OF CRYSTAL $\mathrm{Sr_4B_{14}O_{25}}$: $\mathrm{Pr^{3+}}$

D.P. Kudrjavtsev, Yu.S. Oseledchik, A.L. Prosvirnin, N.V. Svitanko

Zaporizhzhya State Engineering Academy (226, Lenin Prosp., Zaporizhzhya 69006, Ukraine)

Summary

The absorption and luminescence spectra of a new $\mathrm{Sr_4B_{14}O_{25}}$ crystal doped with $\mathrm{Pr^{3+}}$ are investigated. Within the method of minimal deviation, the dispersion of refractive indices of $\mathrm{Sr_4B_{14}O_{25}}$: $\mathrm{Pr^{3+}}$ crystal is measured. The coefficients of the Sellmeier equation are calculated. With the experimental absorption results, the Jadd — Offelt intensity parameters of new crystal $\mathrm{Sr_4B_{14}O_{25}}$: $\mathrm{Pr^{3+}}$ are calculated: $\theta_2=1.114\cdot 10^{-19}$ cm², $\theta_4=1.388\cdot 10^{-20}$ cm², $\theta_6=1.815\cdot 10^{-20}$ cm². We calculated the spontaneous transition probabilities and generation cross section. The lifetime of the metastable energy level 3P_0 $t_{\mathrm{calc}}=22~\mu\mathrm{s}$ is in good agreement with the experiment $t_{\mathrm{exp}}=17~\mu\mathrm{s}$. The analysis of the theoretical results indicates a possibility of laser generation in a visible range at the wavelength $\lambda=655$ nm (the transition $^3P_0-^3F_2$) in crystal $\mathrm{Sr_4B_{14}O_{25}}$: $\mathrm{Pr^{3+}}$ at room temperature.