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In the previous paper [1], self-trapped (spontaneously localized)
electron states in a discrete, anisotropic, two-dimensional electron-
phonon lattice were investigated numerically. Here this problem
is studied analytically for an isotropic lattice. It is shown that, in
the adiabatic approximation, the continuum limit of the discrete
equations leads to a two-dimensional nonlinear Schr�odinger
equation with an extra term. This extra term comes from the
lattice discreteness and is shown to be essential to prevent a soliton
from collapsing. This is achieved when the nonlinearity parameter
takes values within some finite interval: gc1 < g < gc2. It is
shown, within the variational scheme, that the energy minimum
is attained for the delocalized states provided g < gc1, and
for the strongly localized states (essentially on one lattice site)
provided g > gc2. The radius of the quasiparticle localization as
a function of the electron-phonon coupling constant is evaluated.
Some preliminary results on moving solitons are also presented.

Introduction

Studies of electrical and optical properties in low-
dimensional materials have revealed the important
role of collective excitations and of the electron-
phonon coupling which can result in the creation of
localized modes. Generally speaking, one-dimensional
systems (1DS) have attracted systematic theoretical and
experimental studies [2 � 4] which have proved the
existence of soliton-like states under certain conditions.
At the same time, much less is known about two-
dimensional systems (2DS). Some aspects of this
problem have been studied for isotropic [5, 6, 8] and
anisotropic [1, 7] crystals. In particular, in the first
part of this paper [1], the possibility of the existence,
within a certain range of parameters, of self-trapped
(or so-called spontaneously localized) electron states
in a discrete isotropic or anisotropic two-dimensional
molecular lattice with one extra quasiparticle (electron,
hole, or exciton) has been demonstrated numerically.

Here the possibility of the quasiparticle self-
trapping is studied analytically for an isotropic lattice.
Using a variational ansatz in the quasimomentum
representation, we compute the relation between the

width of a soliton and the coupling constant. In
particular, we show that this relation admits solutions
that correspond to a soliton-like lump when the coupling
constant lies within a very specific finite range. When
this constant is smaller than the calculated critical
value, a localized quasiparticle solution does not exist.
We support the validity of our analysis by comparing
these predictions with the numerical results obtained
previously.

We also show that the system of discrete equations,
in the continuum approximation, can be reduced to
a two-dimensional nonlinear Schr�odinger equation (2D
NLSE) with extra terms. Although various properties
of 2D NLSE (continuum and discrete) models in
general and 2D polaron states, in particular, have been
studied during the past years and various remarkable
phenomena have already been described [10 � 13], some
fundamental aspects of soliton states in 2D structures
so far have not been clarified. The extra terms in the
2D NLSE, that arise due to the lattice discreteness, are
shown to be essential to prevent the soliton collapse.
This is shown to be the case when the nonlinearity
parameter takes values within a finite interval, namely:
gc1 < g < gc2. This stabilization of the soliton
solutions is a result of an interplay between discreteness,
dispersion and nonlinearity. We show that, within our
variational scheme, the energy minimum is attained
for the delocalized states provided g < gc1, and for
the strongly localized states (to within one lattice site)
provided g > gc2. Our scheme allows us also to calculate
the radius of the quasiparticle localization as a function
of the electron-phonon coupling constant.

1. Hamiltonian of the System

Quasiparticle states on a regular 2D lattice when one
takes into account the electron-phonon interaction are
described by the Hamiltonian which can be written in
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the site representation as

Ĥ =
∑
~m

E0A+
~mA~m +

∑
~m,~n

[−J~m,~n
(
A+
~mA~n +A+

~nA~m

)
+

+χ~m,~nA+
~mA~m (û~m − û~n)] +

∑
µ,~n

p̂2
µ(~n)

2M +

+ 1
2

∑
µ,ν,~n,~m

wµ,ν(~n, ~m)ûµ(~n)ûν(~m). (1)

Here A+
~m (A~m) are the creation (annihilation) operators

of the quasiparticle on the site ~m with the corresponding
radius-vector coordinate ~R~n = ~exaxm + ~eyayn, m, n =
0,±1,±2, ..., û~m and p̂~m are operators of molecule
displacements from their equilibrium positions and
the corresponding conjugate momenta, E0 is the
quasiparticle on-site energy, J~m,~n are the exchange
interaction energies, χ~m,~n are the electron-phonon
coupling constants, ~eµ is the unit vector along the µ-axis,
µ = x, y, and aµ is the corresponding lattice spacing, M
is the atom mass, and wµ,ν(~n, ~m) are the lattice elasticity
coefficients which are assumed to be constant on the
grid: wµµ(~n, ~n± ~ex) = wµµ(~n, ~n± ~ey) = w.

We study the problem in the adiabatic
approximation and choose the vector state of one
quasiparticle in the multiplicative form [14] as

|Ψ > =
∑
~n

ϕ~n exp {−σ̂}A+
~n |0 >, < Ψ|Ψ > = 1 (2)

with

σ̂ = i√
h̄

∑
µ,~n

[uµ(~n, t)p̂µ(~n)− pµ(~n, t)ûµ(~n)] . (3)

Here uµ(~n, t) and pµ(~n, t) are the average values of
molecule displacements in the µ direction and of the
canonically conjugate momenta in the state (2), |0 > is
the vacuum state of the quasiparticle and the lattice, ϕ~n
is the probability amplitude of the quasiparticle presence
on the ~n-th site which satisfies the normalization
condition∑
n,m

|ϕm,n|2 = 1. (4)

From Hamiltonian (1), we can obtain, in the
adiabatic approximation (2), the energy functional H =
< Ψ|Ĥ|Ψ >, which takes the following form for the
isotropic lattice in the nearest neighbour approximation
considered here:

H =
∑
~n

{E0ϕ∗~nϕ~n − J [ϕ∗~n(ϕ~n+~ex + ϕ~n−~ex)−

−ϕ∗~n(ϕ~n+~ey + ϕ~n−~ey )] + +ϕ∗~nϕ~nχ
∑
µ

[uµ(~n+ ~eµ)−

− uµ(~n− ~eµ)]}+W. (5)

Here W, the phonon energy, is the sum of the kinetic
and potential energies

W = 1
2

∑
~n,µ

{
p2
µ(~n)

M + wx [uµ(~n)− uµ(~n− ~ex)]2 +

+wy [uµ(~n)− uµ(~n− ~ey)]2
}
. (6)

2. Variational Analysis

In this section, we perform the variational analysis
of the problem. For this, it is convenient to use the
quasimomentum representation

~k = kx~ex + ky~ey, kµ = 2πlµ
Na ,

lµ = 0,±1,±2, ...N/2, Nx = Ny = N, (7)

using the following transformations:

ϕ~n = 1√
N

∑
~k

Φ(~k)ei~k~n, uµ(~n) = 1√
N

∑
~k

Qµ(~k)ei~k~n. (8)

The Hamiltonian functional (5) then takes the
following form:

H =
∑
~k

E(~k)Φ∗(~k)Φ(~k) + 1
2

∑
~q,µ

[
P ∗µ(~q)Pµ(~q)+

+ Ω2
µ(~q)Q∗µ(~q)Qµ(~q)

]
+

+ 1√
N

∑
~k,~q,µ

Sµ(~q)Φ∗(~k)Φ(~k − ~q)Qµ(~q), (9)

where

E(~k) = E0 − 2J cos(kxa)− 2J cos(kya), (10)

Ω2
µ(~q) = Ω2(~q) = 4w

M

(
sin2 qxa

2 + sin2 qya
2

)
, (11)

Sµ(~q) = 2iχ√
M

sin(qµa). (12)

From (9), the system of equations can be obtained in the
quasimomentum representation:

ih̄dΦ(~k)
dτ = E(~k)Φ(~k) + 1√

N

∑
~q,µ

Sµ(~q)Φ(~k − ~q)Qµ(~q), (13)
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Fig. 1. Inverse radius of the localization, 1/R, as a function of the
coupling constant, g. The solid line corresponds to the numerical
value for the system of discrete equations and the dot-dashed curve
corresponds to the analytical estimate of 1/R(g) as the solution of
Eq. (20)

d2Qµ(~q)
dτ2 = −Ω2

µ(~q)Qµ(~q)− 1√
N

∑
~k

S∗µ(~q)Φ∗(~k)Φ(~k + ~q).

(14)

From the last equation in the stationary case, we find the
relation between the lattice and quasiparticle functions

Qµ(~q) = − S∗µ(~q)
√
NΩ2

µ(~q)

∑
~k

Φ∗(~k)Φ(~k + ~q). (15)

Substituting this result into (9) gives the following
expression for the energy functional:

Etot =
∑
~k

E(~k) | Φ(~k) |2 − 1
2N

∑
~k

G(~k) | ℘(~k) |2, (16)

where

G(~k) =
∑
µ

|Sµ(~k)|2

Ω2
µ(~k)

= χ2

w
sin2(kxa)+sin2(kya)

sin2 kxa
2 +sin2 kya

2

, (17)

℘(~k) =
∑
~q

Φ∗(~q)Φ(~q − ~k) =
∑
~n

ei
~k~n|ϕ~n|2. (18)

Let us choose a trial function in the form of a
localized lump

Φ(~k) = π2

2Nκ tanh(π2/2κ) ×

× cosh−1 (πkxa/2κ) cosh−1 (πkya/2κ), (19)

where κ, the width of the lump, is a variational
parameter to be determined by minimizing the energy:

dEtot(κ)
dκ = 0. (20)

Note that a Gaussian function in [6, 8] and a decreasing
exponential in [8, 9] have been used.

Next we substitute (19) into (16) and replace the

sums over ~k by the corresponding integration. This gives
us the following expression for the energy as a function
of the localization parameter:

Etot = E0 − J
{

4κ
sinh(κ) tanh−1(π

2

2κ ) + gϕ(κ)×

×
[
2ϕ(κ) +

(
κ tanh−1(κ)− 1

)
κ

sinh2(κ)

]}
, (21)

where

ϕ(κ) = κ
[

1
6 −

1
π2 e
−π2/κ

(
1 + 1

4e
−π2/κ

)]
−

− π2e−π
2/κ

2κ(1−e−π2/κ)
+ log(1− e−π

2/κ). (22)

Here g is the dimensionless electron-phonon coupling
constant,

g =
2χ2a2

Jw
. (23)

In Fig.1, we present the plot of the inverse radius of
the soliton, 1/R, as a function of g determined by Eq.
(20). The radius is determined using the definition

R2 =
∑
n,m

(
(n2 +m2)|ϕn,m|2

)
= − 1

a2
d2

d~k2℘(~k)|~k=0. (24)

It follows from Eq.(20) that the localization takes place
only when the nonlinearity constant g exceeds the
critical value gc1 ≈ 6.

In Fig.1, we also show the curve obtained by solving
the static equations numerically. These results prove
the existence of a critical value for g, below which no
localization can take place and demonstrate that the
value of gc1 predicted by the variational ansatz (19)
is quite close to the actual one. Our expression gives
a better fit to the numerical results than those obtained
with a Gaussian or a decreasing exponential [8]. The
chosen ansatz (19) also gives a reasonable prediction for
the size of the soliton as long as the wave function is
localized on at least a few lattice sites. Once the wave
function is strongly localized, i.e., localized mostly on
one lattice site, the approximation breaks down. In this
case, the decreasing exponent gives a better fit [8].
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Fig. 2. Energy corresponding to state (19), E = (Etot(κ) − E0)/J , as a function of κ for (a) g = 5.5 < gc1, (b) g = 7 (gc1 < g < gc2),
(c) g = 12 > gc2, and (d) g = 17

The results of the energy calculations, using Eq. (21),
(see Fig.2) suggest that there are three qualitatively
different regimes depending on the value of the
nonlinearity constant g. When g < gc1, the energy
minimum corresponds to a delocalized state with κ = 0
(see Fig.2,a), while the energy minimum is reached at
a finite nonzero value of κ, which corresponds to the
localization regime, when gc1 < g < gc2 (Figs. 2,b and
2,c). The minimum of the energy shown in Fig.2, d is
attained when κ → ∞. This is the regime of strong
localization, in which the localization occurs within one
lattice site and corresponds to a small polaron state.
At g > gc2, the energy decreases monotonously with
increase of κ, approaching its limiting value equal to the
energy of the quasiparticle localized on one lattice site.

3. Modified Nonlinear Schr�odinger Equation

In this section, we derive the dynamic equations of
our discrete isotropic system and show their relation

to the 2D NLSE. The dynamic equations in the site
representation can be obtained in two ways: from
the energy functional (5) or by using the inverse
transformation (8) in Eq. (13).

From the results of the numerical simulations [7],
we know that, for values of g not too small, the
solutions are very smooth. Thus, it is appropriate
to study the dynamic equations in the continuum
approximation. For the static solutions, we can exclude
deformational variables from the corresponding system
of equations and derive the equation for the quasiparticle
wavefunction in the form of a modified 2D NLSE:

idϕdτ + ∆ϕ+ 2g
(
|ϕ|2 + α

12∆|ϕ|2
)
ϕ = 0. (25)

Here the space coordinates are dimensionless, i.e.,
measured in lattice units, and the dimensionless time
τ = Jt/h̄ has been introduced.

The continuum equation (25) can be obtained in
different ways, the only difference is the numerical value
of the coefficient of the last term, α, which is always
relatively small, so that α/12 < 3. Namely, within the
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Fig. 3. a � numerical value of 1/R(g) for the system of discrete
equations, b � the value of 1/R(g) obtained within the variational
scheme for the continuum 2D MNLSE (25)

present scheme, according to (25), α = 1; in the equation
derived from the quasimomentum representation, α =
4. While using the Taylor expansion in the site
representation, one has α = 9/4 (see [8]).

The conserved energy for Eq. (25), measured in units
of J , is given by

E =
∫ [
|~∇ϕ|2 − g|ϕ|4 + gα

12

(
~∇|ϕ|2

)2
]
dxdy. (26)

It is well known that the 2D NLSE,

idϕdτ + ∆ϕ+ 2g|ϕ|2ϕ = 0, (27)

with the normalization condition (4) has a stationary
solution only at a very specific value of the nonlinearity
parameter; namely, at g = 5.85.

Moreover, this solution corresponds to the zero value
of the total energy, while the localization parameter
and binding energy can take arbitrary values. The
solution of the 2D NLSE is marginally stable in the
linear approximation [15] and is unstable with respect
to perturbations of finite amplitude [10].

The extra term in Eq.(25), when compared with 2D
NLSE (27), turns out to be essential for the stabilization
of solitons. This comes from the fact that our model is
defined on a lattice, which prevents the soliton collapse,
as is shown below. Differentiating the square of the
localization radius given by Eq. (24) with respect to τ

(comp. [10, 16 � 18]), we find

dR2

dτ = −
∫

(x2 + y2)(ϕ∆ϕ∗ − ϕ∗∆ϕ)dxdy, (28)

which gives

d2R2

dτ2 = 8(E + δ). (29)

Here E is given by (26) and

δ = gα
12

∫ (
∆|ϕ|2

)2
dxdy. (30)

It follows from (29) that the initial configurations with
negative energy E will start shrinking unless the extra
term δ, which is always positive, can compensate E . As
a result of such shrinking, δ increases until the r.h.s. of
(29) becomes negative. Then the wave function starts to
expand until δ becomes small enough to make the soliton
start to shrink again. This process continues, and, as a
result, the soliton oscillates in size.

To estimate the oscillations, we consider the
following Gaussian ansatz for the wave function

ϕ(x, y) = 1√
πR2 exp

(
−x

2+y2

2R2

)
. (31)

Substituting (31) into (26), we get the expression for the
energy as a function of the localization parameter

E = 2π−g
2πR2 + gα

12πR4 . (32)

The minimum of the energy function is attained at a
value for g that is slightly smaller than 6, which supports
our analysis.

In Fig.3, we present the plot of 1/R(g) as a function
of g together with the curve obtained numerically. We
see that the curve fits the numerical value of 1/R quite
well when g is not too large, i.e., when the continuum
approximation is valid.

To study the stability of our solution, consider a state
that differs slightly from the static solution; namely, we
take

R2 = R2
0 + f(τ), (33)

where f is assumed to be small, and so, according to
(29), satisfies the following equation:

d2f(τ)
dτ2 = −ω2f(τ). (34)

Here

ω2 = 36
π

(
1− 2π

g

)3

, (35)

and, therefore, the size of the lump oscillates as a
function of time:

R2 = R2
0 + ε cos(ωτ), (36)
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Fig. 4. Period of oscillation, T (g), of the soliton width : a �
numerical value; b � analytical estimate within the variational
scheme: T (g) = 2π

ω
= 1

3
(πg/(g − 2π))3/2

with the amplitude of oscillations, ε, determined by the
initial conditions.

In Fig. 4, we present the curve T (g) = 2π/ω obtained
by solving the initial discrete equations numerically and
compare it with the values given by (35).

4. Moving Solitons

We have also studied numerically various properties of
moving solitons. Such a system has been described by a
set of discrete equations in the site representation (see
[1]) on a 100×100 grid with periodic boundary conditions
in the x direction. To make the solitons move, we have
multiplied the quasiparticle wavefunction ϕ by a factor
eikxnx , which accounts for the soliton momentum in
the x direction and results in the soliton movement.
As the soliton moves, it `drags' the lattice deformation.
This is achieved by the sharing of the momentum
amongst the quasiparticle and the deformation of the
lattice.

The relatively broad soliton moves around the
effective cylinder several times without noticeable
reduction of its velocity. This was observed for all
sensible values of k = kx (k ∼ 0.01− 0.5) and g ∼ 6− 7.
The soliton velocity ve as a function of k is shown
in Fig.5. The top and bottom curves in Fig.5 refer to
the broader and narrower solitons, respectively. The
narrower the soliton, the more momentum, k, it needs

Fig. 5. The average soliton velocity, ve, as a function of the
wavevector, k, in dimensionless units. The top and bottom curves
refer to the broader and narrower solitons, respectively

to move with the same velocity. This is due to the
phonon dressing: the effective mass of the narrower
soliton is larger than the mass of the broader one.
The discreteness of the lattice manifests itself in
two different ways. Firstly, in the deviation of the
dispersion ve(k) from a linear relation to a curve with
saturation.

To study this, we have introduced some absorption in
the system and started off the soliton with a reasonable
momentum.

In Fig. 6, we present the time dependence of the
soliton velocity for two such cases. In case ( a), we see
that the soliton becomes trapped when the velocity drops
below ∼ 0.01, and its velocity oscillates around 0. In Fig.
6,b, the corresponding value is around ∼ 0.005. Both
cases describe relatively narrow solitons (the case ( b)
corresponds to the lower curve of Fig. 5). When we took
a broader soliton, i.e., the one described by the upper
curve of Fig. 5, we could not determine its very small
critical velocity as the soliton had reflected itself from
a lattice site and reversed its direction! At v ∼ 0.001,
the soliton was still moving very smoothly. Thus, we
conclude that the discreteness can lead to some new
coherent effects. Clearly, more work has to be done to
understand these points better.
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Fig. 6. Time dependence of the soliton velocity for relatively narrow trapped solitons. a � the critical velocity of trapping vcr ∼ 0.01, b
� vcr ∼ 0.005 (the corresponding value of coupling is the same as for the lower curve of Fig. 5

Conclusions

We have shown that a 2D lattice where the electron-
phonon interaction is taken into account admits solitonic
solutions when the coupling constant g is larger than
its lower critical value, gc1 ≈ 5.85, and less than its
upper critical value, gc2 ≈ 8. In this interval a solitonic
solution is stable with respect to finite and not too
large perturbations. The stabilization of such a 2D
soliton with respect to collapse occurs due to the mutual
influence of nonlinearity, wave dispersion, and lattice
discreteness. At g > 8, the self-trapping changes into
the regime of strong localization. This transition also
manifests itself by the bend of the numerical dependence
1/R(g), Fig.3. When the initial function is slightly
different from the stationary state, its width oscillates
around the value that corresponds to the width of the
stationary state with the frequency of oscillations given
by Eq. (35). The study of the dynamics of such a
soliton and its stability with respect to collisions with
boundaries is in progress.

Generally speaking, at various values of the electron-
phonon coupling, different types of the electron ground
state are realized: small polaron, soliton (large polaron),
or almost free electron [19]. Between the almost free
electron state at a weak coupling, and the small
polaron state at a strong coupling there is a region
of the coupling parameter, where a soliton state exists
in systems that satisfy the adiabatic approximation.
But the results of the zero adiabatic description of
1D and 2D systems with respect to the self-trapping

are qualitatively different. While in 1DSs within the
adiabatic approximation, the self-trapping formally

occurs at an arbitrary value of the coupling constant, in
2DS systems even within the adiabatic approximation,
there are three different regimes which can be realized
depending on the strength of the coupling.

The comparison of the results obtained here with
the conditions of the soliton existence in 1D chains [19]
shows that solitons in 2D lattices exist at larger values
of the electron-phonon coupling constant. Therefore,
the properties of systems of similar compounds but
possessing a 1D rather than a 2D structure, could
differ qualitatively. Indeed, such an example is given
by the comparative study of the vibrational modes of
the double C = O bond of a peptide group, called
Amide-I vibrational modes, in biological macromolecules
of myoglobin and in photoactive yellow protein,
respectively [20]. Myoglobin, which is essentially α-
helical, i.e., is a quasi-1D protein, admits the existence
of a long-lived photoexcited Amide-I mode with lifetime
greater than 15 ps. On the other hand, photoactive
yellow protein, which is predominantly a β-sheet protein,
does not have such long-lived modes under the same
conditions of photoexcitation. Let us add here that A.S.
Davydov and N.I. Kislukha [21] were the first to predict
the self-trapping of Amide-I excitations in a soliton state
in α-helical macromolecules due to the electron-phonon
coupling with the hydrogen bonds along polypeptide
chains, the life-time of such a soliton state being much
higher than that of an isolated Amide-I excitation [14].
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In this paper, we have also presented the preliminary
results of a numerical study of moving solitons in 2D
lattices. We have shown that solitons, once formed, can
move and lose a little energy when moving. This is
particularly true for broad solitons; narrower solitons
`feel' the effects of the lattice more and can get trapped
on lattice sites.
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ÀÂÒÎËÎÊÀËIÇÀÖIß ÅËÅÊÒÐÎÍIÂ Ó ÄÈÑÊÐÅÒÍÈÕ
ÄÂÎÂÈÌIÐÍÈÕ ÃÐÀÒÊÀÕ.
II. ÀÍÀËIÒÈ×ÍÅ ÄÎÑËIÄÆÅÍÍß

Ë.Ñ. Áðèæèê, Î.Î. �ðåìêî, Á. Ï'¹ò, Â. Çàêðæåâñüêèé

Ð å ç þ ì å

Ó ïîïåðåäíié ðîáîòi [1] íàìè áóëî äîñëiäæåíî ÷èñåëüío àâòî-
ëîêàëiçîâàíi åëåêòðîííi ñòàíè ó äèñêðåòíèõ àíiçîòðîïíèõ äâî-
âèìiðíèõ åëåêòðîí-ôîíîííèõ ãðàòêàõ. Òóò öÿ ïðîáëåìà äîñëi-
äæó¹òüñÿ àíàëiòè÷íî ó âèïàäêó içîòðîïíèõ ãðàòîê. Ïîêàçàíî,
ùî â àäiàáàòè÷íîìó íàáëèæåííi ñèñòåìà äèñêðåòíèõ ðiâíÿíü
ìîæå áóòè çâåäåíà äî êîíòèíóàëüíîãî äâîâèìiðíîãî íåëiíiéíî-
ãî ðiâíÿííÿ Øðåäiíãåðà ç äîäàòêîâèì äîäàíêîì, ùî âèíèêà¹
çàâäÿêè äèñêðåòíîñòi i ¹ iñòîòíèì äëÿ ïðîòèäi¨ êîëàïñó ñîëi-
òîíiâ. Öå äîñÿãà¹òüñÿ òîäi, êîëè ïàðàìåòð íåëiíiéíîñòi íàáó-
âà¹ çíà÷åííÿ ç ïåâíîãî iíòåðâàëó gc1 < g < gc2. Âàðiàöiéíèì
ìåòîäîì ïîêàçàíî, ùî ìiíiìóì åíåðãi¨ âiäïîâiäà¹ äåëîêàëiçî-
âàíèì ñòàíàì, êîëè g < gc1, òà ñèëüíî ëîêàëiçîâàíèì (ìàéæå
íà îäíîìó âóçëi) ïðè g > gc2. Ðîçðàõîâàíî ðàäióñ ëîêàëiçàöi¨
êâàçi÷àñòèíêè ÿê ôóíêöiþ ñòàëî¨ åëåêòðîí-ôîíîííî¨ âçà¹ìîäi¨.
Íàâåäåíî òàêîæ äåÿêi ðåçóëüòàòè ñòîñîâíî ñîëiòîíiâ ç âiäìií-
íîþ âiä íóëÿ øâèäêiñòþ.

ÀÂÒÎËÎÊÀËÈÇÀÖÈß ÝËÅÊÒÐÎÍÎÂ Â ÄÈÑÊÐÅÒÍÛÕ
ÄÂÓÌÅÐÍÛÕ ÐÅØÅÒÊÀÕ.
II. ÀÍÀËÈÒÈ×ÅÑÊÎÅ ÈÑÑËÅÄÎÂÀHÈÅ

Ë.Ñ. Áðèæèê, À.À. Åðåìêî, Á. Ïüåò, Â. Çàêðæåâñêèé

Ð å ç þ ì å

Â ïðåäûäóùåé ðàáîòå [1] íàìè áûëè ÷èñëåííî èññëåäîâàíû àâ-
òîëîêàëèçîâàííûå ýëåêòðîííûå ñîñòîÿíèÿ â äèñêðåòíûõ àíè-
çîòðîïíûõ äâóìåðíûõ ýëåêòðîí-ôîíîííûõ ðåøåòêàõ. Çäåñü ýòà
ïðîáëåìà èññëåäóåòñÿ àíàëèòè÷åñêè â ñëó÷àå èçîòðîïíûõ ðå-
øåòîê. Ïîêàçàíî, ÷òî â àäèàáàòè÷åñêîì ïðèáëèæåíèè ñèñòå-
ìà äèñêðåòíûõ óðàâíåíèé ìîæåò áûòü ñâåäåíà ê êîíòèíóàëü-
íîìó äâóìåðíîìó íåëèíåéíîìó óðàâíåíèþ Øðåäèíãåðà ñ äî-
ïîëíèòåëüíûì ñëàãàåìûì, êîòîðîå ïîÿâëÿåòñÿ èç-çà äèñêðåò-
íîñòè è îêàçûâàåòñÿ ñóùåñòâåííûì äëÿ ïðîòèâîäåéñòâèÿ êîë-
ëàïñó ñîëèòîíîâ. Ýòî äîñòèãàåòñÿ òîãäà, êîãäà ïàðàìåòð íå-
ëèíåéíîñòè ïðèíèìàåò çíà÷åíèÿ èç îïðåäåëåííîãî èíòåðâàëà
gc1 < g < gc2. Âàðèàöèîííûì ìåòîäîì ïîêàçàíî, ÷òî ìè-
íèìóì ýíåðãèè ñîîòâåòñòâóåò äåëîêàëèçîâàííûì ñîñòîÿíèÿì,
êîãäà g < gc1, è ñèëüíî ëîêàëèçîâàííûì (â ïðåäåëàõ îäíîãî óç-
ëà) ïðè g > gc2. Ðàññ÷èòàí ðàäèóñ ëîêàëèçàöèè êâàçè÷àñòèöû
êàê ôóíêöèÿ ïîñòîÿííîé ýëåêòðîí-ôîíîííîãî âçàèìîäåéñòâèÿ.
Ïðåäñòàâëåí òàêæå ðÿä ðåçóëüòàòîâ, êàñàþùèõñÿ äâèæóùèõñÿ
ñîëèòîíîâ.
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