
SUBQUANTUM LEVEL OF MATTER
S. S. SANNIKOV-PROSKURYAKOV

UDC 539.12

‰ 2002

National Scientific Center 'Kharkiv Institute of Physics and Technology“
(1, Academichna Str., Kharkiv 61108, Ukraine)

Not long ago spinors were considered as the simplest and most

fundamental objects of particle physics. However it turns out that

there exist more fundamental objects, from which spinors may be

built (and, in this sense, they play the role of Kummer ideal

numbers). We call they fundors. They are used in the description

of a new more deep level of physical reality ¯ pre-matter, from

which usual elementary particles arise. Here, a mathematical carcass

of the theory is built.

Pythagor had considered that numbers govern the
world. Physicians well know the usual integer numbers
Z (called Euclidean). They form the ring (the algebraic
structure with two operations: summation and
multiplication). It turns out there are another more
fundamental  numbers (so-called algebraic, Kummer
has named them ideal ones), of which Euclidean
numbers consist. In the framework of ideal numbers,
the prime numbers of Z (namely, 2, 3, 5, 7, 11, 13,...)
become decomposable, i.e., having multipliers (now the
latter are called divisors). Therefore, we have to
consider that Z is not a closed ring under the division
operation (which is a new operation in comparison with
initial ring operations; hereby, to multiply  by zero
is possible but to divide by it is impossible1) and may
be completed (by means of extension) by ideal
numbers.

1. As is well known, the ring extension operation
is connected with some trouble. For instance, in the
ring Z [ √− 5 ] , there is no one-valued decomposition
of numbers a +  b √− 5  (a,b ∈  Z) into prime ones (in
fact, 3, 7, 1 +  2 √− 5 , 1 −  2 √− 5  are primes  in
Z [ √− 5 ] , but we have 21 =  3 ⋅  7 =  (1 +  2 √− 5 ) ×
×  (1 −  2 √− 5 ); namely such a sutuation takes place
when one considers that every elementary particle
consists of another ones). In order to restore the one-
valued decomposition property, it is needed now to
extend Z [ √− 5 ]  in such a way that 3 =  AB,
7 =  CD, 1 +  2 √− 5  =  AC, 1 −  2 √− 5  =  BD, where A

B, C, D are new prime numbers (ideal symbols) of
a new commutative ring. So, the prime numbers of
initial ring Z are not prime (simple) indeed. Hereby,
it is important to achieve such a level when a further
ring extension  will  not possible  ( in such a case,
one speaks  about algebraic closedness of the final
ring).

2. In particle physics at calculus of total particle
number and boson occupation number, the ring Z is
used (ring Z2 =  Z/ mod 2 is used for description of
fermion occupation number). In addition, repre-
sentations of the rotation group SO(3) and its covering
SU(2) are used for particle spin  description. They are
numbers too.

The general definition of numbers as some repre-
sentations of (discrete) groups was given by Galois.
In the case of continuous groups,  the  situation is
the same  (see F. Klein’s  Erlagen  program and the
group representation theory connected with it).
Irreducible representations of a group forming the ring
(see further)   are  the  numbers  connected  with the
group.

The especially important role in physics is played
by the rotation group SO(3). Its representations are
used for description of spin properties of particles. We
are interested namely in this group and its finite-
dimensional representations D (l ),  l ∈  Z+ , used for
description of bosons. Let us consider their pure
number properties.

The whole collection of these representations is
denoted by D =  {D (l )}. Its elements are finite sums
∑ 
l

  al D (l ), where al ∈  Z. Due to the well-known

Clebsch ¯ Gordan theorem

D (l1) ×  D (l2) =   ∑ 
l= | l1− l2 |

l1+ l2

  D (l ), (1)

the set D is closed under operation of usual sum +
and Kronecker multiplication ×  and therefore it is a
ring ¯ the ring of finite-dimensional representations
of the rotation group SO(3). One can say that the D

1
Ring (algebra) as an algebraic structure is irreproachable: all its

elements are enjoying equal rights in respect of ring operations. On the
contrary, not all elements of bodies (in particular, fields) are enjoying
equal rights because, for example, zero is damageable: to divide by zero
is impossible (ideal element ∞  arises). With this circumstance,
uncertainties of the types ∞  −  ∞ , ∞ / ∞ , 0/0 arise. Therefore, we prefer
to deal with rings only.
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is a transcendental extension of the ring Z,   got by
means of the addition of the element D(1) to Z ¯
the fundamental representation of the rotation group
SO(3). Therefore, we can write D =  Z [ D(1)] .

As known, every linear representation D (l ) is
connected with the carrier vector space R2l+ 1 (see [1]),
and another ring T  [ R3]  (a tensor algebra over R3,
where R3 is the module of the fundamental repre-
sentation D(1)) is connected with the ring D.
Therefore, we can pass in our reasoning from one ring
to another one and to speak about properties of one
ring as of another one.

So it turns out that the ring D (and, hence, the
ring T  [ R3] ) permits the simple algebraic extension
as it is algebraically non-closed (non-closed relatively
to the new operation ¯ square root extraction, see
[2]). Indeed, let us consider the representation
D(1) and its carrier space R3 ⊃  p→ =  (p1,  p2,  p3) (it

means that there exists a basis e→1,  e→2,  e→3 in R3, and
we can write p→ =  e→i pi where p1,  p2,  p3 are the
components of the vector p→ in this  basis which are
real numbers from R) .  On R3,  there exists a quadratic

symmetric form (p→,  p→ ) =  p 1
2 +  p 2

2 +  p 3
2, which is

invariant under the trans-formations
O ∈  SO(3) : (O p→,  O p→ ) =  (p→,  p→ ). This form as a poly-

nomial of p1,  p2,  p3 may be decomposed into linear

forms p̂ =  σ1 p1 +  σ2 p2 +  σ3 p3, i.e. (p→,  p→ ) =  =  p̂ 2 [2],
where the coefficients σi (i =  1,  2,  3) must satisfy the
relations

σi σj +  σj σi =  2δij , (2)

which determine the Clifford algebra C3 with the basis
σ→,  1 (this algebra is isomorphic to the Hamiltonian
algebra of quaternions with the basis i σ→,  1). The
algebra C3, as well known, has the realization by means
of 2× 2 Pauli matrices (that is very important for
physical applications), acting in a two-dimensional

complex vector space S2 ⊃  ϕ =  




ϕ1
ϕ2





, named spinor

space. We see that the square root extraction applied
to a vector leads, first, to the mapping T  [ R] 3 → C3
which is a homomorphism of the ring T  [ R3]  (with
tensor multiplication) into the Clifford algebra C3 (the
latter is  obtained from T  [ R] 3 under factorization
upon the ideal determined by relations (2), see [1])
and, secondly, to the spinor ring U [ S2]  (here U is
taking the envelope algebra with usual multiplication)

extending the ring U [ T 3]  (see further)2.
The transformation p → p ′  =  Op leads to the

transformation p̂ → p̂ ′  =  σ p ′  =  σ ′  p, where σ ′  =  σO,
hereby matrices σ ′  obey the same relations (2) as

σ due to the orthogonal condition OTO =  1. Therefore,
σ ′  and σ are equivalent, and hence there exists such
a matrix S  (O) that

S  (O) σ S  − 1 (O) =  σ ′  =  σ O. (3)

It is not difficult to show that, in the neighbourhood
of 1, the matrix S  (O) has the same structure as O,
i.e., if O =  1 +  Iα θα (θα are parameters of the group
SO(3) and Iα are its generators), S (O) =  1 +
+  S (I) θα = 1 +  Sα θα, hereby

[ Sα,  σi]  =  σk (Iα)ki . (4)

It follows from here that

Sα =  
1
4

 σ Iα σ. (5)

If [ Iα,  Iβ]  =  c αβ
γ  Iγ, where c αβ

γ  are the structure
constants of the Lie algebra of the group SO(3), we
have [ Sα,  Sβ]  =  c αβ

γ  S γ.
As well known, this isomorphism of Lie algebras

does not continue to a homomorphism between groups:
it does not follows from (3) that S (O ′ ) S (O) =
=  S (O ′  O). The matter is that S (O) is a covering
mapping depending in general case on the path O

~
 in

SO(3) that outgoes from 1 and finishes in O. However,
in the given case, S (O) depend on the class of
homotopic paths in SO(3) (SO(3) is a linearly two-
connected group) and are the elements of a new group
Spin(3)  twice covering  the SO(3) . Hereby SO(3)  =

2
Ring U[ R3 ]  =  U[ p1 ,p2 ,p3 ]  of polynomials of p1 ,  p2 , p3  is obtained

from the ring T  [ R3 ]  by means of factorization over some ideal, see [1].
There is a diagram, into which the Clifford enclosure (not

homomorphism): pl →
ρ

 σl enters:

T  [ R3 ]  →
hU

 U [ p1 ,  p2 ,  p3 ]

hC                   ρ

     C3

.

Here hU and hC are homomorphisms (and I U, I C are the corresponding
ideals, so that we have U [ p1 ,  p2 ,  p3 ]  =  T  [ R3 ] / I U,  C3  =  T  [ R3 ] / I C).
By considering the tensor algebra T  [ C3 ]  and its module T  [ S 2 ] ,
T  [ S 2 ]  extends the ring T  [ R3 ] . It permits us to speak about algebraically
non-closedness of the latter.

Obviously, the Clifford algebra may be considered as a non-
commutative extension of the real R (or complex C) number ring.

S. S. SANNIKOV-PROSKURYAKOV

820 ISSN 0503-1265. Ukr. J. Phys. 2002. V. 47, N 9



Spin(3)/ Z2, where Z2 =  {− 1,1} is the central normal
devisor in Spin(3), hereat the reverse mapping
S (O) → O is a homomorphism. Using the isomorphism
Spin(3) ≈  SU(2), we will further consider the group
SU(2).

As (Iα)ik =  εαki (it is completely skew-symmetric

tensor), so Sα =  
i
2

 σα are anti-Hermitian matrices.

Therefore, the global transformation S (O) =

=  exp ( i
2

 σ→ θ→ ) is a unitary matrix. It follows from the

transformation law for spinors ϕ → S (O) ϕ,

ϕ
__

 → ϕ
__

 S  − 1 (O) that the magnitudes pα =  ϕ
__

 σα ϕ
composed from spinors are transformed like
components of a vector. So that, in this construction,
spinors play the role of ideal numbers (elements, of
which vectors consist). And we may write that
T  [ R3]  ⊂  T  [ S2] .

As S
→

 2 =  3/ 4 =  s (s +  1), s =  1/ 2 and hence matrices
S (O) give the representation D(1/ 2) with spin 1/2 in
the space S2. Admitting liberty of speech, we speak
about the representation D(1/ 2) of the group SU(2)
as about a spinor representation of the group SO(3).
As usual, the existence of spinor representations is
connected with two-connectedness of the group SO(3).
We connect their existence with the algebraic non-
closedness of the ring D 3.

It follows from Clebsch ¯ Gordan formula
D(1/ 2) ×  D(1/ 2) =  D(1) +  D(0) generalized to spinor
representations that, with respect to the irreducible
representations D(1) and D(0) of the group SO(3),
the spinor representation D(1/ 2) plays the role of ideal
number (representation). By adding D(1/ 2) to the ring
D, we get a wider ring D

__
 =  D [ D(1/ 2)]  ¯ the ring

of finite-dimensional representations of the group
SU(2). In particle theory, spinor representations with
half integer spin are used for description of fermions.
And we can identify the ring D

__
 with the elementary

particle world.
3. Now the following question is arisen again: is

the ring D
__

 algebraically closed or not? (In other words,
is the particle world closed or not?) It turns out that,
in spite of one-connectedness of the group SU(2), the
ring of its representations D

__
 is algebraically non-

closed. This theorem is exceptionally important for un-
derstanding the particle nature.

We may apply the same operation of square root
extraction but to the space S2. For this purpose, we
will use isomorphism SU(2) ≈  Sp(1). Then we can
consider the space S2 as a simplectic space over the

Grassmannian algebra G (see [3]), i.e., S2 is a G-

module G 2 4

ϕα ϕβ =  −  ϕβ ϕα ,    ϕ α
2  =  0. (6)

Note that the algebra G2 may be obtained from the
tensor algebra T  [ S2]  by means of factorization of the
latter upon the ideal determined by relations (6), see
[1]. On S2, there exists a skew-symmetric invariant

quadratic form [ ϕ,  ϕ]  =  ϕα εαβ ϕβ (ε =  




0
− 1    

1
0





):

[ uϕ,  uϕ]  =  [ ϕ,  ϕ] , where u ∈  Sp(1) (we recall that, in
the case of the space R3, the symmetric form was
considered). As S2 is a G-module, we have
[ ϕ,  ϕ]  =  2ϕ1 ϕ2 ≠  0 (it is important to note that, in
a pure geometric approach to the space S2 used in
twistor theory, we would have [ ϕ,  ϕ]  =  0 and a further
consideration would be impossible).

Again [ ϕ,  ϕ]  as a polynomial of the second degree,
may be decomposed into linear multipliers
ϕ̂ =  √2  aα ϕα : [ ϕ,  ϕ]  =  ϕ̂ 2, where the coefficients

aα must obey the relations

aα a β −  a β aα =  εαβ, (7) 

which determine the Heisenberg algebra h2. The
Heisenberg ring U [ h2]  like two previous (the Clifford
and Grassmannian ones) may be obtained from the
tensor algebra T  [ S2]  upon the factorization
determined by relations (7), see [1]. It is very
important to notice that the Grassmannian numbers
(6) have neither matrix nor operator realizations
(ϕα are only symbols). But their extension ¯ algebra
(7) ¯ has, see [4].

3
Namely this property of initial rings (their algebraic non-closedness)

leads to the existence of ideal elements that we use systematically. So, the
ideal numbers of the group SO(3) are spinors. It is only the first echelon
of ideal numbers in physics (see further).

4
This means that there exists the basis e

1
,  e

2
 in S 2  and every element

ϕ ∈  S 2  may be written in the form e
α

 ϕα , where ϕα  ∈  G, i.e. ϕα  satisfy
relations (6).

Again there exists the enclosure σ of the module S 2  (G) into the
Heisenberg algebra h2  : ϕα  → aα , and the diagram

T  [ S 2 ]  →
hG

 ∧  [ ϕ1 ,  ϕ2 ]  =  G2

↓  hH                                  σ
U [ a1 ,  a2 ]  =  W2

where hG  and hH homomorphisms (and I G ,  I H are the corresponding
ideals so that we have G2  =  T  [ S 2 ] / I G , W2  =  T  [ S 2 ] / I H), but σ is not
a homomorphism.

By considering the tensor algebra T  [ U [ h2 ] ]  (U [ h2 ]  is called also the
Weyl algebra and labeled as W2 ) and its module T  [ F] , T  [ F]  extends
the ring T  [ S 2 ] .

From the point of viev of hypercomplex number theory, the ring W2
may be considered as a non-commutative (infinite-dimensional)
extension of the complex number ring C.
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So algebra (7) has an irreducible representation
realized by operators aα, acting in the infinite-
dimensional vector space F playing an important role
in quantum theory of particles, see [3].

The transformations ϕ → ϕ ′  =  u ϕ lead to the
transformations ϕ̂ → ϕ̂ ′  =  aϕ ′  =  a ′ϕ =  (au) ϕ.

Hereby, as u is a simplectic, i.e. u T  ε u =  ε, so the
operators a ′  obey the same commutation relations as
a. Therefore, there exists such a transformation
T  (u) that

T  (u) aT  − 1 (u) =  a ′  =  au . (8)

As above, it follows from here that u and T  (u) are

locally isomorphic, i.e., if u =  1 +  
i
2

 σ→ θ→, we may write

T  (u) =  1 +  iT  (1
2

 σ→ ) θ→ =  1 +  i L
→

 θ→. We have

[ L
→

,  aα]  =  a β (1
2

 σ→ )β
α. (9)

Therefore,

L
→

 =  
1
4

 a β σ→ β
α aα, (10)

where aα =  −  εαβ a β, and εαβ =  




0
1    

− 1
0





, hereby

[ L i,  L j]  =  i εijk Lk. (11)

The mapping T: 
1
2

 σ→ → L
→

 gives an isomorphism between

the Lie algebras su(2) (generators 
1
2

 σ→ ) and su~ (2)

(generators L
→

 ) enclosed in the ring U [ h2] .
However, the groups SU(2) ⊃  u and

SU
~ (2) ⊃  T  (u) are quite different in whole. It will be

seen if one builds the linear representation given by
the operators T  (u) acting in a topological vector space
F, see [3]. As above, the mapping u → T  (u) is not
a homomorphism, it is a kind of covering mapping
(we recall that SU(2) is a one-connected group and,
according to the well-known Weyl theorem [5], it has
no covering manifold). Operators T  (u) do not depend
on point u ∈  SU(2), but depend on the path in SU(2)
that outgoes from 1 ∈  SU(2) and finishes in
u ∈  SU(2) [3]. They realize the representation of a
new Lie group ¯ 1-chain group SU

~ (2), building over
SU(2). The reverse mapping T  (u~ ) → u is a
homomorphism, whose kernel is a subgroup of circles
Ω~  ⊂  SU

~ (2) (see [3]). The topological group SU
~ (2) (it

is not a manifold in whole) is a fibration
(SU(2),  Ω~ ) ,see [3] (hereby SU(2) may be considered
to be a  fibration too: SU(2)  = (SO(3) , Z2),  where
Z2 =  {−  1,1}).

Elements f of the space F are called semispinors.
They are transformed by the formula f → T  (u~ ) f. For
F, there exists a dual space F

.
 ⊃  f 

.
 connected with F

by a sesquilinear form 〈f 
.
,  f 〉 invariant under the

transformations T  (u) as f 
.−
 are transformed by the

formula f 
.−
 → f 

.−
 T  − 1 (u~ ). Hereby the entities

ϕ α =  〈 f 
.
,  a α f 〉 are transformed like spinor

components. In this construction, semispinors f enter
into spinors, spinors consist of, as if,
semispinconductors and, in this sense, semispinors
play the role of ideal elements. Semispinors are more
fundamental entities than spinors. It turns out that a
new physical reality deeper than particles stands
behind them, see further. Recently spinors are
considered to be the most fundamental objects of the
physical world (may be due to the Weyl theorem).
But it is not so.

If follows from the definition of L
→

  that the Casimir

operator L
→

 2 =  −  
3

16
 =  λ (λ +  1). This yields

λ =  −  1/ 4, −  3/ 4. Representations corresponding to

these spin values are labeled as D +  (−  1/ 4) and
D +  (−  3/ 4). Thus, only the pair of semispinor rep-
resentations, realized in the space F, are connected

with the algebra h2 [3]5.
In general case, semispinor representations of the

Lie algebra su(2) are infinite-dimensional irreducible
representations D +  (λ) with junior Cartan vector
corresponding to an arbitrary complex weight (spin)
λ . The ring of semispinor representations labeled as
D
~

 is the extension of the ring D
__

 obtained by addition
of the element D +  (λ) to it, i.e. D

~
 =  D

__
 [ D +  (λ)] . It

follows from here that it consists of only the repre-

sentations D +  (λ +  
n
2

), where λ is fixed and n  ⊂  Z6.

In [3], it was shown that the ring D
~

 is connected
with the Heisenberg algebra h4. The following formula

5
In [6] , Sorokin and Volkov have suggested to consider some

hypothetical particles called quartions behind these irreducible repre-
sentations (strictly speaking, those of another SU(1,1)-group). See also
Wilczek and Zec [7], where similar objects called anyons or semions were
used for descriptions of the fractional Hall effect. In [6], field equations
for quartions were proposed. Earlier in a general approach to the
arbitrary spin problem, such equations have been obtained in [3].

Now we consider that, behind semispinor representations (more
exactly, behind some infinite direct sum of such representations or a
ring), a new form of matter (not separate particles but pre-matter in
whole) stands, see further. In this situation, to use separate irreducible
representations is insufficient.

6
Strictly speaking, only the case λ =  0 corresponds  to the ring. Hereby

the infinite-dimensional representation D 
+

 (n/ 2) is a tail area of the
finite-dimensional representation D (n/ 2), which exists at the point n/ 2.

D 
+ (n/ 2) is equivalent to the representation D 

+
 (−  n/ 2 −  1) at the

point −  n/ 2 −  1, see [3].
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was established there:

D
~

 =  D
__

 ⊗ Dh (0), (12)

where Dh (0) is a non-trivial unit representation of the
Lie algebra su(2), corresponding to the supplementary

variable ϕ =.  ϕ2 which is an SU(2)-scalar called a
hidden parameter. Its existence is connected with the
Ω~  group.

So the square root extraction from Grassmannian
2-spinors leads, first, to the mapping S2 (G) → h2 of
a Grassmannian ring into any dynamical system (the
Heisenberg algebra is always some canonical system)
and, secondly, to the semispinor ring T  [ F ] . Elements
of the latter are called fundors . In the fundor ring,
we achieve the level of algebraically closedness: no
any extension exists, see [3].

In the conclusion of this part, we have to note that
the spinor structure there exists only for the real
Euclidean or pseudo-Euclidean space Rn (its symmetry
group SO(n) is a two-connected manifold having the
spinor covering Spin(n)). We would like to emphasize
once more that the Grassmannian algebra has no
operator realization but it has a semispinor or fundor
structure. All this means the non-common reticence
of subquantum entities standing behind this structure.
The latter is dynamical in its nature described by one
of the Heisenberg algebras. We consider that this
structure underlies our physical world.

In connection with this, we would like to recall
another pure philosophical idea concerning Leibnizian
monadas as a foundation of the world. What are
monadas? They are infinite small entities with various
degrees of smallness. The idea about their existence
grew from the notion of infinitely small numbers. How-
ever, such numbers do not exist indeed (only one such
a number exists ¯ zero). Introduction of this kind
of numbers is connected with a not permitted
contradiction, see [4]. Therefore, we have to consider
monadas to be nonreal objects not existing from the
mathematical point of view.

4. Now we show how the fundor structure appears
in particle physics and enters in the mathematical
carcass of the fundamental physics.

We begin from the base ¯ space-time continuum.
In the whole (on the scale of the Universe), it is a
Riemannian space. But even in its small part, consi-
dered in elementary particle physics where it is flat,
this space is not a vector space that has been considered
in part 2. It is the affine or Poincare space A 3,1 with
coordinates X  µ. Its symmetry group is the Poincare
group P =  L ×)  T  3,1, where L =  SO(3,1) ⊗ P ⊗ T  is the
general Lorentzian group (P, T are reflections of space
and time), and T  3,1 are translations.

For description of particle motion in this space,
Newton postulated the so-called differential structure
on it. As a result, with every point X  of this space,

the pair of vector spaces, namely a co-tangent space
T  X

∗  with base dX  µ and a tangent one T X  with base
∂/ ∂X  µ were connected. Hence, the vector structure
has evidently a local character. But it quite sufficient
for us.

Since the local ring T  [ T  X
∗ ]  is non-closed and

permits a spinor extension (see formally) we can write
(dX  µ)X  =  ψ

__
 (X ) γµ ψ (X ) ds, where γµ are elements of

the Clifford algebra (Dirac matrices), ds =
=  √(dX  µ) X

2 , and ψ (X ) are cross sections of the spinor

fibration (A3,1,S  8
(∗)). Here X  ∈  A3,1,   ψ,ψ

__
 ∈  S8

(∗)

(S  8
(∗)

 is the Dirac spinor space).

So, having the co-tangent space T  X
∗  at every point

X  ∈  A 3,1, one can, first, build a co-tangent fibration

(A 3,1,  T  ∗ A3,1), where T  ∗ A3,1 =  U T  X
∗

X ∈ A3 ,1

  (and one can

do the same in the case of the tangent space T X , i.e.,

to build a tangent fibration (A3,1,  T  ∗ A3,1), where
T  A3,1 =  U T X

X ∈ A3 ,1

 ). Secondly, by expanding (at every

point X ) into a wider spinor space (S  8
(∗))X  (or the

local ring T  [ (S  8
(∗))X ]  connected with it), one can build

a spinor fibration (A3,1,  S  8
(∗)) by means of a joint of

all local spinor spaces (S  8
(∗))X . Hereby it is clear that

the space (S  8
(∗))X , extending the space T  X

∗ , must be

used in the same sence as T  X
∗ , i.e. as a fiber grown

from a point X  ∈  A3,1. It is important to understand
that this statement is not an axiom but the consequence
of our construction.

It is important to emphasize also that, according
to this construction, spinors are not used as any
substructure of the space-time A3,1 substituting it like
in the twistor theory, but in the sence of any
supplementary structure to the space-time, namely, as
the fiber of a new space ¯ the spinor fibration
(A3,1,  S  8

(∗)).
We have already mentioned that ψ (X ) is any cross

section of this spinor fibration, i.e., the fields
corresponding to a Dirac’s particle. We will not stop
at the equations for these fields, which follow from
the structure of these fields as objects of the Lorentz
and Poincare groups (concerning this, see [8]).
Underline only that Dirac unerringly guessed the
meaning of spinors as matter variables (but not space).
Now we can say that the base A 3,1 is the empty space-
time (without matter) and the fibration (A 3,1,  S ) (here
S is not only a spinor but other vector fibers too) is
the space-time filling by matter (or physical space-
time).

Hereby, in the classical description of matter, it is
sufficient to consider only the co-tangent fibration
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(A 3,1,  T  ∗ A 3,1) which is a phase space of classical
mechanics. In the quantum description, the canonical
variables of matter (without spin) are connected with
the tangent fibration (A 3,1, TA 3,1) which is an
associative algebra. Transition from a co-tangent
fibration to a tangent one is called spatial (or the first)
quantization [4]. Taking into account spin of particles,
the field variables of matter are connected with the
wider (namely matter) vector fibration (A 3,1,S )
mentioned above. We emphasize that the both spinor
structure and wave nature of matter have local  char-
acter. Therefore, it is a nonsence to speak about spinor
or wave properties of macroobjects (a star, a galaxy,
or the Universe).

So, the first echelon of ideal numbers ¯ spinors
¯ is used in the mathematical carcass of fundamental
physics as a fiber of the matter fibration
(A 3,1,  S  8

(∗)) of the space-time A 3,1 and as the cross
sections of this fibration ¯ Dirac’s fields ψ (X ).

A further consequent description of these objects is
connected usually with the second quantized field
theory, in which fields ψ (X ) are considered to be

operators ψ̂ (X ), acting in a Fock ¯ Hilbert space and
obeying the permutation relations

{ψ̂ (X
→

,  t),  ψ
__̂

 (X
→

 ′ ,  t)} =  γ4 δ 3 (X
→

 −  X
→

 ′  ). (13)

Due to the singularity of the right hand side in (13),
quantized field theory meets ultraviolet divergences.
They are connected obviously with ultra small
distances when X

→
 =  X

→
 ′

It is very important to understand that it follows
from nowhere that the Newtonian conception of space
as a differential manifold with measure and the
Faraday ¯ Maxwell field conception may be used at
very small distances (very high energies). Analysis of
the situation which takes place in this region shows
[9] that, in the neighbourhood of a singular point of
the Universe (the so-called cosmological singularity)
and also in high-energy particle collisions, the particle
wave functions are compressed (due to the Fitz Gerald
¯ Lorentzian space contraction) so much that they
become non-differentiable. As a result, the
configuration space loses the differential structure and
measure. In such circumstances, the  simple joint of
axioms of the usual Heisenberg ¯ Schro

..
dinger

quantum theory based on a separable Hilbert space
[10] with the demands of special relativity given by
Feynman and others [11] is insufficient to construct
a consequent quantum field theory. Axiomatic approach
to the problem [12] showed that further investigations
in the framework of this scheme is without looking
(negative results of Haag and Wightman).

It was shown in [4] that, in this region, we have
to reject the usual field conception (a field is a function
on the continuum) and Newtonian model of space-time

(a differential manifold with measure) and to accept
another field concept ¯ a field is a function on the
discontinuum. This new quantum field theory breaks
the well-known symmetry between the configuration
and momentum spaces inherent in the usual quantum
theory (due to the usual Fourier transformation, the
latter is characterized by some equilibrium between
these spaces). In the new theory, this symmetry is
completely broken because the configuration space is
completely non-closed here (discontinuum) and a new
measure ¯ H.Bohr’s one ¯ is considered on the
momentum space [13]. A class of almost periodic
functions and a non-separable  Hilbert space are
connected with this measure. Such functions describe
particle constituents ¯ granules. Granule fields
(quantized Dirac’s fields on the discontinuum) obey
the permutation relations [4]

{ψ̂ (X
→

,  t),  ψ
__̂

 (X
→

 ′ ,  t)} =  0, (14)

which are essentially distinguished from (13). These
relations have no solutions in the form of oparators
densely defined in the Fock ¯ Hilbert space, see [4].

The question is raisen: what do these relations
mean? They look like (6), which determine a Gras-
smannian algebra. As X

→
  take an infinite lot of values,

(14) determine an infinite-dimensional Grassmann
algebra. However, at X

→
 =  X

→
 ′  (X

→
 are fixed), we have

a finite-dimensional algebra labeled as
S  8

(∗)
 (G) =  U [ ψ,  ψ

__
 ] . In part 3, it has been shown that

such rings are algebraically non-closed and permit the
extension to the fundor ring connected with the
Heisenber algebra. In this case, it will be the algebra
h 8

(∗). Mapping (enclosure) S  8
(∗)

 (G) → h 8
(∗)

 (i.e.,

ψ → Φ,  ψ
__

 → Φ
__

, where Φ,  Φ
__

 are generators of h 8
(∗)

 was
called in [3] as the quantization of a Dirac ¯
Grassmann fiber.

A new kind of dynamical systems ¯ relativistic bi-
Hamiltonian ¯ is connected with the algebra h 8

(∗)).
For its description, a non-Fock (non-self-adjoin) rep-
resentation of h 8

(∗)
 is well adopted. Such a repre-

sentation is realized in the pair of topological vector
spaces (F

.
,  F) dual with respect to some non-Hermitian

sesquilinear form 〈., .〉. This representation describes
a non-standard complex oscillator, having no ground
state. Such an oscillator has an infinite lot of states
with negative occupation numbers. With the latter, the
existence of a supplementary variable ϕ is connected,
see part 3.

The carrier space F of an irreducible representation
of the algebra h 8

(∗)
 is named a fundor one. In it, the

ring of semispinor representations of the Lorentz group
(more exactly, those of the group SL

~(2, C) which is
a 1-chain group over SL(2, C) ¯ any kind of covering)
is realized. Elements of the space F are called fundors.
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In F, the representation of SL(2, C) is completely
reducible to the infitite system of irreducible
semispinor representations. Fundors are the second
echelon of ideal numbers. They describe a hidden
dynamical structure of granules. They are the most

fundamental numbers of the physical world7.
5. We summarize. At present time, the most

fundamental from finite (hypercomplex) numbers are
Caley numbers Ca. In [14], it was shown that there
is the reason to put them in the ground of creation
of our Universe. They determine the dynamics of the
most early stage of formation of the Universe and also
the most fundamental properties of it. Due to the non-
associativity of the Caley algebra, it has no any matrix
realization and its dynamics goes out from the frame
of the Lie group theory. In order to improve it, we
should consider a tensor algebra T  [ Ca]  over Ca (recall
that tensor multiplication is associative).

It is very important that the Caley algebra contains
the associative subalgebra of the Hamiltonian
quaternions H, which has already a matrix realization.
Non-associativity of Ca is connected, strictly speaking,
with one Caley’s number E , so that Ca =  H +  HE .
If the algebra Ca is enclosed in the Heisenberg algebra

h 8
(∗)

 8,  which has  the  infinite-dimensional  non-self-
adjoint  representation (we have underlined the very
important property of this representation), so the

number E  finds a  realization in the form of

E  =  T  +  T  =  −  TT  +  (T  2 =  ±  1, so that E  2 =  −  1),

where T  is time reflection: Φ → Φ
__

, see [14]. Here

T  +  ≠  T ,  T  − 1, that is fulfilled only at the regime of
a non-self-adjoint representation. Hereby, the algebra
U [ h 4

(∗)]  is realized in the subspace F0 ⊂  F, and

T  [ U [ h 4
(∗)] ]  (connected with T  [ Ca] ) does in the

tensor algebra T  [ F0] . It is essential that the

multiplication in T  [ U [ h 4
(∗)

] ]  is external (Cartan)
multiplication.

The ring T  [ F]  describes the ensemble of pre-matter
quanta (or ether waves) f, of which our Universe
consists, in the zero circle of its evolution (before the
Bog Bang). After the Big Bang (the total quantum
transition f → f 

.
 ), fundamental particles arose and the

ring D
__

 (and its sub-ring D) included in T  [ F]  came
into force. The latter is considered over the ring Z,
and when the spin properties of particles become
disregarded  ( it  is  possible  at macroscopic level) ,
only the ring Z stays from the whole tower of number
rings.

All  extensions considered  here of the initial ring
Z are the achievements of the algebraic science of the
19th and 20th centuries. Search for the most
fundamental numbers was the main principle of these
investigations. Modern algebra grew from this
principle.  We consider that this principle underlies
the  fundamental  particle physics  too. In the figure,
the main elements of the mathematical carcass of
fundamental  physics are shown.

Finishing our exposition, we present the tower of
number rings underlain the fundamental physics. For
representations and their modules, it looks so:

D ⊂  D
__

 ⊂  D
~

,

T  [ R 3,1]  ⊂  T  [ S  8
(∗) (G)]  ⊂  T  [ F] .

7
Fundor ring D

~
 of the group SL(2,C) consists of the representations

{(λ +  p/ 2, λ ′  +  q/ 2)+
}, p,  q ∈  Z (where it must be λ =  λ ′  =  0). The

ring D
~

 is equivalent to the ring D
__

 ⊗ (0, 0)h (compare with (12)), where
D
__

 is the ring of finite-dimensional representations (n/ 2, m/ 2),  n,
m  ∈  Z+  of the group SL(2, C), and (0,0)h is a non-trivial unit repre-
sentation connected with additional variables, see part 3, and also [3].

8
We have already written about three Heisenberg algebras h 4

( ∗ )
,

h 8
( ∗ )

, h 1 6
( ∗ )

. Here, the each next is a doubling of the previous. Algebra

h 4
( ∗ )

 underlies the Universe and is connected with the Caley algebra
Ca. The latter is the Caley ¯ Dickson doubling of the Hamilton algebra
H . In our Universe, the Caley ¯ Dickson doubling reduces to the

doubling of the algebra h 4
( ∗ )

, in result of which the algebra h 8
( ∗ )

 arises.
The latter contains isotopic symmetry in the form of Ui (2). Repre-

sentations of both algebras h 4
( ∗ )

 and h 8
( ∗ )

 are given in the subspace
F0  ⊂  F of functions depending on the additional variables

ϕk  =.  ϕ2 k  (k =  1,2 are isotopic indices; in the case of h 4
( ∗ )

, it is one

variable ϕ =.  ϕ2 , see part 3). On the extension of the h 8
( ∗ )

-representation
from the subspace F0  onto the total carrier space F =  FF ⊗ F0 , the

doubling of the algebra h 8
( ∗ )

 is happened and the algebra h 1 6
( ∗ )

 arises.
This algebra contains isotopic and Dirac’s indices: FF is the space of
functions depending on the variables ϕα k , where α =  1, 2 are Dirac’s

indices. Vice versa, the contraction of the h 1 6
( ∗ )

- representation from the
space F into the subspace F0  is accompanied by algebra contraction

h 1 6
( ∗ )

 ⊃  h 8
( ∗ )

, on one hand, and the space-time contraction
A 3 ,1  ⊃  A 1 ,1 , on the other hand. The process F0  ⊂  F plays a very
important role in the subquantum theory.

Spinor fidration of spase-time
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Here, R 3,1 is the vector space associated with the affine
space-time A 3,1 (i.e., this is the co-tangent space

T  X
∗  A 3,1 in fact). Here, the appearance of the

Grassmannian algebra G is connected with the spinor
properties of matter.

We give also the tower for hypercomplex numbers,
which has been used here:

Z → R → C → H → Ca → U [ h 4
(∗)] .
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