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The use of the harmonic oscillator basis in nuclear problems for
small values of oscillator radius r0  is studied by the example of a

short-range (Gauss) potential. Solutions obtained in the Algebraic
Version of the Resonating Group Method (AVRGM) are analyzed
and compared to a numerical solution of the Schrodinger equation.
Phase shifts for the solutions belonging to the continuum spectrum
calculated within different methods are presented.

Introduction

Using the expansion of a wave function in the harmonic
oscillator basis for building the wave function which
satisfies the Schrodinger equation, we should define
the oscillator radius r0 optimally. It was already noted
[1] that real physical results do not depend on the
choice of r0 ¯ this is the test for a calculating pro-
cedure. The second well-known reason concerns the
convergence of the expansion series. It is formulated
as a choice of such r0 that provides the fastest
convergence in the region where the asymptotics of a
wave function is not yet true. In [2], it was shown
that one can speed up convergence using r0 less than
the characteristic length of the potential energy of a
system under consideration.

There is one more requirement essential for real
calculations. It states that the  choice of r0 should pro-
vide the easiest algorithm for calculating matrix
elements of the potential energy operator. In [3], it
was shown that, for slowly decreasing potentials ¯
Coulomb and one inversely proportional to the third
power of hyperradius (the effective potential of the
hyperspherical functions method) ¯ potential energy
becomes equivalent to a diagonal matrix for a large
number of oscillator quanta. When the number of
oscillator quanta is large, the algebraic equations for
coefficients of a wave function expansion in the
harmonic oscillator basis can be considered as those
for the binding coefficients of trinomial recurrent
relations for a finite number of quanta and asymptotic
ones. Therefore the question was raised about the
possibility to obtain such a simplification for short
range potentials using a small oscillator length r0 and
transform the system of algebraic equations into
recurrent relations and the condition of the completion
for a small number of oscillator quanta.

We consider, as the example, the Schrodinger
equation for a particle in the spherially symmetric
Gauss potential. We will show that the positive answer
can be given to the question raised. In the second
section, we will recall the main statements concerning
3D harmonic oscillator basis states and the matrix
elements of the Gauss potential on these states. There
we will discuss a problem of non-uniform convergence
of the wave function expansion in the harmonic
oscillator basis and describe how one can find the
actual number of basis functions needed to provide
convergence for a predefined oscillator radius in the
specified region. Also we will present some important
results demonstrating the properties of the potential
energy matrix when the oscillator radius is far less
than the radius of nuclear forces. In the third section,
we give the numerical results obtained using different
methods for different r0. All conclusions are given in
the fourth section.

Basis and Matrix Elements

To find an eigenfunction

ΨElm  (r,  θ,  ϕ) =  R l (r) Y lm  (θ,  ϕ) (1)

of the  Hamiltonian Ĥ  =  T̂  +  Û  of a particle with

kinetic energy T̂  in a spherically symmetric potential

Û =  U (r) in a state with energy E , orbital momentum
l,   and its projection m ,  we expand the radial part
of the wave function as

RE ,l (r) =  ∑ 
n= 0

∞
  C nl

E  Rnl (r). (2)

As usual, Y lm  (θ,  ϕ)-spherical harmonics, Rnl (r) ¯

radial harmonic oscillator basis functions, and C nl
E  ¯

expansion coefficients we need to find. Instead of the
Schrodinger equation for the function ΨElm  (r,  θ,  ϕ) in
coordinate  representation,  we  obtain  the  infinite
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system of algebraic equations for C nl
E  :

  ∑ 
n~= 0

∞
  {〈n ,  l | Ĥ  |  n~, l 〉 −  E  δn,n~ } C 

n~l

E
 =  0, (3)

n  =  0,  1,  2, ...

Before trying to solve system (3), we should analyze
two following problems. First, we need to answer the
question about the convergence type of (2), noting the
fact that the asymptotics of any harmonic oscillator
basis function decreases fast and differs from the
asymptotics of bound states and continuum spectra.
Second, we need the a priori procedure to solve the
infinite system of algebraic equations (3).

1. Asymptotics of the Expansion Coefficients

It is well-known that the radial basis functions
Rnl (r) of a 3D harmonic oscillator can be expressed

in terms of Laguerre  polynomials L n
l+ 1/ 2 (x  2)  and

exp (−  x  2/ 2), so

Rnl (r) =  
Nnl

r0
3/ 2

 x  l L n
l+ 1/ 2 (x  2) exp (−  x  2/ 2),   x  =  

r
r0

. (4)

Every function has n  modes in the interval 0 < r < rt,
where rt (n) =  r0 √4n  +  2l +  3  is the turning point. To
the right from the turning point, these functions
decrease as exp (−  x  2/ 2). The typical dependence of
Rnl  on r is shown in Fig.1, where n  is equal to 10
and l = 2. The remarkable feature of the functions
Rnl (r) is that they, being multiplied by r 3/ 2, become
similar to δ-functions in the turning point region [6].

This is shown in Fig.2 for the case of n  = 10, l = 2.
The asymptotic limit of r3/ 2 Rnl (r) for n  >> 1 is given
by the following equation:

r 3/ 2 Rnl (r) ≈  √2  δ (r −  r0 √4n  +  2l +  3) . (5)

This statement is associated with the fact that the
functions on the left and on the right of a turning
point can be approximated in quasi-classical limit (e.g.,
for large n) by Airy functions [8]. Thus, there is a
simple asymptotic relation between the coefficients
C nl

E  and function Rnl (r) at the points rt (n):

C nl
E  ≈  RE ,l (r0 √4n  +  2l +  3)  √2  √r0  (4n  +  2l +  3)1/ 4.

(6)

Of course, if r0 √4n  +  2l +  3  is larger than the radius
of nuclear forces b0, then, for these values of
r0 √4n  +  2l +  3 , the function RE ,l (r) in coordinate re-
presentation has the well-known asymptotic form. With
no Coulomb interaction for the states of continuum
spectra, it has the form

RE ,l (r) ≈  cos δl jl (kr) −  sin δl n l (kr),   r > b0, (7)

where jl (kr)¯ spherical Bessel function, n l (kr)¯

spherical Neumann function, k =  √2mE/ h− 2 ¯
momentum, m  ¯ mass of a particle, δl ¯ phase shift.
All we have to find is this phase shift. Solving the
problem in coordinate representation assumes that the
phase shift can be found using the conditions of
equality of asymptotics (7) and the function found in
the inner region at some intermediate point.

To solve the problem in harmonic oscillator repre-
sentation, we also use asymptotics (7), but only to

Fig. 1. Radial part Rnl (r) of the basis function, n =  10, l =  2 Fig. 2. δ-like behavior of the radial part Rnl (r) of the basis function with

multiplier r 3 / 2  /  √2 , n =  10, l =  2
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express all a priori unknown expansion coefficients in
terms of phase shift. So, the equations

C nl
E  ≈  {cos δl jl (kr0 √4n  +  2l +  3 ) −

−  sin δl n l (kr0 √4n  +  2l +  3 )} √2 √r0  (4n  +  2l +  3)1/ 4,

n  > n0 (8)

allow us to transform the infinite system (3) into a
finite system of algebraic equations for phase shift and
unknown expansion coefficients C nl

E  ,   n  ≤  n0.
However, if n  >> 1 and r0 < b0, then Eq. ( 6) is valid

not only in the asymptotic region of RE ,l (r), but also
in the region where

r0 √4n  +  2l +  3  ≈  b0, and even r0 √4n  +  2l +  3  < b0.

Therefore, solving the system of algebraic equations
for expansion coefficients C nl

E  gives us information
about the behavior of the wave function immediately.

 There is a question for what values of n  Eq. (6)
provides enough a high accuracy to be used in real
calculations? To answer this, we refer to the system
of algebraic equations with Gauss potential (3)

U (r) =  V0 exp 



−  

2r 0
2

b 0
2  x  2




,

V0 =  −  100 MeV,   b0 =  1 fm. (9)

E  is equal to 1 MeV, and the oscillator radius r0 has
two different values: 0.7 and 0.4 fm.

Coefficients  {C nl
E  }  of  the  state  with  energy

E  =  1 MeV and orbital momentum l =  2 were
calculated for n0 =  100, and then for n0 =  200. To un-
derstand how these coefficients reproduce the behavior
of the exact  solution R  E ,  l= 2 (r) of the equation

(T̂  +  U (r)) RE ,l =  ERE ,l (10)

with the same potential (9) and energy, we found
RE ,l= 2 (r) within the standard numerical method,
described in [9], and compared coefficients
{C nl= 2

E  }  with the function √2r  RE ,l= 2 (r). This is
demonstrated  in  Fig. 3  for r0 =  0.4 fm,  and in
Fig. 4 for r0 =  0.7 fm. According to the stated above,

coefficients {C nl= 2
E  } reproduce the exact solution

accurately as long as

0 ≤  rn ≤  r0 √4n0 +  7 .

In the region where rn ≥  r0 √4n0 +  7 , they can be
reconstructed with Eq. (8).

2 . Non-uniform Convergence 

On the ray 0 ≤  r < ∞ , series (2) does not converge
uniformly. In other words, for any large n0 the partial
sum

R  l
n0  (r) =  ∑ 

n= 0

n0

  C nl
E  Rnl (r) (11)

cannot approximate R l (r) with a predefined accuracy
for all r, belonging this ray. But due to the completeness

Fig. 3. Coeficients C nl
E  and exact solution R  E, l= 2  (r) for E  =  1 MeV,

l =  2, r0  =  0.4 fm, n0  =  100, n0  =  200

Fig. 4. The same as in Fig. 3 for r0  =  0.7 fm
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of the system of radial basis functions Rnl (r), for any
finite interval 0 ≤  r ≤  rmax, one can specify such a

N0 =  N0 (ε,  rmax),

that provides the approximation with a predefined
accuracy. Thus, for all r belonging to this interval,
the inequality

| R l (r) −  ∑ 
n= 0

n0

 C nl
E  Rnl (r)|  < ε

takes place if n0 > N0. There is a relation between
values of rmax, N0, and oscillator radius r0 (refer to
[5]):

r0 √4N0 +  3  ~  rmax. (12)

Definitely, the lower limit for N0 must be a little higher
than the value given by (12).

To represent the dependence of the partial sum (11)
on r, we calculated coefficients C nl= 0

E  in the state with
energy E  =  10 MeV for r0 =  0.4 fm and then used
their values in (11). The partial sum (11) and exact
solution are represented in Fig. 5 for n0 =  100 and
in Fig. 6  for n0 =  200. These figures show that the
choice of n0 is dictated only by the demand of transition
of the wave function into the asymptotic region, where
the phase shift totally determines the behavior of the
solution.

3. Analysis of the System of Algebraic Equations

The key to the problem of solving the infinite system
of equations (3) is the asymptotics of coefficients

C nl
E  for large n . This is similar to solving the

Schrodinger equation in coordinate representation and
using the asymptotics of the wave function R l (r) for
large r. Let’s recall how the passage to the limit of
large n  in Eqs. (3) can be done. Since

〈n ,  l | Ĥ  | n~, l 〉 =  〈n ,  l | T̂  | n~, l 〉 +  〈n ,  l | U (r)|  n~, l 〉,

we consider the behavior of a sum

  ∑ 
n~= 0

∞
  〈n ,  l | U (r) | n~, l 〉 C nl

E ,

when n  >> 1. Within this limit, the following relations
are true:

  ∑ 
n~= 0

∞
  〈nl |  U (r)|  n~ l 〉 C~  

n~l

E
 =  ∫  

0

∞
Rnl (r) U (r) ×

×  ∑ 
n~= 0

∞
  R

n~l
 C
~

 
n~l

E
 r 2 dr =

=  ∫  
0

∞
Rnl (r) r 3/ 2 r 1/ 2 U (r) R  l

E  (r) dr =

=  ∫  
0

∞
δ (r −  r0 √4n  +  2l +  3  r1/ 2 U(r) R l

E(r) dr =

=  U (r0 √4n  +  3 ) R  l
E  (r0 √4n  +  2l +  3 ) ×

×  √r0 √4n  +  2l +  3  =  U (r0 √4n  +  2l +  3 ) C nl
E . (13)

Fig. 5. Partial sum R  
l= 0

n 0  (r) and exact solution RE, l= 0  (r)  for E  =  10
MeV, l =  0, r0  =  0.4 fm, n0  =  100

Fig. 6. The same as in Fig. 5 for n0  =  200
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There we use the fact ([6]) that

Rnl (r) r 3/ 2 → δ (r −  r0 √4n  +  2l +  3 ),  if  n  → ∞ .(14)

The asymptotic equations (3) take the form:

h− 2

2r 0
2  {−  √(n  +  1)(n  +  l +  3/ 2)  C n+ 1,l

E  +

+  (2n  +  l +  3/ 2) C nl
E  −  √n  (n  +  l +  1/ 2)  C n− 1,l

E } +

+  U (r0 √4n  +  2l +  3 ) C nl
E  =  EC nl

E . (15)

The mass of a particle is equal to 1.
For the short-range potential that decreases fast for

large rnl =  r0 √4n  +  2l +  3 , we can disregard the last
term in the left part of (15) for large rn beginning
with some value of n . A solution of the limit equation
(15) is the expansion coefficients C nl

E  of the free-
motion wave function when E  > 0. Therefore, complete
similarity between the harmonic oscillator repre-
sentation and coordinate representation exists.
Similarly to the use of the regular solution asymptotics
(Bessel functions J l+ 1/ 2 (kr)) and irregular solution
asymptotics (Neumann functions N l+ 1/ 2 (kr)) in the
outer region, in the harmonic oscillator representation
for n  >> 1, two sets of asymptotic coefficients should
be used. One set,

C nl
E ,reg

 =  J l+ 1/ 2 (kr0 √4n  +  2l +  3 ), (16)

represents the regular solution, k =  √2E/ h− 2 , and
another

C nl
E , irreg

 =  N l+ 1/ 2 (kr0 √4n  +  2l +  3 ) (17)

the irregular one. It must be noted that, to calculate
these coeffcients, it is enough to know the solution
for the set of discrete points. Also, if
r > r0 √4n

__
 +  2l +  3 , then

J l+ 1/ 2 (r) =  ∑ 
n= n

__

∞
  J l+ 1/ 2 (kr0 √4n  +  2l +  3 ) Rnl (r), (18)

N l+ 1/ 2 (r) =  ∑ 
n= n

__

∞
  N l+ 1/ 2 (kr0 √4n  +  2l +  3 ) Rnl (r). (19)

Next, we express C nl
E  (defined for n  ≥  n

__
 by (3))

using the phase shift δl and asymptotic limits (16)
and (17):

C nl
E  =  cos δl C nl

E ,reg
 −  sin δl C nl

E , irreg
. (20)

After that,  the infinite system  (3)  becomes a system
of n

__
 +  1 equations where the unknowns are first n

__

coefficients C nl
E ,    n  =  0,  1,  2, ...,  n

__
 −  1, and phase shift

δl.

4.  Potential Energy Matrix

Let’s go back to the potential energy matrix. The
relation

  ∑ 
n~= 0

∞
  〈nl | U (r)|  n~ l 〉 C~  

n~l

E
 =  U (r0 √4n  +  2l +  3 ) C nl

E

(21)

introduced earlier takes place for large enough n . For
a short-range potential when r0 is about its radius,
this relation allows one to neglect the potential energy
terms in (3) for large n  and find asymptotic
coefficients. However, decreasing r0, one can come to
conditions when the limit relation takes place but the
potential U (r0 √4n  +  2l +  3 )  cannot be neglected. It
means that the potential energy matrix is equivalent
to a diagonal matrix, i.e.,

〈nl | U (r)|  n~ l 〉 ~  U (r0 √4n  +  2l +  3 ) δn,n~. (22)

It does not mean, however, that the following quantities
are equal:

〈nl | U (r)|  n~ l 〉  and  U (r0 √4n  +  2l +  3 ).

So, we have Eqs. (15) where the influence of the
potential U (r0 √4n  +  2l +  3 ) on the asymptotic
coefficients should be taken into account.

To illustrate the preceding statements, we consider
the Gauss potential (9) once again. The matrix
elements

〈nl | V0 exp {−  2r 2}|  n~ l 〉

of this potential (9) are well known. Next, we consider
their sums:

  ∑ 
n~= 0

∞
  〈nl | U (r)|  n~ l 〉 =  F (n ,  l; r0).

With very good accuracy (about one per cent), the
function F (n ,  l; r0) reproduces potential (9) at points
rnl =  r0 √(4n  +  2l +  3 ), beginning with n  = 0, unless
r0 =  0.1 or less. Then all equations of system (3) can
be considered in the form of (15). Hence, to obtain
a wave equation in harmonic oscillator representation,
one does not need to refer to the potential energy
matrix 〈nl | U (r)|  n~ l 〉 because it is sufficient to
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consider the diagonal matrix U (r0 √4n  +  2l +  3 ) δn,n~.
It is easy to formulate a recursive algorithm for solving
this system of algebraic equations. Let’s begin with
such a large value of n

__
, that we can neglect the potential

U (r0 √4n
__

 +  2l +  3 ) in (15). Let

C 
n
__

+ 1,l
E ,reg

 =  J l+ 1/ 2 (kr0 √4n
__

 +  2l +  7 ),

C 
n
__

,l
E ,reg

 =  J l+ 1/ 2 (kr0 √4n
__

 +  2l +  3 ) . (23)

The value of C n
__

− 1,l
E ,reg

 can be calculated from (15) when
n  is substituted by n

__
. Then (15) can be treated as

trinomial recurent relations that allow one to 'climb
down“ from C n

__
,l

E ,reg
 to C 1,l

E ,reg
 and C 0,l

E ,reg
. Similar

actions lead to the calculation of the irregular
coefficients C 1,l

E , irreg and C 0,l
E , irreg. Of course,

C 1,l
E  =  cos δl C 1,l

E ,reg −  sin δl C 1,l
E , irreg, (24)

C 0,l
E  =  cos δl C 0,l

E ,reg −  sin δl C 0,l
E , irreg. (25)

The relation between C 1,l
E  and C 0,l

E  gives us the first,
easiest equation of the system (15):

h− 2

2r 0
2
 −  √(l +  3/ 2)  C 1,l

E  +  (l +  3/ 2) C 0,l
E  +

+  U (r0 √2l +  3 ) C 0,l
E  =  E  C 0,l

E . (26)

This relation determines the phase shift δl and

coefficients C nl
E  for any given n . 

The phase shift (as a function of energy) calculated
with this simple algorithm cannot differ from that given
by other methods. The only question is for what r0
it is close to the exact phase shift.

Phase shift was calculated using different algorithms
for potential (9) and zero angular momentum for
different values of r0, 0 < E  < 100 MeV. The results
are shown in Fig. 7. The phase shift for r0 =  0,1fm
consists of the phase shift calculated by solving
Schrodinger equation numerically [9] and phase shift
calculated with standard procedures of AVRGM [6,
10].

Conclusion

In this paper, we examined non-uniform convergence
of the expansion  of the wave function R  l

E  (r) in the
harmonic oscillator basis on a ray 0 ≤  r < ∞  and
showed how many basis functions we need to obtain
uniform convergence on the finite interval
0 ≤  r ≤  rmax for any given rmax. Using the Gauss
potential, we discovered a very important feature of
the potential energy matrix U(r). It implies that, for
r0 much less than the radius of a potential, this matrix
is equivalent to a diagonal matrix
U (r0 √4n  +  2l +  3 ) δn,n~, obtained by simple
substitution of the argument r in the potential U (r)
by r0 √4n  +  2l +  3 . This results in reducing the al-
gorithm of solving a system of algebraic equations for
expansion coefficients of a wave function in the
harmonic oscillator basis to a trivial recurrent proce-
dure. Phase shifts, whose calculation was based on
this algorithm and on the standard for the harmonic
oscillator basis approach [7], almost do not differ. This
confirms the statement [1] about independence of real
physical results on the oscillator radius. Potentials with
singularity at r = 0 require a special approach.
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Fig. 7. Phase shift obtained within different methods for r0  =  0.1,
r0  =  0.4, r0  =  0.7 fm
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